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Abstract: Model refinements of magnetic circuits are 
performed via a subproblem finite element method based on 
a perturbation technique. A simplified problem considering 
ideal flux tubes is first solved, as either a 1-D magnetic 
circuit or a simplified finite element problem. Its solution is 
then corrected via finite element perturbation problems 
considering the actual flux tube geometry and the exterior 
regions, that allow first 2-D and then 3-D leakage fluxes. 
The procedure simplifies both meshing and solving 
processes, and quantifies the gain given by each model 
refinement on both local fields and global quantities. 
 

Keywords: Finite element method, magnetic circuit, 
model refinement, perturbation method. 

I. INTRODUCTION 

The perturbation of finite element (FE) solutions 
provides clear advantages in repetitive analyses [1]-[2] 
and helps improving the solution accuracy [3]-[5]. It 
allows to benefit from previous computations instead of 
starting a new complete FE solution for any variation of 
geometrical or physical data. It also allows different 
problem-adapted meshes and computational efficiency 
due to the reduced size of each subproblem. 

A perturbation FE method is herein developed for 
refining the magnetic flux distribution in magnetic 
circuits starting from simplified models, based on ideal 
flux tubes defining 1-D models, that evolve towards 2-D 
and 3-D accurate models. It is an extension of the method 
proposed in [4]-[5], applied to refinements up to 3-D 
models. From the so calculated field corrections, the 
associate corrections of global quantities proper to 
magnetic circuits, i.e. fluxes and magnetomotive forces 
(MMFs), are also evaluated to determine reluctances [6]. 
The method aims to build accurate reluctance networks, 
possibly starting from preliminary approximations [7]. 
The developments are performed for the magnetic vector 
potential FE magnetostatic formulation, paying special 
attention to the proper discretization of the constraints 
involved in each subproblem. The method is illustrated 
and validated on test problems. 

II. MAGNETIC MODEL REFINEMENT 

A. Series of coupled subproblems 

Instead of solving a complete problem with all its 
complexity and details, it is proposed to start from a 
simplified problem that is then refined. The initial 
assumptions are thus progressively canceled via 
successive model refinements, i.e. with well posed 
subproblems. 

Each subproblem is defined in its own domain, 

generally distinct from the complete domain. At the 
discrete level, this decreases the problem complexity and 
allows distinct meshes with suitable refinements. Many 
kinds of refinements can be considered, e.g. [3]-[5]. 
Focus is here given to refinements from 1-D to 3-D 
models, leading to the coupling of 1-D, 2-D and 3-D 
meshes. 

A complete problem is thus split in a series of 
subproblems p of an ordered set P. Its solution u is 
expressed as the sum of subproblem solutions up, or 
corrections, i.e. 

 pp P∈= ∑u u . (1) 

In general, each subproblem p is perturbed by all the 
other subproblems q in P, i.e. all the subproblems are 
coupled. This is usually obvious for p > q with the 
defined series. For p < q, it is the case when a correction 
becomes a significant source for any of its source 
problems, which is inherent to large perturbation 
problems. It is also the case in nonlinear analyses, thus 
even for p = q. These dependencies require iterations on 
the set P to calculate each solution up as a series of 
corrections up,i, i.e. 

 , ,1 ,2 ...p p i p pi= = + +∑u u u u , (2) 

where the calculation of up,i in a subproblem p,i (problem 
p with particular constraints at iteration i) is kept on till 
convergence up to a desired accuracy. Each correction 
must account for the influence of all the previous 
corrections up,j of the other subproblems, with j the last 
iteration index for which a correction is known. Initial 
solutions up,0 are set to zero. The global quantities 
linearly related to each correction, i.e. the fluxes and 
MMFs [6], are added to obtain their complete values. 
This way, they gain in accuracy for the benefit of more 
accurate magnetic circuit models. 

B. Canonical magnetostatic problem 

A canonical magnetostatic problem p is defined in a 
domain Ωp, with boundary ∂Ωp = Γp = Γh,p ∪ Γb,p 
(possibly at infinity). Subscript p refers to the associated 
problem p. The equations, material relations, boundary 
conditions (BCs) and interface conditions (ICs) of 
problem p are 

 curl hp = jp ,   div bp = 0 , (3a-b) 
 bp = μp hp + bs,p ,   jp = js,p , (3c-d) 
 n × hp|Γh,p

 = 0 ,  n ⋅ bp|Γb,p
 = 0 , (3e-f) 

 [n × hp]γp
 = jsu,p ,  [n ⋅ bp]γp

 = bsu,p , (3g-h) 

where hp is the magnetic field, bp is the magnetic flux 
density, jp is the electric current density, μp is the 
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magnetic permeability and n is the unit normal exterior to 
Ωp.   

The fields bs,p and js,p are volume sources. The source 
bs,p is usually used for fixing a remnant induction in 
magnetic materials. The source js,p fixes the current 
density in inductors. With the perturbation method, bs,p is 
also used for expressing changes of permeability and js,p 
for adding portions of inductors [5]. In magnetodynamic 
problems, js,p also expresses changes of conductivity [2]. 

The notation [ ⋅ ]γ = ⋅ |γ+ – ⋅ |γ– expresses the discontinuity 
of a quantity through any interface γ (with sides γ+ and γ–

) in Ωp (the region in between is considered to be exterior 
to Ωp). The associated surface fields jsu,p and bsu,p are 
generally zero, defining classical ICs for the physical 
fields, i.e. the continuities of the tangential component of 
hp and of the normal component of bp. If nonzero, they 
define possible surface sources that account for particular 
phenomena occurring in the idealized thin region 
between γ+ and γ–. 

For the refinement of flux tubes, each problem p is to 
be constrained via the so defined surface sources from 
parts of the solution of other problems. This is a key 
element of the developed method, that can be generalized 
to both 2-D and 3-D problems. 

III. REFINEMENT OF FLUX TUBES 

A. Parallel perturbations: considering leakage flux 

In a first problem, e.g. p = 1, the magnetic flux is 
forced to flow only in a subregion with perfect flux walls, 
i.e. a set of flux tubes Ω1 = Ωft,1 of the complete domain 
Ω. A second problem, e.g. p = 2, considers then that some 
flux wall portions become permeable. This allows 
leakage flux in the exterior region Ω \ Ω1 and leads to a 
change of the flux distribution in Ω1. This procedure 
defines a so called parallel perturbation, offering other 
parallel paths to the flux. A solution refinement is thus 
achieved. 

There is a certain freedom to chose the flux wall 
portions to be perturbed and the sequence of such 
perturbations (Fig. 1). Leakage flux can be first allowed 
in a 2-D model [4], [5] before being extended in the third 
direction, i.e. in 3-D. Once flux walls become 
progressively permeable, the actual geometry of the 
inductors can be taken into account. 

In problem 1, the ideal flux tubes are considered with a 
zero normal magnetic flux density BC on their 
boundaries or flux walls Γft,1 = ∂Ω1. The trace of the 
magnetic field is unknown on Γft,1. Once determined 
from the solution in Ω1, it can be used as a BC to 
calculate the solution in Ω \ Ω1, with all the precise 
characteristics of this exterior region (e.g., inductors and 
other surrounding regions). This task is however avoided, 
preferring the magnetic field to be simply zero in Ω \ Ω1. 
With that purpose, problem 1 gathers all the inductor 
parts of the exterior region inside the double layer 
defined by Γft,1+ and Γft,1–, the inner and outer sides of 
Γft,1 with regard to Ω1 (Fig. 2, left). This defines 
idealized inductors and allows the magnetic field to be 
zero in Ω \ Ω1. Each problem p > 1 must then correct the 

already obtained solutions, in particular solution 1, via 
particular corrections of ICs (Fig. 2, right). Such ICs are 
surface sources (or interface-type sources) fixing the 
possible trace discontinuities of hp and bp in terms of 
other solutions q. The forced discontinuities introduced 
in a problem are thus to be corrected by another one. 
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Fig. 1. Field lines (top) and magnetic flux density (bottom) of the initial 
problem with an ideal flux tube (b1, left), and its local correction below 
(b2, middle) and above the air gap (b3, right). 
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Fig. 2. Domains for the ideal (left) and real (right) flux tube problems. 

The BCs of problem 1 are thus 

 n ⋅ b1|Γft,1
+ = 0 ,     n ⋅ b1|Γft,1

– = 0 , (4a-b) 
 n × h1|Γft,1

+ = jsu,1 ,     n × h1|Γft,1
– = 0 , (5a-b) 

which establishes the discontinuities or ICs: 

 [n ⋅ b1]Γft,1
 = bsu,1 = 0 ,     [n×h1]Γft,1

= jsu,1 . (6a-b) 

Problem 2 must correct the solution 1 via appropriate 
ICs (3g-h). On the one hand, one has 

 [n ⋅ b2]Γft,2
 = bsu,2 = [n ⋅ b]Γft,2

– bsu,1 = 0 , (7) 

due to the known continuity of n⋅b in the complete 
solution (1) and the zero value of bsu,1 via (6a). On the 
other hand, one has 

 [n×h2]Γft,2
= jsu,2 = [n×h]Γft,2

– jsu,1 = – n×h1|Γft,1
+ , (8) 

due to the known continuity of n×h in the complete 
solution (1) and relation (5a). Problem 2 extends then the 
solution out of the flux tubes and corrects it in the tubes. 
IC (8) can be seen as a surface source acting on both 
sides of Γft,2. Note that Γft,2 is similar to Γft,1. They only 
differ at the discrete level due to their different 
supporting meshes. 

B. Series perturbations: connecting two flux tubes 

Prior to considering leakage flux, the series connection 
of two ideal flux tubes can be refined using the same kind 
of surface sources as in the parallel perturbations, this 
time as a so called series perturbation. The field 
distribution in each tube can be first easily constructed 
via geometrical considerations, i.e. no need of FE 
analysis (Fig. 3, left). In general, the flux conservation 
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from one tube to the other can be expressed exactly. 
Consequently, the junction surface now acts as an 
interface Γft,1, through which the continuity of the normal 
magnetic flux density is satisfied ([n ⋅ b1]Γft,1

 = 0) and the 
discontinuity of the tangential magnetic field is simply 
quantifiable ([n×h1]Γft,1

 ≠ 0). The correction problem 
(p = 2) to be solved is thus defined with the following 
ICs: 

 [n ⋅ b2]Γft,2
= – [n ⋅ b1]Γft,1

 = 0 , (9) 
 [n×h2]Γft,2

= – [n×h1]Γft,1
 . (10) 

It can be limited to a certain neighborhood Ω2 on both 
sides of the interface Γft,2 = Γft,1 (Fig. 3, middle). 
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Fig. 3. Field lines (top) and magnetic flux density (bottom) of the initial 
problem with two ideal flux tubes in series (b1, left), its local correction 
at the junction (b2, middle) and the complete solution (b, right). 

IV. FINITE ELEMENT WEAK FORMULATIONS 

A. b-conform weak formulations 

The canonical problem p (3a-h) is defined in Ωp with 
the magnetic vector potential formulation [6], expressing 
the magnetic flux density bp in Ωp as the curl of a 
magnetic vector potential ap. The related a-formulation is 
obtained from the weak form of the Ampère equation (3
a), i.e. [6], 

1
, ,( curl ,curl ') ( ,curl ') ( , ')

p p pp p s p s p
−

Ω Ω Ωμ − −a a h a j a  

    
, ,, , ' , '

h p b ps p pΓ Γ+< × > +< × >n h a n h a  

    [ ] , ' 0
p pp γ γ+< × > =n h a  ,   1' ( )p pF∀ ∈ Ωa , (11) 

where Fp1(Ωp) is a gauged curl-conform function space 
defined on Ωp and containing the basis functions for a as 
well as for the test function a' (at the discrete level, this 
space is defined by edge FEs); ( · , · )Ω and < · , · >Γ 
respectively denote a volume integral in Ω and a surface 
integral on Γ of the product of their vector field 
arguments. With the b-conform formulation used, ICs (3
h) and (3g) are to be defined respectively in strong and 
weak senses (essential and natural ICs), i.e. in Fp1(Ωp) 
and in a surface integral term. The surface integral term 
on Γh,p accounts for natural BCs of type (3e), usually 
with n × hs,p|Γh,p

 = 0. The unknown term on the surface 
Γb,p with essential BCs on n⋅bp is usually omitted 
because it does not locally contribute to (11). It will be 
shown to be the key for the post-processing of a solution 

p, a part of which, n × hp|Γb,p
, is used as a source in 

further problems. 

B. Surface sources for leakage flux 

For the ideal flux tubes Ωft,1 of problem p = 1, BC (4a) 
leads to an essential BC on the primary unknown a1 that 
can be expressed in general (in 3-D) via the definition of 
a surface scalar potential u1 [6], i.e., 

 
,1 ,1 ,1

1 1 1curl 0 grad
ft ft ft

uΓ Γ Γ⋅ = ⇔ × = ×n a n a n . (12) 

This potential is multi-valued because a net magnetic flux 
flows in Ωft, 1. Its discontinuity through cut lines, making 
the boundary Γft,1 simply connected, is directly related to 
the net flux. In 2-D, the flux wall BC amounts to define a 
floating magnetic vector potential a1 (with a constant 
perpendicular component) on each non-connected part of 
Γft,1. 

Formulation p = 1 is obtained from (11) with  bs,1 = 0, 
js,1 = 0, n × hs,1|Γh,1

 = 0, Γft,1 ⊂ Γb,1 and γ1 = ∅. The surface 
integral term <n×h1, a'>Γft,1

 differs from zero only for the 
test function a' = grad u' (from (12)), the value of which is 
then the MMF F1 associated with a flux tube (this can be 
demonstrated from the general procedure developed in 
[6]). It is zero for all the other local test functions (at the 
discrete level, for any edge not belonging to Γft,1). This 
way, the magnetic circuit relation can be expressed for 
each flux tube Ωft,1, to relate fluxes and MMFs. 

The correction formulation p = 2 is then obtained from 
(11) with  bs,2 = 0, n × hs,2|Γh,2

 = 0 and γ2 = Γft,2. The 
volume source current density js,2 is now defined in the 
inductor portions added to the studied domain Ω2, in 
place of the firstly idealized inductors. IC (7) is strongly 
expressed via the essential tangential continuity of the 
vector potential a2 through Γft,2. IC (8) can rather only 
act in a weak sense via the surface integral term related to 
γ2 = Γft,2 in (11). Indeed, the involved surface source 
n × h1 is not known in a strong sense on Γft,2, but rather 
in a weak sense. One has, with (8) and (11) for p = 1, 

 
,2 ,2 ,2

2 1[ ] , ' , '
ft ft ft

+Γ Γ Γ< × > =<− × >n h a n h a  

 
,1 ,2,1

1
1 1 1, ' ( curl ,curl ')

ft ftft
+

−
Ω =ΩΓ=<− × > = μn h a a a . (13) 

This way, the surface integral source term on γ2 = Γft,2 in 
(11) is calculated from a volume integral coming from 
the previous problem 1. Its consideration via a volume 
integral, limited at the discrete level to one single layer of 
FEs touching the boundary, is the natural way to average 
it as a weak quantity. Any other kind of evaluation would 
not be consistent with the FE formulation used. 

At the discrete level, the source quantity a1 in (13), 
initially given in mesh 1, has to be projected in mesh 2 in 
a domain Ωs,2 limited to the layer of FEs touching Γft,2. 
This can be done via a Galerkin projection method [8] of 
its curl limited to Ωs,2, i.e.  

 
,2 ,21,2- 1(curl ,curl ') (curl ,curl ')

s sproj Ω Ω=a a a a  , 

             1
2 ,2' ( )sF∀ ∈ Ωa , (14) 

where F21(Ωs,2) is a gauged curl-conform function space 
for the 2-projected source a1,2-proj (the projection of a1 
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on mesh 2) and the test function a'. Directly projecting a1 
(not its curl) would result in numerical inaccuracies when 
evaluating its curl. 

The test function a' in (13) is associated only with the 
edges of Γft,2; the support of the function curl a' is indeed 
limited to this layer. This reduced support decreases the 
computational effort of the projection process. 

C. Surface sources for a series connection of flux tubes 

The local FE problem to be solved in the neighborhood 
of a junction interface Γft,2 = Γft,1 of two flux tubes is still 
expressed by (11). IC (9) leads to the tangential 
continuity of the vector potential a2 through Γft,2. IC (10) 
is weakly expressed via the surface source integral term 

 
,2 ,2 ,1 ,22 1[ ] , ' [ ] , '

ft ft ft ftΓ Γ Γ Γ< × > =<− × >n h a n h a , (15) 

which is simply calculated from the known distribution 
of h1 on both sides of Γft,1. 

V. APPLICATION 

Two problems are considered to test and illustrate the 
refinement method from 1-D to 3-D models. 

A stranded inductor is first studied (Fig. 4). Its cross 
section in the XY plane initially defines an initial 2-D 
model, with the solution shown in Fig. 4 (left). This 2-D 
solution is considered to be invariant in the Z direction 
up to a certain distance (z = 100 mm). Beyond this 
distance, the field is chosen to be zero, which results in a 
particular IC to be further corrected. This solution then 
serves as an IC constraint (8) for a 3-D perturbation 
model considering the inductor end winding.  

A part of the correction is shown in a plane crossing 
the end winding, where its significance in the direct 
vicinity of this end region is pointed out (Fig. 4, right). 
Another part is shown along a line centered with the 
inductor and following its main (Z) direction (Fig. 5). 

The current density distribution considered for the 2-D 
model is implicitly the one shown in Fig. 6, left. Once 
this distribution has been used in 2-D, the 3-D 
perturbation model only needs its complementary part 
defined in the end windings (Fig. 6, right). 

Y
X

Z

 
Fig. 4. Magnetic flux density generated by a stranded inductor (half 
geometry): solution of the 2-D model in the XY plane (z = 0) (vector 
field and field lines, left) and a part of the 3-D correction in a particular 
plane crossing the end winding (right). 
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Fig. 5. Magnetic flux density along the main (Z) direction of the 
inductor (from its center): solution of the 2-D model (implicitly 
extended as a constant up to z = 100 mm) and 3-D solution after 
correction in the vicinity of the end winding. 
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Fig. 6. Source current density in the inductor: its implicit distribution for 
the 2-D model (left) and its complementary part in the end winding for 
the 3-D perturbation model (right). 

An electromagnet is then studied (Fig. 7). It consists of 
a U-shape core surrounded by a stranded inductor and 
separated from an I-shape core via two air gaps. For both 
core, the width and depth are 20 mm and 100 mm 
respectively. Their relative permeability is μr,U-core = μr,I-
core = 500. Each gap is 3 mm. Other values of the 
permeability and the air gap will be considered as well 
for parameterized analyses. 

A 2-D solution is first calculated (Fig. 8). It can be 
either obtained directly or from a sequence of correction 
problems starting from a 1-D model progressively refined 
in 2-D with consideration of 2-D leakage fluxes [4], [5]. 
This solution serves then as a source for a perturbation 
problem allowing leakage flux in 3-D, in the same way it 
has been done with only the inductor. Significant 
corrections near the end winding and the air gaps are 
shown (Figs. 9 and 10). The 3-D problem calculates the 
actual flux distribution in the vicinity of the inductor end 
winding and in the vicinity of the cores, with its own 
adapted mesh. It also corrects the flux density in the 
cores and the air gaps. 

Each correction properly modifies the inductor flux 
linkage. This is shown for air gaps of 1 mm and 3 mm in 
Figs. 11 and 12 respectively. The 1-D model simply 
considers ideal flux tubes of constant sections. It is then 
followed by a 2-D model considering ideal flux tubes 
with their actual geometry (corners are thus accurately 
taken into account). Then leakage fluxes in and out of the 
flux tubes are considered in 2-D as well, before extension 
in the third dimension (3-D). In general, each additional 
leakage flux correction significantly influences the 
inductor flux linkage. The 3-D correction is lower for 
low reluctances of the magnetic circuit (i.e. for high 
permeability and small air gap). 

The relative corrections obtained for model 
refinements from 1-D to 2-D and from 2-D to 3-D are 
given in Figs. 13 and 14 respectively, for different air 
gaps (0 mm, 1 mm and 3 mm) in function of the 
permeability of the magnetic cores. Neglecting 2-D 

- 4 -

ha
l-0

03
59

39
3,

 v
er

si
on

 1
 - 

4 
M

ar
 2

00
9



leakage fluxes obviously amounts to large errors (about 
50%) in magnetic circuits with higher reluctances (e.g. 
larger air gaps and/or lower permeability). Neglecting 3-
D leakage fluxes amounts to an error up to 25% for the 
considered geometry. The error will be higher with flatter 
magnetic circuits. 

 
Fig. 7. 3-D model of the electromagnet (left); its 2-D cross section and 
solution (magnetic flux density and field lines) (right). 
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XZ

 
Fig. 8. 3-D model of the electromagnet (left); its 2-D cross section and 
solution (magnetic flux density and field lines) (right). 
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Fig. 9. Magnetic flux density: solution of the 3-D correction in 
particular planes near the end winding and the air gaps. 
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Fig. 10. Magnetic flux density along Z direction in the 3-D system: 
solution of the 2-D model (implicitly extended as a constant up to 
z = 100 mm) and 3-D solution after corrections in the vicinity of the end 
winding (top), the air gap (middle) and the I-core (bottom). 
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Fig. 11. Inductor flux linkage versus the core magnetic permeability (air 
gap thickness of 1 mm) updated after each model refinement. 
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Fig. 12. Inductor flux linkage versus the core magnetic permeability (air 
gap thickness of 3 mm) updated after each model refinement. 
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Fig. 13. Relative correction from 1-D to 2-D models versus the core 
magnetic permeability for different air gap thicknesses. 
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Fig. 14. Relative correction from 2-D to 3-D models versus the core 
magnetic permeability for different air gap thicknesses. 

For each series of subproblems, the convergence of the 
solution depends on the extension of the subdomains. 
The more extended the subdomains are, the faster the 
convergence is. At the limit, if the successive subdomains 
progressively cover the complete domain, no iterations 
are needed. This paper focuses on the practical aspects of 
the method, mainly the surface sources that can appear in 
perturbation FE analyses from 1-D to 3-D. A detailed 
study of the convergence is out of the scope of this 
preliminary paper. 

VI. CONCLUSIONS 

The developed perturbation FE method allows to split 
magnetic circuit analyses into subproblems of lower 
complexity with regard to meshing operations and 
computational aspects. A natural progression from simple 
to more elaborate models, from 1-D to 3-D geometries, is 
thus possible, while quantifying the gain given by each 
model refinement and justifying its utility. Approximate 
problems with ideal flux tubes are accurately corrected 

when accounting for leakage fluxes via surface sources 
of perturbations. The constraints involved in the 
subproblems have been carefully defined in the resulting 
FE formulations, respecting their inherent strong and 
weak nature. As a result, an efficient and accurate 
computation of local fields and global quantities, i.e. flux, 
MMF, reluctance, is obtained. The method is naturally 
adapted to parameterized analyses on geometrical and 
material data. 

Further work is in progress for defining additional 
types of subproblems, e.g. to apply successive 
perturbations accounting for nonlinear and eddy current 
models. An adaptation of the domain of each subproblem 
has to be also studied, together with its effect on the 
convergence of the complete solution. 
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