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Abstract

Tensegrity systems are structures in equilibrium under an initial self-stress state. This 

self-stress state is composed of elementary self-stress states, which constitute its basis.

They have complex behaviour and the self-stress state can be modified by external 

loads. A continuous dialogue between numerical simulations and experimental tests 

made it possible to validate previous models. In this paper, we checked the validity of 

the indirect methods currently used to measure cable tension. We show that the 

connection between elements is embedding in spite of an apparent freedom movement

of the structure. We show the necessity to use structural beam elements to correctly 

describe the bars behaviour in the structure.

Static and vibratory measurements show the importance of the bending moment for the 

elements. We here improve the modelling of the behaviour of the Tensarch
® 

project 

tensegrity grid.
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1. INTRODUCTION

* Manuscript



The Design and Structures group in Montpellier has been involved in tensegrity 

structure testing for a number of years [1,2]. J. Averseng [3, 4] demonstrated the 

feasibility of this approach, but to carry out reliable and relevant tests, the state and 

behaviour of the tested structure must be thoroughly understood. It is difficult to 

calculate the stress state of the elements in a structure without using cumbersome means 

of measurement [4, 5]. Thus our approach here is to link easily accessible measurements 

to real stress states [6, 7, 8]. Stress states are evaluated by the vibratory measurement of 

several vertical ties. The stresses in the elements are then deduced using a bench-top 

calibrated force-frequency law. However, the stress state deduced from these 

measurements does not comply with the overall load bending behaviour simulated with 

our computation code.

This raises several questions. Are force-frequency laws relevant to the elements in the 

structure? Is it realistic to use a bar behaviour of the different elements? To answer 

these questions we performed a complete measurement programme on a tensegrity 

structure. We also checked the influence of the type of component used on the 

behaviour of the structure.

Our team has had a tensegrity structure available for experiments since the year 2000, 

following the Tensarch
®

 project [9]. This project focused on the feasibility of the design 

and creation of a flat tensegrity grid measuring 12.80m x 6.40m. For our purposes, one 

eighth of this grid was used, which we refer to as a mini grid.

2. NUMERICAL STUDY OF THE MINI GRID



Mini grid

This is a double layer plane grid of cables the basic pattern of which uses the expander 

principle: two by two, the struts form perpendicular, opposing V’s, separated by a 

vertical tie the length of which can be made to vary (figure 1).

This consists of 81 components linked by nodes: 24 compressed struts (tubes) and 

tensioned elements, i.e., 36 cables in addition to 9 vertical ties and 12 peripheral ties 

(table 1); the ties are the active components of the structure [10, 11] (figure 2).

Self-stress state

System equilibrium is obtained when all nodes are in equilibrium. The static 

equilibrium of a node i is written as:
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Tij is the internal force vector of the element linking node j to node i, and Fi is the 

external force vector directly applied to node i. The internal forces Tij are a function of 

the deformation of each element; xi, yi, zi are spatial co-ordinates of node i, and 
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ijl  the 

length of the element connecting nodes i and j in the reference configuration. The 

projection of equation 1 on three axes gives:
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Tij is the algebraic expression of the force in element (i, j), connecting node i and 

node j. This equilibrium equation can be simplified by introducing the force density qij

of each element (i, j) [12]:
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The relation for one node (2) then becomes:

! "

! "

! "#

#

#

$

$

$

 %&

 %&

 %&

ij

z

iijij

ij

y

iijij

ij

x

iijij

Fzzq

Fyyq

Fxxq

0

0

0

(4)

The system of equations obtained by applying the equations in (4) to all the nodes of 

the structure is:

fAq  (5)

with A for the equilibrium matrix of the structure (dimension bx3n ), q for the vector 

describing the force densities in elements b, and f for the vector of the external forces 

acting on nodes n. Self-stress ensures the stability and the rigidity of the tensegrity 

system. Self-stress is then the whole set of internal forces occurring in the initial state, 

without external loading. This state of equilibrium corresponds to a field of force 

densities q0 satisfying:

Aq0Aq 0 ker0 '( (6)

The selfstress state can be expressed on the basis of the subspace kerA, also noted

as S, which is composed of several fundamental self-stress states. Numerical techniques 



are developed to accurately determine the self-stress basis. Direct determination of the 

fundamental self-stress states, starting from kernel A, poses numerical problems which 

are addressed by Quirant [13]. Pellegrino and Calladine have developed methods to 

determine selfstress states and their internal mechanisms (finite or infinitesimal [14]) on 

the basis of a study of the equilibrium matrix of a given system. Vassart suggests using 

the transposed matrix A
T
 and the displacement field instead of the force field [12] to 

determine the elastic potential criterion corresponding to stable equilibrium. The self-

stress basis S resulting from kernel A cannot be used directly, since the equilibrium 

matrix A does not take into account the unilateral behaviour of elements. Every self-

stress state which meets the unilaterality conditions for tensioned members is called 

“conform”. A conform selfstress state can result from a linear combination of several 

conform states [15], or directly from linear combination of the elements defining 

subspace kerA, or S [16]:

S q0  (7)

The components of the   vector are chosen to satisfy stress conditions for members. 

In our laboratory, the fundamental selfstress states are determined by using a dedicated 

code (Tensegrité2000, [13]).

Minigrid selfstress state 

Tenségrité2000 software is able to determine the basic self-stress states and 

mechanisms of a structure starting from geometry and boundary conditions. Basic self-



stress states are states which gives elementary stabilities of the structure. The 

combination of these states makes it possible to ensure stability and to respect the 

threshold behaviour of the elements. The bars should not reach the buckling load and 

the ties should not break. With three non-symmetrically support conditions it has only 

two basic self-stress states (noted EA1 and EA2). These are the states from which a self-

stress state can be built, ensuring the stability of the structure and the boundary 

operating states applied. A ratio of 0.5 between the two coefficients a and b of each 

basic self-stress state (a*EA1 + b*EA2) provides the most homogeneous distribution of 

forces possible in the components, particularly for cable tensions (figure 3).

On the basis of this choice of self-stress state and support conditions, the finite element 

code Cast3M [17] is used for more advanced numerical simulations. Bearing in mind 

future experimental objectives, the study focused on establishing normal modal 

frequencies and their evolution according to self-stress level. The first frequency mode 

is proportional to the square root of the tension of the element linked to self-stress level 

(figure 4). For the following modes, evolution is quasi linear and weak. 

From simulation to experiment

The preliminary numerical study of the mini grid provided an indication of the real 

mechanical behaviour of the structure. This study also clarified the choices to be made 

particularly for support conditions. Nevertheless, it is clearly important to focus on 

carefully setting the self-stress state. A method had already been developed in the 

laboratory to obtain a target self-stress state from a structure’s real state [11].



Measurement of the real state relies on the vibrating wire method applied to the 

tensioned components in the mini grid. We propose here more direct and complete 

measurements. The strut and tie components were instrumented with strain gauges. For 

cable tension, the results were obtained using a three-point tensiometer developed in the 

laboratory. The purpose of these measurements is to verify the relevance of indirect 

measurements and refine identification of the real state.

3. MINI GRID INSTRUMENTATION 

Strain in struts and ties 

The wish to explore a new approach in the measurement of strain in the mini grid 

components was not merely based on using more direct methods. Indeed the use of 

gauges (Vishay CEA-06-250UW-350) made it possible to estimate strain in the 

compressed struts, components that were hitherto non-instrumented. To do so, the 

gauge mountings were carefully selected. Thus, for the struts, a complete standard 

bridge mounting was devoted to detect bending, while a mounting known as a complete 

half-bridge measured compression, free of bending. This mounting consists of a 

complete bridge that functions like a half bridge when resistances are used instead of 

gauges on the two opposing arms of the bridge. The same mounting is used to obtain the 

tension of the ties, on the assumption that bending does not important. Not all 

components of the mini grid could be instrumented. As the conditioner paths were 

limited in number (Vishay 2120) we adopted a strategy that took account of the self-

stress states of the mini grid in addition to its geometrical symmetries (figure 5a). Ties 



TV1, TV2, TV3, TP1 and TP2 are equipped to measure traction force. Strut B1, B2, B3, 

B4 are equipped to measure compression force in the medium of the strut and the 

bending moment at the end.

Traction-compression calibrations were carried out using a force transducer: the ties 

were calibrated on a traction bench, while the struts were calibrated by direct loading. 

Figure 5b shows how in the case of struts, the values obtained using the extensometric 

method closely agree with those of the force transducer (differences inferior to 3%). The 

same is true for the gauge mountings on the ties.

Integrating the equipped components into the tensegrity structure allayed suspicions of 

strut bending and allowed node compensation to be checked (table 2). The structure is 

not loaded but has its selfstress state. Vertically, strut compression is seen to be almost 

perfectly compensated by the tension in the tie. The same is true horizontally with cable 

tension in the strut plane. For the two other cables, variance does not exceed 15%. For 

these strut force levels a bending moment of 25.4 daN.m was obtained at the end of the 

strut. Normal strain thus generates a relative deformation of 1.21%, whereas bending 

generates a relative deformation variation of 0.13% between the extreme strut fibres.

Static loading

The mini grid is loaded by applying masses to the peripheral nodes of the lower layer 

(figure 6). The masses applied were 2kg, 6kg, 14.7kg, 23.4kg and 32.1kg. Using a 

tacheometer, we measured the displacement field of the nodes of the upper layer (figure 



6). The nodes of the two layers were not superimposed. A general weak self-stress state 

is imposed on the structure. The self-stress state coefficients identified by measurements 

of the forces were a=1722 and b=3801. This weak self-stress state permitted a flexible 

structure with notable displacements. Two types of simulations of the behaviour were 

carried out: one using a structural bar behaviour for all elements, the other using

structural beam behaviour for the bars. Bar element cannot support forces orthogonal 

and moments. Beam element is based on Euler-Bernoulli beam theory. Ties and cables 

are described by 10 bar elements, struts are described by 5 beam elements. Figure 7

shows that for two points of measurement the behaviour beam is more adapted to 

describe the behaviour of the mini grid. We calculate the quadratic mean displacement 

error for the four loads. Figure 8a is the result when we used bar elements for the struts. 

Figure 8b is the result when we used beam elements for the struts. The tests show a 

linear behaviour whereas modelling bars described nonlinear behaviour. We cannot 

explain simply the behaviour nonlinear obtained with the bar description for the struts. 

This result is obtained with tow different codes and struts are always compressed. 

Modelling beam is not so close to the real behaviour for weak loadings but remains 

linear.

Vibrating identification 

When a tensioned component is made to vibrate (tie or cable) after a shock, the 

vibration frequency value can provide an indication of the tension level when the right 

calibration law is used [17]. To check these, tests were carried out on a tension bench to 



refine the coefficients of the law. We now dispose of the force measurement for the ties, 

because of the strain gauge mountings, which permit tests with the ties integrated in the 

mini grid. Measurements were taken at different locations on three vertical ties: the 

central tie (tie 1), a corner tie (tie 2) and a side tie (tie 3). There is a difference between 

the calibration carried out on the bench and the measure taken on the tie in the mini grid 

(figure 9). The characteristics of the vertical ties being identical, the bench conditions 

are incompatible with those in situ. Furthermore the boundary conditions of the ties in 

situ appear different for each case. To check this hypothesis, we compared numerical 

simulations with experimental tests.

With Cast3M code [18], we used the same modelling of the static simulations. We 

increase the self-stress level. For each tie measured, we applied a dirac loading. The 

internal force of the tie and the first eigenmode were computed. We calculated the 

theoretical relation between force and 1
st
 mode for a beam with a restrained support and 

a hinged bearing. Simulation of the central tie (figure 10) in situ shows that the 

frequency law coincides with the curve corresponding to completely blocked nodes. The 

same results were obtained for the peripheral tie (figure 11). These are longer than the 

central tie, but they have the same behaviour. In these simulations, tension was 

increased not only in a tie but also in the self-strain level of the whole structure. The 

struts contribute rigidity in rotation but so do the cables.

4. CONCLUSIONS



The aim of this study was to test under natural strain, but the prerequisite for this is a 

complete understanding of the mechanical behaviour of these structures. In the case of a 

tensegrity system this chiefly consists of accurately identifying the real self-strain state 

Ea. We presented the instrument choices used to identify and test the mechanical state 

of the mini grid: strain gauge mountings to measure compression in the struts and 

tension in the ties, and the use of a tensiometer for the cables, are a useful addition to 

the vibrating wire method. The latter in fact is weak in dealing with the diversity and 

complexity of the support conditions of the components in the mini grid. Furthermore, 

we showed that compressed elements are subject to a substantial bending moment that 

blocks the nodes in rotation. The different elements can no longer be assimilated to 

finite strut elements but must be modelled by finite beam elements.

The next series of trials will consist of studying node displacement fields induced by 

various static loads, for several self-strain levels in the mini grid. 
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Figure 1. The mini grid: a) general view, b) close up of a node.
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Figure 2. Minigrid decomposition, with struts, ties, cables.
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Figure 3. Two basic self-stress states EA1 and EA2 of the mini grid.
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Strut calibration
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Figure 5. a) Location of the instrumented components in the mini grid – b) Calibration 

of complete half-bridge strain gauge for a strut.
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Figure 6. Visualization of the loading and the measured nodes.
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Figure 8. Displacement error, a) with structural bar element, b) with structural beam 

element for the struts.
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Component Length (m)
Young’s Modulus

(MPa)

Section 

(cm²)

Inertia 

(cm
4
)

Density 

(kg/m
3
)

Struts 1.13 2.0 10
6

3.30 1.80 7800

Cables 0.80 1.6 10
6

0.503 0.0201 7157

Vertical ties 0.80 1.7 10
6

0.785 0.0491 7720

Side/Corner ties 1.13/1.38 2.0 10
6

0.503 0.0201 7500

Table 1. Characteristics of the mini grid components.

Table 1



Component
Strain

(daN)

Compensation (daN difference)

Vertical Tie -1144

Strut 1 821

Strut 2 804

51144
2

804821
 !

"

Cable 1 -98

Cable 2 -88

28898
2

804821
 "!

!

Cable 3 -438

Cable 4 -491

491-438 = 53

Table 2. Node compensation.
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