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Introduction

Accurate description of minor hysteresis loops is
important from engineering point of view. There is a number
of available descriptions of ferromagnetic hysteresis [1]. In
the paper the issue was considered for a hybrid model
combining ideas included in the Jiles-Atherton description
[2] and the product Preisach model [3-5]. The sample
material was a state-of-the-art core material:  micro-
crystalline non-oriented 6,5 % wt. Si steel produced by JFE
Steel Corporation [6,7].

The modified Jiles-Atherton model

The Jiles-Atherton description was developed on
physical premises concerning domain wall motion within the
ferromagnetic material. In the present paper the model
equations were slightly modified to address the issue of
description of reversible magnetization processes. The
modifed approach helps to explain the ambiguities in the
description noticed by some model users [8], including the
model authors themselves [9,10]. The problems with the
correct description of reversibility in the context of another
hysteresis model are also discussed elsewhere [11,12].

In the paper the issue has been addressed borrowing
the idea introduced originally in the product Preisach model
[3-5]. It is assumed that the total susceptibility may be
expressed as the sum of irreversible and reverisble
contributions, modulated with a function dependent on the
level of magnetization. The assumed form of the function is

R(m):l—mz,where m is the relative magnetization,
m=Mqp /Mg (Mpp is the magnetization of a symmetric
minor loop tip, whereas Ms is saturation magnetization).

dm dM

The irreversible differential susceptibility may be derived
from the basic model JA equation:
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where the effective field H is given as H. = H + a M, Mg,
and M, are the anhysteretic and irreversible magnetization,
respectively, § is the sign of dH/dt (for the simple model) or
dB/dt (for the inverse model), k is one of model parameters,
whereas dy is introduced to remove negative differential
susceptibilities after a field reversal [13]
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It is assumed that the anhysteretic magnetization is given
with the Brillouin function, where J =1 [14]:
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The value of new parameter g related to reversible
properties of the examined material may be easily
recovered from a low amplitude minor loop using the
Rayleigh model equation, cf. Fig. 1:
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Fig.1. Determination of value of parameter £ from a minor loop

The modified model has five parameters: «, 5, a, k and M;.
Their values may be determined using the robust “branch-
and-bound” estimation algorithm, described in detail in [15].
The idea behind the estimation method is basically the
same as in the well-known fixed point method [16,17],
applied simultaneously in five dimensions. The bounds for
model parameters were similar to those discussed
previously [15, 18]. The estimate of parameter S obtained
from the Rayleigh model was allowed to vary within the
bounds % 10 % to take into account the possible effect of
measurement noise.

The model equations were transformed to the following
form, appropriate for the determination of M and H under
the conditions of sine-B excitation, required by IEC 404-3
standard [19]:

(5)
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It was found that the following set of model parameters can
yield a modelled major hysteresis loop, which reasonably
well approximates the measured one: « =1,6 x 10° [-],
a = 112 [A/m], 8 = 6,9 x 10* [H/m], k = 27,9 [A/m],
M, = 1,28 x 10° [A/m], cf. Fig. 2.
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Fig.2. Measured and modelled quasi-static hysteresis loops for
6,5 % wt. Si NO steel sheet. Dotted line at B, = 1,1 [T] denotes
symbolically the border between two regions of different prevalent
magnetization mechanisms

The fitness function was defined as the sum of squared
errors in a number of measurement points belonging to the
major loop. The number of data points used (801) was
redundant compared to the problem dimension (5) in order
to diminish the possible influence of measurement errors.
Figure 3 presents the evolution of fithess value during
estimation. The final fitness value after 40 iterations was
1,15 x 10" [ (A/m)?].
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Fig.3. The evolution of fitness value during estimation of model
parameters for 6,5 % wt. Si NO steel sheet

The measurements were carried out using Single Sheet
Tester on a computer-aided laboratory stand, which fulfilled
all the requirements of IEC 60404-3 [20,21].

Minor loops in quasi-static conditions

It was found, that modelling of minor loops with the same
values of model parameters as for the major loop resulted
in discrepancies between the modelled and the measured
loops. Therefore it was assumed, that the model
parameters a and k referred to their major loop values could
be expressed as the functions of relative magnetization
level. The values of scaling coefficients were found using
the “branch-and-bound” algorithm and log-log fitting of the
expected functional dependencies for those values of B
excitation, where the domain wall movement was expected
to dominate, cf. Fig. 2.

In order to demonstrate the validity of the proposed
approach in Figs. 6-7 exemplary modelling results are
depicted. The values of the parameters were updated
according  to aginor = €Xp(0,2) X angjor X (Brinor/ 1,3) 9 [A/m]
and Kinor = €Xp(-0,02) X Kiajor X (Brinor / 1,3) 075 [A/m].

For comparison in Figure 6 a minor loop obtained for the
uncorrected set of model parameters is shown.
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Fig.5. Variation of parameter a for minor loops
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Fig.6. Exemplary modeling results: dots — measurement points,
solid line — modelled loop with updated parameters, dotted line
— modelled loop with the same parameters as for the major loop
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Fig.7. Exemplary modeling results: dots — measurement points,
solid line — modelled loop with updated parameters



Conclusions

In the paper an approach allowing for an accurate
modelling minor hysteresis loops under quasi-static
conditions was presented. For the description of hysteresis
phenomenon a model combining Jiles-Atherton approach
and product Preisach model was used. The modelling
strategy consisted in making two of model parameters
dependent on relative magnetization level. The modelling
results were compared to experimental data for the state-of-
the-art core material — microcrystalline high silicon steel. It
can be stated that satisfactory agreement between the
measured and the modelled symmetric hysteresis loops
was obtained.

Future work shall focus on coupling the developed
model with a behavioural description of rate-dependent
dynamic effects [22] within the FE framework to predict the
dynamic behaviour of magnetic materials under increased
excitation frequency.
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