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A Hybrid Approach for the 0—1 Multidimensional Knapsack problem

Michel Vasquez 1) and Jin-Kao Hao 2)
1) EMA-EERIE, Parc Scientifigue G. Besse, F—-30035 Nimes cedex 1, vasquez@eerie.fr
2) Université d’Angers, 2 bd Lavoisier, F-49045 Angers cedex 1, hao@info.univ-angers.fr

Abstract Given the practical and theoretical importance of the
) MKPO1, it is not surprising to find a large number of stud-
We present a hybrid approach for the 0-1 mul- jes in the literature; we give a brief review of these studies in

tidimensional knapsack problem. The proposed the next section.
approach combines linear programming and Tabu

Search. The resulting algorithm improves signifi- 2 State of the Art
cantly on the best known results of a set of more

than 150 benchmark instances. Like for many NP-hard combinatorial optimization problems,

both exact and heuristic algorithms have been developed for
the MKPO1. Existing exact algorithms are essentially based
1 Introduction on the branch and bound methfshih, 1979. These algo-
rithms are different one from another according to the way
The NP-hard 0-1 multidimensional knapsack problemthe upper bounds are obtained. For instancéShih, 1979,
(MKPO1) consists in selecting a subsetodiven objects (or  Shih solves, exactly, each of the single constrained, re-
items) in such a way that the total profit of the selected objecttaxed knapsack problems and select the minimum ofnthe
is maximized while a set of knapsack constraints are satisfiedbjective function values as the upper bound. Better algo-

More formally, the MKPO1 can be stated as follows. rithms have been proposed by using tighter upper bounds,
obtained with other MKPO1 relaxation techniques such as la-
MKPO1 maximizec.z subject to grangean, surrogate and composite relaxat[@mvish and
Az <bandz € {0,1}" Pirkul, 1989. Due to their exponential time complexity, ex-

act algorithms are limited to small size instances=£ 200
wherec € N*", A € N™*"andb € N™. The binary andm = 5).
componentse; of z are decision variablesz; = 1 if the Heuristic algorithms are designed to produce near-optimal
objectj is selected) otherwise.c; is the profit associated to - solutions for larger problem instances. The first heuristic ap-
J. Each of them constraintsd;.o < b; is called a knapsack proach for the MKPO1 concerns for a large part greedy meth-
constraint. ods. These algorithms construct a solution by adding, accord-

The special case of the MKPO1 with = 1 is the classical ing to a greedy criterion, one object each time into a current
knapsack problem (KP01), whose usual statement is the fokolution without constraint violation. The second heuristic
lowing. Given a knapsack of capacibyandn objects, each approach is based on linear programming by solving various
being associated a profit (gain) and a volume occupation, onglaxations of the MKPOL1. A first possibility is to relaxe the
wants to seleck (k¢ < n andk not fixed) objects such that the integrality constraints and solve optimally the relaxed prob-
total profit is maximized and the capacity of the knapsack idem with simplex. Other possibilities include surrogate and
not exceeded. It is well known that the KPO1 is not stronglycomposite relaxationgsorioet al., 200d.

NP-hard because there are polynomial approximation algo- More recently, several algorithms based on metaheuristics
rithms to solve it. This is not the case for the general MKPO1have been developed, including simulated annedibvexl,

The MKPO1 can formulate many practical problems such198g, tabu searchGlover and Kochenberger, 1996; Hanafi
as capital budgeting where projecthas profitc; and con-  and Fréville, 1998and genetic algorithm<Chu and Beasley,
sume(a;;) units of resource. The goal is to determine a 199§. The metaheuristic approach has allowed to obtain very
subset of then projects such that the total profit is maxi- competitive results on large instances compared with other
mized and all resource constraints are satisfied. Other impornethods§ = 500 andm = 30).
tant applications include cargo loadifghih, 1979, cutting Most of the above heuristics use the so-calfesgtudo—
stock problems, and processor allocation in distributed sysutility criterion for selecting the objects to be added into a
tems[Gavish and Pirkul, 1992 Notice that the MKPO1 can solution. For the single constraint case (the KP01), this crite-
be considered as a general 0-1 integer programming probleron corresponds to therofit/resourceratio. For the general
with non-negative coefficients. MKPO1, thepseudo-utilityis usually defined as;/(u.a;)



wherew is a multiplier for the column vectog;. Notice a series of problems:

that itis impossible to obtain "optimal" multipliers. Thus the

pseudq—uhhtwntenon may mislead the .search. MKP[k]{ A.z <bandz € [0-1]" and
In this paper, we propose an alternative way to explore the o@)=keN

search space. We use fractional optimal solutions given by

linear programming to guide a neighborhood search (Tabwheres(z) is the sum of the components of defining a

Search or TS) algorithm. The main idea is to exploit arounchyperplane. We have thus several (promising) poifs

a fractional optimal solution with additional constraints. We around which a careful search will be carried out.

experiment this approach on a very large variety of MKPO1 To show the interest of this extra constraint, take again the

benchmark instances and compare our results with the beptevious example witlk = 1,2, 3, leading to three relaxed

known ones. We show that this hybrid approach outperformgroblems:

previously best algorithms for the set of tested instances.

maximizec.z st.

The paper is organized as follows. Next section presents m&gg :: 21} - ;Z g: gﬁ - 8’?’8’8’83
H H _ 2] — 2] — s Ly Uy Uy
the general scope of our approach. Section 4 describes the al MKP[3] — 2y =25 et iy =(0,0,1,11)

gorithm used to determingromisingsub-space of the whole

search space from where we run a TS algorithm. This algowherek = 3 gives directly an optimal binary solutiat); =
rithm is presented in section 5. Finally we give computational,.opt \yithout further search.

results on a large set of MKPO1 instances in section 6. In general cases, search is necessary to explore around each
fractional optimum and this is carried out by an effective TS
3 A Hybrid Approach for the MKPO1 algorithm (Section 5). In order not to go far away from each

fractional optimumz ), we constraint TS to explore only the

The basic idea of our approach is to search around the fragointsz € S such thatz, Zj|, the distance betweenand
tional optimumz of some relaxed MKP. Our hypothesis is z;;, is no greater than a given threshdlg,.
that the search space aroundshould contain high quality To sum up, the proposed approach is composed of three
solutions. steps:

This general principle can be put into practice via a tWwo 1 getermine interesting hyperplangs) = k:
phase approach. The first phase consists in solving exactly . . ] . .
a relaxation MKP of the initial MKPOL1 to find a fractional ~2- run simplex to obtain the corresponding fractional opti-
optimal solutionz. The second phase consists in exploring MUMZ ),
carefully and efficiently some areas around this fractional op- 3. run Tabu Search around eagly, limited to a sphere of
timal point. fixed radius.

Clearly, there are many possible ways to implement this
general approach. For this work, we have done the followingl Determine Hyperplaneso(z) = k and
choices. The first phase is carried out by using simplex to Simplex Phase

solve a relaxed MKP. The second phase is ensured by a Tabu . . )
Search algorithm. Given am size instance of MKPOQ1, itis obvious that the-1

Let us notice first that relaxing the integrality constraintsvalues0 < k < n do not have the same interest regarding the

optimum. Furthermore exploring all the hyperplan€s) =

alone may not be sufficient since its optimal solution may bek Id be t h ti : W i thi
far away from an optimal binary solution. To be convinced, would be toc much lime consuming. VVe propose, in this
section, a simple way to compute good valueg.of

let us consider the foIIowmg §mal| example with five objects Starting from a 0—1 lower bound the methad consists in
and one knapsack constraint: : . . X :
solving, with thesimplexalgorithm, the two following prob-

c = (12 12 9 8 8) lems:
semple\ 4 — (11 12 10 10 10) b=30 minimizeo (z) st.

MKPomi [z]{ A.z < bandz € [0-1]" and
This relaxed problem leads to the fractional optimal Sotu cx > (z+1)

JTB - . ; ~ - ;
mh_ (1’.1’ ?’b(?’o) Wlthlar.] OPFITZI CfSt value = 30'3.V\rl]h”e Let omin be the optimal value of this problem. A knap-
Leti%g"g‘gst V'Qﬁ‘jé’;?i“;; ig? = (0,0,1,1, 1) with an o5 that holds fewer items thads,i, = [omin] respects
P - _no longer the constraimtz > (z + 1).
However, the above relaxation can be enforced to give
more precise information regarding the discrete aspect of the maximizeo (z) s.t.
problem. To do this, let us notice that all solutions of MKPO1 MKPomaz[z] { Az < bandz € [0-1]" and
verify the property:>-"_, z; = k € IN with k an integer. cx>(z+1)
Now if we add this constraint to the relaxed MKP, we obtain| ot ;1maz be the optimal value of this problem. It is not

possible to hold more items thadn,,, = |omaz]| without

1This hypothesis is confirmed by experimental results presentediglate one of then constraintsd:.z < b:.
later. Of course, the hypothesis does not exclude the possibility th =

other areas may contain good solutions. 2This point is discussed more formally in section 5.2.



Consequentlyjocal searctwill runonly in thehyperplanes
o(x) = k for which k is boundedby k,,;, andk,,,... Hence
we compute, using once again the simplex algorithm, the
(kmaz — kmin + 1) relaxed MKP[k] which give usthe con-
tinuousoptimaz ;) whichareusedby the TS phase.

5 Tabu Search Phase

A comprehensie introductionof Talu Searchmay be found
in [Glover andLaguna,1997. We give briefly belov some

notationmecessarfor theunderstandingf our TSalgorithm
TSMKP .

5.1 Notations

The following notations are specifically oriented to the
MKPO1:

e aconfiguration z is abinaryvectorwith n components;

¢ theunconstrainedearch spacesS is definedto equalthe
set{0, 1}", including both feasibleand unfeasiblecon-
figurations;

e amove consistan changinga small setof components
of z giving ' andis denotecby muvt(z, z');

¢ in this binary contet, the flipped variablesof a move
canbeidentifiedby theirindexesin thez vector: These
indexesaretheattrib utesof themove;

e the neighborhood of z, N'(z), is the subsetof config-
urationsreachabldrom z in onemove. In this binary
context, a move from z to ' € N can be identified
without ambiguityby the attribute j if 2’ is obtainedby
flipping the j;;, elementof z. More generally we use
mwt(iy, 12, ..., ix) to denotethe move mut(x, ') where
Vj € [1,k]z;, = 1— ;. Suchamoveis calleda
k_change.

5.2 Search SpaceReduction

Regardingthe knapsaclconstraint{A.z < b), S = {0, 1}"

is the completelyrelaxed searchspace.lt is alsothe largest
possiblesearchspace.We specifyin this sectiona reduced
searchspaceX C S which will be explored by our Tahu

Searchalgorithm. To definethis reducedspace we take the
ideasdiscussegbreviously (Section3):

1. limitation of S to a sphee of fixed radiusaroundthe
point Zjz;, the optimal solution of the relaxed MKP[k].
Thatis: |£L',Il_f[k]| < Omaz,

2. limitation of the numberof objectstakenin the config-
urationsz, thatarevisited by the tabu searchalgorithm,
to the constantk (intersectionof S andthe hyperplane
o(z) = k).

For the first point, we use °7_, |z; — x| to definethe
distance|z, z'| wherez et ' may be binary or continu-
ous. We usethe following heuristicto estimatethe maximal
distanced,., authorizedfrom the startingpoint zj;. Let
(1,1,---,1,rq,---,74,0,---,0) bethe elementsof the vec-
tor zp) sortedin decreasingrder r; arefractionalcompo-
nentsof zj, andwe have: 1 > ry > rp > -+ > 1y > 0.
Let u be the numberof the componenthiaving the value of

1in Z. In the worst case,we selectr; itemsratherthan
the u components. With o(Z;)) = k that givesdy, =
2x (u+q—Fk). If u=Fk,itfollowsdy = 0 thatcorresponds
to the casewhereZy is a binary vector Dependingon the
MKPO1 instancesywe choosey,,., = djx]. Hence eachtatu
processunningaroundz; hasits own searchspaceX}:

X ={z€{0,1}"|o(x) =k A |z,Z1)| < Omaz}

Notethatall X} aredisjoint, this is a goodfeaturefor a dis-
tributedimplementatiorof our approach.

Finally, in orderto furtherlimit TS to interestingareasof
X, we adda qualitatve constrainton visited configurations:

C.T > Zmin

wherez,,.;, is thebestvalueof afeasibleconfiguratiorfound
sofar.

5.3 Neighborhood

A neighborhoodvhich satisfiegsheconstraint(z) = k isthe
classicaladd/dropneighborhoodwe remove an objectfrom
the currentconfigurationand add anotherobjectto it at the
sametime. This neighborhoods usedin this study The set
of neighboringconfigurationsV (z) of a configurationz is
thusdefinedby theformula:

N(z) ={z' € X}/ |z,z'| = 2}

It is easyto seethat this neighborhoods a specialase of

2_change (cf. sect.5.1). We usein the following sections
indifferently mot(z,z') or mvt(i, j) with z; = 1 — 2; and
z; = 1 — z;. As TS evaluatesthe whole neighborhoodor

amove, we have a time compleity of O ((n — k) x k) for

eachiterationof TSMFX,

5.4 Tabu List Management

Thereverseeliminationmethod(RE M), introducedby Fred
Glover [Glover, 1994, leadsto an exact taku status(i.e.
mot(z,z') talu < z' hasbeenvisited). It consistsin stor
ing in arunninglist the attributes(pair of componentsdf all
completednoves.Telling if amoveis forbiddenor notneeds
to tracebackthe runninglist. Doing so, onebuilds another
list, the so-calledresidualcancellationsequencd RC'S) in
which attributesare either added,if they arenot yetin the
RCS, or droppedOtherwise.The condition RC'S = ) cor
respondgo amoveleadingto ayetvisited configuration.For
more detailson this methodsee[Dammeyer andVoR3, 1993;
Glover, 1990. REM hasatime complexity O(iter?) (iter
is the currentvalueof the move counter).

For our specific2_change move, we needonly onetrace
of therunninglist. Eachtime we meet| RC'S| = 2, themove
with RCSy and RC'S; attributesis saidtaku. Let iter be
the move counter The following algorithmupdateghe taku
statusof the whole neighborhoodbf a configurationz and
correspondso theequivalence

iter = tabu[i][j] <= mvt(i, j) tabu



Algorithme 1: UPDATE_TABU

i < erl % end ofrunning list

repeat

i4—1—1

j < running lis{z]

if j € RCS then

| RCS «— RCS©j

else

| RCS « RCS @ j

if |[RC'S| = 2then

L tabu[RCSo][RCS1] + iter
tabu[RC S1][RCSp] «+ iter

until 4 =10

This algorithm traces back thenning listtable from its
erl — 1 entry to its0 entry.

5.5 Evaluation Function

Algorithme 2: TSMKP

iter <— 0 % Move counter
(erl, tabu[]]) < (0,(—-1,...,—1))
T < Tinit
if vp(z) = 0then
|_ Zmin — C.T; % T
else
|_ Zmin < 0; 2" < (0)
repeat
(Vmin s Zmaz) + (00, —00)
for1 <i< j<mndo
if tabu[i][j] # iter then
(x5, 25) + (1 — 2,1 — z;) %mot(s, j) evaluation
if (|z,Z[x)] < Omaz) A (C.Z > Zmin) then
L if (Vb(2) < Umin) V (Ub(Z) = Umin A C.Z > Zmaz) then
(¢,3") « (4, 9)
Umin, Zmaz) — (Vs(T), c.)
(zi,2j) + (1 —z;,1 — z;) % Restore old values

We use a two components evaluation function to assess the| f min 7 cothen
(ziry2j) < (1 —z,1 — z;r) % Complete move

configurationse € S: vy(z) = 32, 4,050, (@i-z — b;) and it o 32 then
z(z) = c.z. To make a move from, we take among' € L erl + 0 %Reset theunning list
1 1 1 1 H . Zmin < C.T
N (z) the configuration:’ defined by the following relation: i
else
V' € N(JJ) iter < iter + 1
vb(a:’) < Ub(m") or running list<— running list @ i’ & 5’

A " ! " erl < erl +2
vp(z') = vp(z") ande.x’ > c.x UPDRTE TAB

until vmin = oo Verl > |R.L.|

z' € N(z) such that{

Random choice is used to break ties.

Each timevy(xz) = 0 therunning listis reset anc,,;,
is updated. Hence the tabu algorithm explores areas of thgf
search space where> z,,,;,, trying to reach feasibility.

5.6 Tabu Algorithm

Based on the above considerations, our TS algorithm fo
MKPO1 @"SM¥K) works on a series of problems like:

findz € S = {0,1}" such that
Az <bAY Tz =kA |z, T < dmas A CT > Zmin

1 second (details are thus omitted). Th@ning listsize
(|R-L.) is fixed to 4000.

For the next two sets of problems, thenning list size
([R.L.|) is fixed to 100000. Hence the maximum number of
moves without improvement is 50000.

The second set of tested instances is constituted of the last
seven (also the largest ones with=100 to 500 itemsm =

15 to 25 constraints) of 24 benchmarks proposed by Glover
and KochenbergdiGlover and Kochenberger, 1996These
wherez,;, is a strictly increasing sequence. U&.L.| be instances are known to be particularly difficult to solve for
the running list size. Considering the last feature of our Branch & Boundalgorithms. Tablel shows a comparison
algorithm given just above (sect. 5.9)R.L.| is twice the between our results (columns 4 to 7) and the best known ones

maximum number of iterations without improvement of the feported inlHanafi and Fréville, 1998columnTyr).
cost function. The starting configuratian,,;; is built with

the following simple greedy heuristic: Choose thétems Lok [ nxm [[Tur | 2" [ k* [ iter” [ sec.” |
{i1,---,ix}, which have the largesty;, value. 18 | 100 x 25 || 4524 || 4528 | 61 | 3683 | 10
J 19 | 100 x 25 3866 3869 51 3144 9
. 20 | 100 x 25 5177 5180 70 2080 5
6 Computational Results 21 | 100 x 25 || 3195 || 3200 | 42 | 1465 | 4
All the procedures o 'SMPK have been coded in C lan- 22 | 100 x 25 || 2521 || 2523 | 34 | 512 2
guage. Our algorithm has been executed on different kind of 23 | 200 x 15 || 9231 || 9235 | 123 | 16976 | 131
24 | 500 x 25 9062 9070 | 119 9210 268

CPU (up to 20 distributed computers like1350, P111500,

ULTRASPARC5 and 30). For all the instances solved below,

we runT SMPK with 10 random seeds (0..9) of the standard

srand()C function. Column k* shows the number of items of the best solu-
We have first tested our approach on the 56 classical profion z* with cost z* found by TSMKP. From the table,

lems used ifAboudi and Jérnsten, 1994; Balas and Mar-we observe that all the results are improved. Coluties*

tin, 1980; Chu and Beasley, 1998; Dammeyer and VoR, 1993ndsec.* give the number of moves and the time elapsed to

Drex|, 1988; Fréville and Plateau, 1986; 1993; Glover andeachz*. We know that the algorithm runs 50000 moves af-

Kochenberger, 1996; Shih, 1979; Toyoda, 107Fhe size of  teriter*. The search process takes thus an average of 380

these problems varies frone6 to 105 items and frorm=2 seconds for the test problemsg18..Gk22, 600 seconds for

to 30 constraints. These instances are easy to solve for statek23 and 1100 seconds faik24.

of-the-art algorithms. Indeed, our approach finds the opti- The third set of test problems concerns the 30 largest

mal value (known for all these instances) in an average timéenchmarks ( = 500 items,m = 30 constraints) of OR-

Table 1:Comparative results on the 7 largest pb.



Library®, proposedrecentlyby Chu and Beaslg [Chu and
Beaslg, 1999.

| cB || AGeB || z* | k* | iter™ | sec.” |
30.500.0 115868 115950 | 130 17841 397
30.500.1 114667 114810 | 128 | 104866 2264
30.500.2 116661 116683 | 128 73590 1203
30.500.3 115237 115301 | 128 71820 1587
30.500.4 116353 116435 | 127 75909 1784
30.500.5 115604 115694 | 131 33391 684
30.500.6 113952 114003 | 128 | 107994 | 2851
30.500.7 114199 114213 | 129 87593 1503
30.500.8 115247 115288 | 127 75243 1495
30.500.9 116947 117055 | 129 39044 869
30.500.10 217995 218068 | 251 6828 116
30.500.11 214534 214562 | 251 89201 2478
30.500.12 215854 215903 | 250 60074 1311
30.500.13 217836 217910 | 251 50732 1121
30.500.14 215566 215596 | 251 62524 1262
30.500.15 215762 215842 | 253 34201 633
30.500.16 215772 215838 | 252 54476 1003
30.500.17 216336 216419 | 253 40683 947
30.500.18 217290 217305 | 253 64489 1475
30.500.19 214624 214671 | 252 18531 368
30.500.20 301627 301643 | 375 1298 17
30.500.21 299985 300055 | 374 78278 1532
30.500.22 304995 305028 | 375 64926 1161
30.500.23 301935 302004 | 375 26901 1110
30.500.24 304404 304411 | 376 20483 333
30.500.25 296894 296961 | 374 31403 462
30.500.26 303233 303328 | 373 43398 757
30.500.27 306944 306999 | 376 33810 1366
30.500.28 303057 303080 | 374 17647 350
30.500.29 300460 300532 | 376 6948 150

Table 2:Comparatie resultsonthe 30 largestcs ph

Table 2 comparesur resultswith thosereportedin [Chu
andBeaslg, 1999 (AG¢g), which are amongthe bestre-
sultsfor theseinstances Fromthetable,we seethatour ap-
proachimprovessignificantlyon all theseresults. The aver
agetime of the 50000lastiterationsis equalto 1200seconds
for theseinstances.

Theseresults can be further improved by giving more
CPU time (iterations)to our algorithm. For example,with
|R.L.| = 300000, TSMEP finds z* = 115991 after 6000
seconddor theinstancece30.500.0.

The Chu and Beaslg bentimark contains90 instances
with 500 variables: 30 instanceswith m=5 constraints,30
with m = 10 and 30 with m = 30 (resultsdetailedjust
above). Eachsetof 30 instancess dividedinto 3 serieswith
a=bi/3 5 Aij = 1/4,a = 1/2anda = 3/4. Table
3 comparesfor eachsubsef 10 instancesthe averageof
the bestresultsobtainedby AG ¢ g, thoseobtainedmorere-
cently by Osorio, Glover and Hammer[Osorioet al., 2004
(columns4 and5) andthoseby TSMPX (column6). The
new algorithmof [Osorioet al., 2000 usesadvancedtech-
niguessuchascuttingandsurrogateconstraintanalysis(see
columnFix+Cuts for results). We reproducealsofrom [Os-
orio et al., 2004, in column CPLEX, the bestvaluesob-

®Availableatht t p: / / mscnga. ms. i c. ac. uk.

tainedby the MIP solverCPLEXv6.5.2alone.

| m | a | AGeB | FiX+CutS| CPLEX | z* | gap |
5 1/4 | 120616 120610 120619 | 120623 0.08%
1/2 219503 219504 219506 | 219507 0.04%
3/4 | 302355 | 302361 | 302358 302360 0.02%
10 | 1/4 | 118566 118584 118597 | 118600 0.20%
1/2 217275 217297 217290 | 217298 0.09%
3/4 | 302556 302562 302573 | 302575 0.07%
30 | 1/4 | 115470 115520 115497 | 115547 0.55%
1/2 216187 216180 216151 | 216211 0.24%
3/4 | 302353 302373 302366 | 302404 0.15%

Table 3: Averageperformancever the 90 largestCB ph

The column gap indicatesthe averagegap valuesin per
centagdetweerthecontinuouselaxedoptimumandthebest
costvaluefound: (z—2*)/z. Fiz+cuts andCPLEX algo-
rithmswere stoppedafter 3 hoursof computingor whenthe
treesizememoryof 250M byteswasexceeded Our bestre-
sultswereobtainedwith |R.L.| = 300000 andthe algorithm
neverrequiresnorethan4M bytesof memory Exceptfor the
instancesvith m = 5 anda = 3/4 ourapproactoutperforms
all theotheralgorithms.

To finish the presentationon Chu and Beaslg bench-
marks, Table 4 and5 shov the bestvaluesobtainedby our
algorithmonthe30c¢B5.500 andthe30¢cB10.500 instances.

| XX | z* | k* || XX | z* | k* || XX | z* | k* |
0 | 120134 | 146 || 10 | 218428 | 267 || 20 | 295828 | 383
1 | 117864 | 148 || 11 | 221191 | 265 || 21 | 308083 | 383
2 | 121112 145 || 12 | 217534 | 264 || 22 | 299796 | 385
3 | 120804 | 149 || 13 | 223558 | 264 || 23 | 306478 | 385
4 | 122319 | 147 || 14 | 218966 | 267 || 24 | 300342 | 385
5 | 122024 | 153 || 15 | 220530 | 262 || 25 | 302561 | 384
6 | 119127 | 145 || 16 | 219989 | 266 || 26 | 301329 | 385
7 | 120568 | 150 || 17 | 218194 | 266 || 27 | 306454 | 383
8 | 121575 | 148 || 18 | 216976 | 262 || 28 | 302822 | 382
9 | 120707 | 151 || 19 | 219704 | 267 || 29 | 299904 | 379
Table 4: Bestvaluesfor cB5.500.x X
| XX | z* | k* || XX | z* | k* || XX | z* | k* |
0 | 1127779 ] 134 || 10 | 217343 256 || 20 | 304351 | 378
1 | 119190 | 134 || 11 | 219036 | 259 || 21 | 302333 | 380
2 | 119194 135 || 12 | 217797 | 256 || 22 | 302408 | 379
3 | 118813 | 137 || 13 | 216836 | 258 || 23 | 300757 | 378
4 | 116462 | 134 || 14 | 213859 | 256 || 24 | 304344 | 381
5 | 119504 | 137 || 15 | 215034 | 257 || 25 | 301754 | 375
6 | 119782 | 139 || 16 | 217903 | 261 || 26 | 304949 | 378
7 | 118307 | 135 || 17 | 219965 | 256 || 27 | 296441 | 379
8 | 117781 | 136 || 18 | 214341 258 || 28 | 301331 | 379
9 | 119186 | 138 || 19 | 220865 | 255 || 29 | 307078 | 378

Table 5: Bestvaluesfor cB10.500.X X

To conclude this section, we presentour results on
the 11 latest instancesproposedvery recently by Glover
and Kochenbeger (available at: http://hces. bus.
ol em ss. edu/tool s. ht M .) Thesebenchmarkson-
tain up to n=2500 items and m=100 constraints,thus are
very large. Table 6 comparesour results(columns4 and5)
and the bestknown resultstaken from the above web site.
Onceagain,our approactgivesimprovedsolutionsfor 9 out
of 11 instances Let us mentionthat the experimentatioron
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