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Abstract

We present a hybrid approach for the 0–1 mul-
tidimensional knapsack problem. The proposed
approach combines linear programming and Tabu
Search. The resulting algorithm improves signifi-
cantly on the best known results of a set of more
than 150 benchmark instances.

1 Introduction
The NP-hard 0–1 multidimensional knapsack problem
(MKP01) consists in selecting a subset of� given objects (or
items) in such a way that the total profit of the selected objects
is maximized while a set of knapsack constraints are satisfied.
More formally, the MKP01 can be stated as follows.

MKP01

�
maximize��� � subject to� � ���
	 and ����
����������

where ��� IN � � ,
� � IN ��� � and 	�� IN � . The binary

components� � of � are decision variables:� ��!"� if the
object # is selected,� otherwise.�$� is the profit associated to# . Each of the% constraints

�'& � �(�)	 & is called a knapsack
constraint.

The special case of the MKP01 with%*!)� is the classical
knapsack problem (KP01), whose usual statement is the fol-
lowing. Given a knapsack of capacity	 and � objects, each
being associated a profit (gain) and a volume occupation, one
wants to select+ ( +,� � and + not fixed) objects such that the
total profit is maximized and the capacity of the knapsack is
not exceeded. It is well known that the KP01 is not strongly
NP-hard because there are polynomial approximation algo-
rithms to solve it. This is not the case for the general MKP01.

The MKP01 can formulate many practical problems such
as capital budgeting where project# has profit �$� and con-
sume -/. & ��0 units of resource1 . The goal is to determine a
subset of the� projects such that the total profit is maxi-
mized and all resource constraints are satisfied. Other impor-
tant applications include cargo loading[Shih, 1979], cutting
stock problems, and processor allocation in distributed sys-
tems[Gavish and Pirkul, 1982]. Notice that the MKP01 can
be considered as a general 0–1 integer programming problem
with non-negative coefficients.

Given the practical and theoretical importance of the
MKP01, it is not surprising to find a large number of stud-
ies in the literature; we give a brief review of these studies in
the next section.

2 State of the Art
Like for many NP-hard combinatorial optimization problems,
both exact and heuristic algorithms have been developed for
the MKP01. Existing exact algorithms are essentially based
on the branch and bound method[Shih, 1979]. These algo-
rithms are different one from another according to the way
the upper bounds are obtained. For instance, in[Shih, 1979],
Shih solves, exactly, each of the% single constrained, re-
laxed knapsack problems and select the minimum of the%
objective function values as the upper bound. Better algo-
rithms have been proposed by using tighter upper bounds,
obtained with other MKP01 relaxation techniques such as la-
grangean, surrogate and composite relaxations[Gavish and
Pirkul, 1985]. Due to their exponential time complexity, ex-
act algorithms are limited to small size instances (� !32��4�
and %*!65 ).

Heuristic algorithms are designed to produce near-optimal
solutions for larger problem instances. The first heuristic ap-
proach for the MKP01 concerns for a large part greedy meth-
ods. These algorithms construct a solution by adding, accord-
ing to a greedy criterion, one object each time into a current
solution without constraint violation. The second heuristic
approach is based on linear programming by solving various
relaxations of the MKP01. A first possibility is to relaxe the
integrality constraints and solve optimally the relaxed prob-
lem with simplex. Other possibilities include surrogate and
composite relaxations[Osorioet al., 2000].

More recently, several algorithms based on metaheuristics
have been developed, including simulated annealing[Drexl,
1988], tabu search[Glover and Kochenberger, 1996; Hanafi
and Fréville, 1998] and genetic algorithms[Chu and Beasley,
1998]. The metaheuristic approach has allowed to obtain very
competitive results on large instances compared with other
methods (� !75��4� and %*!689� ).

Most of the above heuristics use the so-calledpseudo–
utility criterion for selecting the objects to be added into a
solution. For the single constraint case (the KP01), this crite-
rion corresponds to theprofit/resourceratio. For the general
MKP01, thepseudo–utilityis usually defined as�$��: -<;=� .9� 0



where ; is a multiplier for the column vector� � . Notice
that it

>
is impossible to obtain "optimal" multipliers. Thus the

pseudo–utilitycriterion may mislead the search.
In this paper, we propose an alternative way to explore the

search space. We use fractional optimal solutions given by
linear programming to guide a neighborhood search (Tabu
Search or TS) algorithm. The main idea is to exploit around
a fractional optimal solution with additional constraints. We
experiment this approach on a very large variety of MKP01
benchmark instances and compare our results with the best
known ones. We show that this hybrid approach outperforms
previously best algorithms for the set of tested instances.

The paper is organized as follows. Next section presents
the general scope of our approach. Section 4 describes the al-
gorithm used to determinepromisingsub-space of the whole
search space from where we run a TS algorithm. This algo-
rithm is presented in section 5. Finally we give computational
results on a large set of MKP01 instances in section 6.

3 A Hybrid Approach for the MKP01

The basic idea of our approach is to search around the frac-
tional optimum ?� of some relaxed MKP. Our hypothesis is
that the search space around?� should contain high quality
solutions1.

This general principle can be put into practice via a two
phase approach. The first phase consists in solving exactly
a relaxation MKP of the initial MKP01 to find a fractional
optimal solution ?� . The second phase consists in exploring
carefully and efficiently some areas around this fractional op-
timal point.

Clearly, there are many possible ways to implement this
general approach. For this work, we have done the following
choices. The first phase is carried out by using simplex to
solve a relaxed MKP. The second phase is ensured by a Tabu
Search algorithm.

Let us notice first that relaxing the integrality constraints
alone may not be sufficient since its optimal solution may be
far away from an optimal binary solution. To be convinced,
let us consider the following small example with five objects
and one knapsack constraint:@BA�C'DFEHG � � ! - ��2 ��2 I J J 0� ! -��9�K��2 ��� ��� ��� 0 	L!784�
This relaxed problem leads to the fractional optimal solution?�M!N-O�9���9�LPQOR �S���$� 0 with an optimal cost value?T !689�U� 8 while
the optimal binary solution is�WVYX[Z\!]-/���S�U�B�4�B�9��� 0 with an
optimal cost valueT V^X_Z`!6245 .

However, the above relaxation can be enforced to give
more precise information regarding the discrete aspect of the
problem. To do this, let us notice that all solutions of MKP01
verify the property: a ��Sb Q � � !3+7� IN with + an integer.
Now if we add this constraint to the relaxed MKP, we obtain

1This hypothesis is confirmed by experimental results presented
later. Of course, the hypothesis does not exclude the possibility that
other areas may contain good solutions.

a series of problems:

MKP[ + ] c maximize ��� � s.t.� � ����	 and ���ed � – �Bfg� andh -i� 0 !j+\� IN

where h -i� 0 is the sum of the components of� , defining a
hyperplane. We have thus several (promising) points?�lk m$n
around which a careful search will be carried out.

To show the interest of this extra constraint, take again the
previous example with+o!p�4�$2 �$8 , leading to three relaxed
problems:

MKP[ � ] q ?T k Q nW!r��2 et ?�sk Q nW!t-O�4�S�U�S���$���$� 0
MKP[ 2 ] q ?T k uvnW!72�w et ?�sk uOnW!t-O�4�B�4�S���$���$� 0
MKP[ 8 ] q ?T k xvnW!7245 et ?�sk xOnW!t-<�U�S�U�B�9���9��� 0

where +y!j8 gives directly an optimal binary solution�lk xvnz!�FV^X[Z without further search.
In general cases, search is necessary to explore around each

fractional optimum and this is carried out by an effective TS
algorithm (Section 5). In order not to go far away from each
fractional optimum?�sk m$n , we constraint TS to explore only the
points ���({ such that| �=�9?�lk m$nv| , the distance between� and?�lk m$n is no greater than a given threshold} �L~[� 2.

To sum up, the proposed approach is composed of three
steps:

1. determine interesting hyperplanesh -<� 0 !j+ ;

2. run simplex to obtain the corresponding fractional opti-
mum ?�sk m$n ;

3. run Tabu Search around each?�sk m$n , limited to a sphere of
fixed radius.

4 Determine Hyperplanes���^������� and
Simplex Phase

Given an� size instance of MKP01, it is obvious that the�`� �
values����+,� � do not have the same interest regarding the
optimum. Furthermore exploring all the hyperplanesh -i� 0 !+ would be too much time consuming. We propose, in this
section, a simple way to compute good values of+ .

Starting from a 0–1 lower boundT , the method consists in
solving, with thesimplexalgorithm, the two following prob-
lems:

MKP h %,1 [ T ] c minimize h -i� 0 s.t.� � ����	 and ����d � – �[f�� and��� ����- T�� � 0
Let h %,1 � be the optimal value of this problem. A knap-
sack that holds fewer items than+ � & � !�� h %M1 �W� respects
no longer the constraint��� ����- T�� � 0 .

MKP h %�.�� [ T ] c maximize h -i� 0 s.t.� � ���
	 and ����d � – �Bfg� and��� ���r- T�� � 0
Let h %M.�� be the optimal value of this problem. It is not
possible to hold more items than+ ��~_� !�� h %M.���� without
violate one of the% constraints

�'& � ����	 & .
2This point is discussed more formally in section 5.2.



Consequently, localsearchwill runonly in thehyperplanesh -i� 0 !r+ for which + is boundedby + � & � and + ��~_� . Hence
we compute,using once again the simplex algorithm, the-/+ ��~_��� + � & � � � 0 relaxedMKP d +�f which give us thecon-
tinuousoptima ?�sk m$n which areusedby theTS phase.

5 Tabu Search Phase
A comprehensive introductionof Tabu Searchmaybefound
in [Glover andLaguna,1997]. We give briefly below some
notationsnecessaryfor theunderstandingof ourTSalgorithm�������� 

.

5.1 Notations
The following notations are specifically oriented to the
MKP01:¡

aconfiguration � is abinaryvectorwith � components;¡
theunconstrainedsearch space{ is definedto equalthe
set 
���������� , includingboth feasibleandunfeasiblecon-
figurations;¡
a move consistsin changinga small setof components
of � giving �£¢ andis denotedby %M¤4¥[-<�s�S�£¢ 0 ;¡
in this binary context, the flipped variablesof a move
canbeidentifiedby their indexesin the � vector:These
indexesaretheattrib utesof themove;¡
the neighborhood of � , ¦)-<� 0 , is the subsetof config-
urationsreachablefrom � in onemove. In this binary
context, a move from � to �F¢M�t¦ can be identified
without ambiguityby theattribute # if �£¢ is obtainedby
flipping the # Z<§ elementof � . More generally, we use%M¤4¥[-<1 Q �v1 u �B�¨�H�¨�v1 m 0 to denotethemove %M¤4¥[-<�s�v� ¢ 0 where© #N�ªdH�9�«+�f��F¢&­¬ !®� � � &H¬ . Sucha move is called a+ _�B¯U. �W° ± .

5.2 Search SpaceReduction
Regardingtheknapsackconstraints(

� � ���j	 ), {7!²
����z�9���
is the completelyrelaxed searchspace.It is alsothe largest
possiblesearchspace.We specify in this sectiona reduced
searchspace³µ´�{ which will be explored by our Tabu
Searchalgorithm. To definethis reducedspace,we take the
ideasdiscussedpreviously (Section3):

1. limitation of { to a sphere of fixed radiusaroundthe
point ?�lk m$n , the optimal solutionof the relaxedMKP d +�f .
Thatis: | �=�9?�lk m$nv|��o} ��~_� ;

2. limitation of thenumberof objectstaken in the config-
urations� , thatarevisitedby thetabu searchalgorithm,
to the constant+ (intersectionof { andthe hyperplaneh -<� 0 !6+ ).

For the first point, we use a ��Sb Q | � � � �£¢� | to definethe
distance | �s�S�£¢^| where � et �£¢ may be binary or continu-
ous. We usethe following heuristicto estimatethemaximal
distance} ��~_� authorizedfrom the startingpoint ?�sk m$n . Let-O�4�B�4�B¶B¶�¶[�B�4�v· Q �B¶�¶B¶[�S·�¸��S����¶B¶�¶[�S� 0 be the elementsof the vec-
tor ?�lk m$n sortedin decreasingorder. · � arefractionalcompo-
nentsof ?�lk m$n andwe have: ��¹º· Q �º· u �3¶�¶B¶»�º· ¸ ¹¼� .
Let u be the numberof the componentshaving the valueof

1 in ?�lk m$n . In the worst case,we select ·[� items ratherthan
the ; components. With h -[?�lk m$n 0 !½+ that gives }�k m«ne!2'¾y-i; ��¿ � + 0 . If ;,!j+ , it follows }�k m$nl!�� thatcorresponds
to the casewhere ?�lk m$n is a binary vector. Dependingon the
MKP01 instances,we choose} ��~_�ÁÀ }�k m$n . Hence,eachtabu
processrunningaround ?�lk m$n hasits own searchspace³ m :³ m !)
����Â
�������� � | h -<� 0 !j+�ÃÄ| �s�4?�lk m$nv|��
} ��~_� �
Note thatall ³ m aredisjoint, this is a goodfeaturefor a dis-
tributedimplementationof our approach.

Finally, in orderto further limit TS to interestingareasof³ m , weaddaqualitativeconstraintonvisitedconfigurations:��� ��¹ T � & �
whereT � & � is thebestvalueof a feasibleconfigurationfound
sofar.

5.3 Neighborhood
A neighborhoodwhichsatisfiestheconstrainth -<� 0 !j+ is the
classicaladd/dropneighborhood:we remove anobjectfrom
the currentconfigurationandaddanotherobject to it at the
sametime. This neighborhoodis usedin this study. Theset
of neighboringconfigurations¦)-i� 0 of a configuration� is
thusdefinedby theformula:¦)-i� 0 !r
�� ¢ ��³ m :�| �s�S� ¢ |9!j2��
It is easyto seethat this neighborhoodis a specialaseof2 _�B¯U. �W° ± (cf. sect. 5.1). We usein the following sections
indifferently %M¤4¥[-<�s�v�F¢ 0 or %,¤�¥[-i1«�Å# 0 with �£¢& !ª� � � & and�£¢� !ª� � � � . As TS evaluatesthe whole neighborhoodfor
a move, we have a time complexity of Æ�-S- � � + 0 ¾�+ 0 for
eachiterationof

��� �� l�
.

5.4 Tabu List Management
Thereverseeliminationmethod( ÇÉÈËÊ ), introducedby Fred
Glover [Glover, 1990], leads to an exact tabu status(i.e.%M¤4¥[-<�s�v�F¢ 0 tabu ÌÍ�£¢ hasbeenvisited). It consistsin stor-
ing in a runninglist theattributes(pair of components)of all
completedmoves.Telling if amoveis forbiddenor notneeds
to tracebackthe running list. Doing so, onebuilds another
list, the so-calledresidualcancellationsequence( ÇÏÎ � ) in
which attributesare either added,if they are not yet in theÇÏÎ � , or droppedOtherwise.Thecondition ÇÏÎ � !¼Ð cor-
respondsto amoveleadingto ayetvisitedconfiguration.For
moredetailson this methodsee[Dammeyer andVoß,1993;
Glover, 1990]. ÇÉÈËÊ hasa time complexity Æ�-<1Å¥ ± · u 0 ( 1Å¥ ± ·
is thecurrentvalueof themovecounter).

For our specific 2 _�B¯U. �W° ± move, we needonly onetrace
of therunninglist. Eachtime wemeet | ÇÏÎ � |9!62 , themove
with ÇÏÎ � R and ÇÉÎ � Q attributesis said tabu. Let 1Å¥ ± · be
themove counter. Thefollowing algorithmupdatesthe tabu
statusof the whole neighborhoodof a configuration � and
correspondsto theequivalence1Å¥ ± ·Ï!�¥O. 	«;Ñd 1Åf^d #9fFÒ�Ó�%M¤4¥[-<1«�Å# 0 ¥O. 	«;



Algorithme 1: UPDATE_TABU&4Ô�Õ^ÖS×
% end ofrunning list

repeat&4Ô
&4Ø Q� Ô running listk & n
if �`Ù�ÚzÛÝÜ thenÚzÛ=Ü Ô ÚzÛ=ÜLÞß�
elseÚzÛ=Ü Ô ÚzÛ=ÜLàß�
if á ÚzÛ=Ü á b u thenZ ~[âÅã k ÚzÛÝÜ�ä n¨k ÚzÛÝÜ9å n Ô
& Z Õ^ÖZ ~[âÅã k ÚzÛÝÜ å n¨k ÚzÛÝÜ ä n Ô
& Z Õ^Ö

until
& b R

This algorithm traces back therunning list table from its± ·�æ � � entry to its � entry.

5.5 Evaluation Function
We use a two components evaluation function to assess the
configurations�N� �

: ç â -i� 0 ! a & á ~_è<��ézâ/è -/. & � � � 	 & 0 andT -i� 0 !¼��� � . To make a move from� , we take among�F¢ê�¦)-i� 0 the configuration�£¢ defined by the following relation:� ¢ ��¦)-<� 0 such that c © �F¢ ¢z��¦)-<� 0ç â -i�F¢ 0ìë ç â -i�£¢ ¢ 0 orç â -i�F¢ 0 !7ç â -i�£¢ ¢ 0 and ��� �£¢l�
��� �£¢ ¢
Random choice is used to break ties.

Each time ç â -<� 0 !]� the running list is reset andT � & �is updated. Hence the tabu algorithm explores areas of the
search space whereT ¹ T � & � trying to reach feasibility.

5.6 Tabu Algorithm
Based on the above considerations, our TS algorithm for
MKP01 (

�ß� �� l�
) works on a series of problems like:

find ���,{�!�
���������� such that� � ���
	ÑÃ�a �Q � & !7+ÏÃ�| �s�4?�sk m$nS|��o} ��~_� ÃM��� �í¹ T � & �
where T � & � is a strictly increasing sequence. Let| Ç�� î'�g| be
the running list size. Considering the last feature of our
algorithm given just above (sect. 5.5),| Ç�� îê��| is twice the
maximum number of iterations without improvement of the
cost function. The starting configuration� & � & Z is built with
the following simple greedy heuristic: Choose the+ items
�1 Q ��¶B¶�¶B�v1 m � , which have the largest?�lk m$n & ¬ value.

6 Computational Results
All the procedures of

��� �Á s�
have been coded in C lan-

guage. Our algorithm has been executed on different kind of
CPU (up to 20 distributed computers likePII350, PIII500,
ULTRASPARC5 and 30). For all the instances solved below,
we run

�ß� �� l�
with 10 random seeds (0..9) of the standard

srand()C function.
We have first tested our approach on the 56 classical prob-

lems used in[Aboudi and Jörnsten, 1994; Balas and Mar-
tin, 1980; Chu and Beasley, 1998; Dammeyer and Voß, 1993;
Drexl, 1988; Fréville and Plateau, 1986; 1993; Glover and
Kochenberger, 1996; Shih, 1979; Toyoda, 1975]. The size of
these problems varies from� =6 to 105 items and from% =2
to 30 constraints. These instances are easy to solve for state-
of-the-art algorithms. Indeed, our approach finds the opti-
mal value (known for all these instances) in an average time

Algorithme 2: ï Ü�ðìñzò& Z Õ^ÖÑÔ R
% Move counteró Õ^ÖS×�ô Z ~[âÅã k n¨k nöõ Ô ó R ô ó Ø Q ôO÷ø÷ø÷øô^Ø Q õ<õ� Ô ��è­ùBèHúif û�ü ó � õ b R

thenývþ èHù Ô�ÿS÷ � ; ��� Ô �
elseývþ èHù Ô R

; ��� Ô ó R õ
repeató û þ è­ù ô ý þ���� õ Ô ó�� ôOØ � õ

for
Q	� &�
 � � � do
if Z ~[âÅã k & ngk � n
�b & Z Õ^Ö thenó ��è ô � ¬ õ Ô ó Q Ø ��è ô Q Ø � ¬ õ %��� Z ó &iô � õ evaluation

if
ó á � ô����� ��� á ��� þ���� õ�� ó ÿS÷ �Lé ývþ è­ù õ then

if
ó û�ü ó � õ 
 û þ èHù õ�� ó û�ü ó � õ b û þ è­ù � ÿS÷ �Lé ý þ���� õ thenó &���ô � � õ Ô ó &iô � õó û þ è­ù ô ý þ���� õ Ô ó û�ü ó � õ ô�ÿS÷ � )ó � è ô � ¬ õ Ô ó Q Ø � è ô Q Ø � ¬ õ % Restore old values

if û þ èHù �b �
thenó � è � ô � ¬ � õ Ô ó Q Ø � è � ô Q Ø � ¬ � õ % Complete move

if û þ èHù b R
thenÕ^ÖS×9Ô R
%Reset therunning listý þ è­ù Ô�ÿS÷ ���� Ô �

else& Z Õ^Ö=Ô
& Z Õ^Ö�� Q
running list

Ô
running list à & � àÂ� �Õ^ÖS×9Ô�Õ^ÖS× � u

UPDATE_TABU

until û þ èHù b � � Õ^ÖS×�! á Ú ÷ "W÷ á
of 1 second (details are thus omitted). Therunning list size
( | Ç�� îê��| ) is fixed to 4000.

For the next two sets of problems, therunning list size
( | Ç�� îê��| ) is fixed to 100000. Hence the maximum number of
moves without improvement is 50000.

The second set of tested instances is constituted of the last
seven (also the largest ones with� ! 100 to 500 items,%p!
15 to 25 constraints) of 24 benchmarks proposed by Glover
and Kochenberger[Glover and Kochenberger, 1996]. These
instances are known to be particularly difficult to solve for
Branch & Boundalgorithms. Table1 shows a comparison
between our results (columns 4 to 7) and the best known ones
reported in[Hanafi and Fréville, 1998] (column

�$#&%
).

GK � �ê� ï�'�( ý � m � & Z Õ^Ö � )
ÕOÿS÷

�Q�* Q^R$R � u�+ ,-+$u�, .�/ 0 1 2 Q x�2 * x QORQ�3 Q^R$R � u�+ x * 2�2 451 657 + Q x Q ,�, 3u R Q^R$R � u�+ + Q PSP /98:15; P R u R-*vR +u Q Q^R$R � u�+ x Q�3 + 490<;5; ,«u Q ,-2�+ ,u$u Q^R$R � u�+ u=+$u Q 05/ 0 4 x�, + Q u uu$x u R$R � Q + 3 u$x Q 790<49/ Q u$x Q 2 3 P 2 Q x Qu�, + R$R � u�+ 3SR 2Su 75;5> ; QSQ�3 3 u Q^R u�2 *
Table 1:Comparative results on the 7 largestGK pb.

Column + � shows the number of items of the best solu-
tion � � with cost T � found by

��� ���� 
. From the table,

we observe that all the results are improved. Columns1Y¥ ± · �
and ? ± ��� � give the number of moves and the time elapsed to
reach� � . We know that the algorithm runs 50000 moves af-
ter 1Y¥ ± · � . The search process takes thus an average of 380
seconds for the test problemsGK18...GK22, 600 seconds for
GK23 and 1100 seconds forGK24.

The third set of test problems concerns the 30 largest
benchmarks ( !�59�9� items, % !p89� constraints) of OR-



Library3, proposedrecentlyby Chu and Beasley [Chu and
Beasle@ y, 1998].

CB A$BDCFE ý � m � & Z ÕOÖ � )
ÕOÿS÷

�x R ÷ + RSR ÷ R QSQ + * 2 * 858 /<79/<; Q x R Q P * , Q x 3 Px R ÷ + RSR ÷ Q QSQ ,-2�2 P 858:.51�8:; Q u * Q^R , * 2=2 u$u=2�,x R ÷ + RSR ÷ u QSQ 2=2�2 Q 858<6 651 4 Q u * P x�+ 3vR Q u R xx R ÷ + RSR ÷ x QSQ +$uSx P 858 /<45;98 Q u * P QG* u R Q + * Px R ÷ + RSR ÷ , QSQ 2$x�+$x 858<6<.945/ Q u P P + 3SR=3 Q P * ,x R ÷ + RSR ÷ + QSQ +=2 R , 858 /<657<. Q x Q x$xSx 3«Q 2 * ,x R ÷ + RSR ÷ 2 QSQ x 3 +$u 858:.5;5; 4 Q u * Q^R P 3=3 , u * + Qx R ÷ + RSR ÷ P QSQ , QG3=3 858:.9098:4 Q u 3 * P + 3 x Q + R xx R ÷ + RSR ÷ * QSQ +$u�, P 858 / 0 1 1 Q u P P +Su�,$x Q , 3 +x R ÷ + RSR ÷ 3 QSQ 2 3 , P 858 ><;9/ / Q u 3 x 3vR ,�, * 2 3x R ÷ + R$R ÷ Q^R u Q P 3�3 + 098<1 ;56 1 u=+ Q 2 * u * QSQ 2x R ÷ + R$R ÷ QSQ u Q ,-+Sx�, 098:.9/ 650 u=+ Q *=3 u R_Q u�, P *x R ÷ + R$R ÷ Q u u Q + * +�, 098 /<75; 4 u=+ R 2 RSR P , Q x QSQx R ÷ + R$R ÷ Q x u Q P * x=2 098 ><7�8:; u=+ Q + R P xSu Q$Q u Qx R ÷ + R$R ÷ Q , u Q +=+�2=2 098 / / 7 6 u=+ Q 2$u�+$u�, Q u=2Sux R ÷ + R$R ÷ Q + u Q + P 2$u 098 /<1 .90 u=+Sx x�,$u R_Q 2Sx$xx R ÷ + R$R ÷ Q 2 u Q + PSP u 098 /<154 1 u=+Su +�,�, P 2 QOR$R xx R ÷ + R$R ÷ Q P u Q 2$xSx=2 098<6<.�8:7 u=+Sx , R 2 * x 3 , Px R ÷ + R$R ÷ QG* u Q P u 3SR 098 ><45;5/ u=+Sx 2�,�, *�3 Q , P +x R ÷ + R$R ÷ QG3 u Q ,-2Su�, 098:.569>58 u=+Su Q�* +$x Q x�2 *x R ÷ + R$R ÷ u R x R[Q 2Su P 45;�8:6 .54 x P + Q u 3=* Q Px R ÷ + R$R ÷ u Q u 3=3=3�* + 45;5; ;9/ / x P , P * u P * Q +$xSux R ÷ + R$R ÷ uSu x R , 3�3 + 45;9/<;90<1 x P + 2�, 3 u�2 Q$Q 2 Qx R ÷ + R$R ÷ uSx x R[Q�3 x=+ 45;90<;5;<. x P + u=2 3SR_Q Q$Q$Q^Rx R ÷ + R$R ÷ u�, x R ,=, R , 45; . .�8 8 x P 2 u R , * x xSx$xx R ÷ + R$R ÷ u�+ u 3 2 *�3 , 0 756 75698 x P , x Q , R x ,=2$ux R ÷ + R$R ÷ u�2 x R x$uSx$x 45;54 490<1 x P x ,«xSx 3�* P + Px R ÷ + R$R ÷ u P x R 2 3 ,=, 45;56 757 7 x P 2 x$x *_Q^R Q x=2�2x R ÷ + R$R ÷ u * x R x R + P 45;54 ;51 ; x P , Q P 2�, P x�+ Rx R ÷ + R$R ÷ u 3 x R$R ,=2 R 45;5;5/ 450 x P 2 2 3 , * Q + R
Table2:Comparative resultson the30 largestCB pb.

Table2 comparesour resultswith thosereportedin [Chu
andBeasley, 1998] (

�IH Û�J ), which areamongthe bestre-
sultsfor theseinstances.Fromthetable,we seethatour ap-
proachimprovessignificantlyon all theseresults.Theaver-
agetime of the50000lastiterationsis equalto 1200seconds
for theseinstances.

Theseresults can be further improved by giving more
CPU time (iterations)to our algorithm. For example,with| ÇÁ� îê��|»!p89�4�9�4�9� , ��� �Á�� 

finds T � !]�9��5�I9IU� after 6000
secondsfor theinstanceCB30.500.0.

The Chu and Beasley benchmark contains90 instances
with 500 variables: 30 instanceswith % =5 constraints,30
with % ! ��� and 30 with % !"89� (resultsdetailedjust
above). Eachsetof 30 instancesis dividedinto 3 serieswithK !ª	 & : a ��Sb Q ��& � ! ��:�wU� K ! ��:�2 and K !38�:�w . Table
3 compares,for eachsubsetof 10 instances,theaveragesof
thebestresultsobtainedby

�LH Û�J , thoseobtainedmorere-
cently by Osorio,Glover andHammer[Osorioet al., 2000]
(columns4 and5) and thoseby

��� �� l�
(column6). The

new algorithmof [Osorioet al., 2000] usesadvancedtech-
niquessuchascuttingandsurrogateconstraintanalysis(see
columnFix+Cuts for results).We reproducealsofrom [Os-
orio et al., 2000], in column ÎNMÏî»ÈPO , the bestvaluesob-

3Availableathttp://mscmga.ms.ic.ac.uk.

tainedby theMIP solverCPLEXv6.5.2alone.� Q A$B CRE Fix+Cuts CPLEX ý � S[~ X+ Q�T , Q u R 2 Q 2 Q u R 2 Q^R Q u R 2 QG3 8<0 ; 690 4 R ÷ R-*=UQ�T u u Q�3 + R x u Q�3 + R , u Q�3 + R 2 058<75/ ;9> R ÷ R , Ux T , x R uSx=+�+ 4 ;90<456�8 x R uSx=+ * x R uSx=2 R R ÷ R u UQ^R Q�T , Q$Q�* +=2�2 Q$Q�* + * , Q$Q�* + 3 P 8 8<1 65;5; R ÷ u R-UQ�T u u Q P u P + u Q P u 3 P u Q P u 3vR 058 > 0 751 R ÷ R-3=Ux T , x R u�+=+�2 x R u�+=2Su x R u�+ P x 4 ;90 /5>5/ R ÷ R P Ux R Q�T , Q$Q +�, P R Q$Q +�+$u R Q$Q +�, 3 P 8 8 / /<.�> R ÷ +=+ UQ�T u u Q 2 Q�* P u Q 2 Q�*vR u Q 2 Q + Q 058<6509858 R ÷ u�, Ux T , x R uSx=+Sx x R uSx P x x R uSx=2�2 4 ;90:.9; . R ÷ Q + U
Table 3: Averageperformanceover the90 largestCB pb.

The column ° .5V indicatesthe averagegapvaluesin per-
centagebetweenthecontinuousrelaxedoptimumandthebest
costvaluefound: -_?T � T � 0 :F?T . WÉ1Y� � �[;£¥�? and ÎNMÏî»ÈPO algo-
rithmswerestoppedafter3 hoursof computingor whenthe
treesizememoryof 250M byteswasexceeded.Our bestre-
sultswereobtainedwith | Ç�� î'�g|�!r89�4�9�4�9� andthealgorithm
neverrequiresmorethan4M bytesof memory. Exceptfor the
instanceswith %*!65 and K !68�:�w ourapproachoutperforms
all theotheralgorithms.

To finish the presentationon Chu and Beasley bench-
marks,Table4 and5 show the bestvaluesobtainedby our
algorithmonthe30CB5.500 andthe30CB10.500 instances.

XX
ý � m � XX

ý � m � XX
ý � m �

0 120134 146 10 218428 267 20 295828 383

1 117864 148 11 221191 265 21 308083 383
2 121112 145 12 217534 264 22 299796 385
3 120804 149 13 223558 264 23 306478 385

4 122319 147 14 218966 267 24 300342 385
5 122024 153 15 220530 262 25 302561 384
6 119127 145 16 219989 266 26 301329 385

7 120568 150 17 218194 266 27 306454 383
8 121575 148 18 216976 262 28 302822 382

9 120707 151 19 219704 267 29 299904 379

Table4: Bestvaluesfor CB5.500.XX

XX ý � m � XX ý � m � XX ý � m �
0 117779 134 10 217343 256 20 304351 378

1 119190 134 11 219036 259 21 302333 380
2 119194 135 12 217797 256 22 302408 379
3 118813 137 13 216836 258 23 300757 378

4 116462 134 14 213859 256 24 304344 381
5 119504 137 15 215034 257 25 301754 375

6 119782 139 16 217903 261 26 304949 378
7 118307 135 17 219965 256 27 296441 379
8 117781 136 18 214341 258 28 301331 379

9 119186 138 19 220865 255 29 307078 378

Table5: Bestvaluesfor CB10.500.XX

To conclude this section, we present our results on
the 11 latest instancesproposedvery recently by Glover
and Kochenberger (available at: http://hces.bus.
olemiss.edu/tools.html.) Thesebenchmarkscon-
tain up to � =2500 items and % =100 constraints,thus are
very large. Table6 comparesour results(columns4 and5)
and the bestknown resultstaken from the above web site.
Onceagain,our approachgivesimprovedsolutionsfor 9 out
of 11 instances.Let us mentionthat the experimentationon



these instances showed some limits of our approach regard-
ing theX computing time for solving some very large instances
( � ¹����9�4� ). Indeed, given the size of our neighborhood
( +e¾6- � � + 0 , see Section 5.3), up to 3 days were needed
to get the reported values.

MK _GK � ��� ýZY ñ ý � m � S[~ XR_Q Q^R$R � Q + x P 2�2 x P 2=2 +$u R ÷ u�2 UR u Q^R$R � u=+ x 3 + * x 3 + * + R R ÷ ,=2 UR x Q + R � u=+ +=2=+ R / 69/<6 P * R ÷ u�2 UR , Q + R � + R + P 2�, /5> 65> P * R ÷ ,=2 UR + u R$R � u=+ P +=+ P >5/ 6 ; Q^R , R ÷ uSx UR 2 u R$R � + R P 2 P u > 69> > 3=3 R ÷ x�, UR P + R$R � u=+ QG3 u Q + 8:79050<; u�+ 3 R ÷ R 2 UR=* + R$R � + R QG*=*SR_Q 8:1515; 6 u�+$u R ÷ Q x UR=3 Q + RSR � u=+ + *SR-* + /<15;515> PSP x R ÷ R u UQ^R Q + RSR � + R + P u 3 u / >50 75/ PSP R R ÷ R , UQSQ u=+ R$R � QORSR 3 +$u$x Q 75/50 45> Q u P Q R ÷ R , U
Table 6: Comparison on the lastest 11MK _GK pb.

7 Conclusion

In this paper, we have presented a hybrid approach for tack-
ling the NP-hard 0–1 multidimensional knapsack problem
(MKP01). The proposed approach combines linear progam-
ming and Tabu Search. The basic idea consists in obtaining
"promising" continuous optima and then using TS to explore
carefully and efficiently binary areas close to these continu-
ous optima. This is carried out by introducing several addi-
tional constraints:

1. hyperplane constraint:a � Q � & !6+y� IN ;

2. geometrical constraint:| �s��?�lk m$nO|��o} �L~[� ;
3. qualitative constraint:��� ��¹ T � & � .

Our Tabu Search algorithm integrates also some advanced
features such as an efficient implementation of the reverse
elimination method for a dynamic tabu list management in
the context of a special2-changemove.

This hybrid approach has been tested on more than 100
state-of-the-art benchmark instances, and has led to improved
solutions for most of the tested instances.

One inconvenience of the proposed approach is its comput-
ing time for very large instances ( > 1000 items). This is par-
tially due to the time complexity of the neighborhood used.
Despite of this, this study constitutes a promising starting
point for designing more efficient algorithms for the MKP01.
Some possibilities are: 1) to develop a partial evaluation of
relaxed knapsack constraints; 2) to study more precisely the
relationship between} ��~_� and T V^X[Z for a given instance; 3) to
find a good crossover operator and a cooperative distributed
implementation of the

��� ���� 
algorithm.

Finally, we hope the basic idea behind the proposed
approach may be explored to tackle other NP-hard problems.

Acknowledgement:We would like to thank the reviewers of
the paper for their useful comments.
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