
HAL Id: hal-00359386
https://hal.science/hal-00359386

Submitted on 24 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A “Logic-Constrained” Knapsack Formulation and a
Tabu Algorithm for the Daily Photograph Scheduling of

an Earth Observation Satellite
Michel Vasquez, Jin-Kao Hao

To cite this version:
Michel Vasquez, Jin-Kao Hao. A “Logic-Constrained” Knapsack Formulation and a Tabu Algorithm
for the Daily Photograph Scheduling of an Earth Observation Satellite. Computational Optimization
and Applications, 2001, 20 (2), pp.137-157. �hal-00359386�

https://hal.science/hal-00359386
https://hal.archives-ouvertes.fr

A "Logic-Constrained" Knapsack Formulation
and a Tabu Algorithm for the Daily Photograph
Scheduling of an Earth Observation Satellite

MICHEL VASQUEZ Miche 1. Vasquez@s i te-eerie .ema.f r

Ecole des Mines d'Alès, Parc Scient{fique G. Besse, F-30035 Nîmes

JIN-KAOHAO Jin-Kao.Hao@univ-angers.fr
Université d'Angers, 2 Bd Lavoisier, F -49045 Angers Cedex Of, France

Abstract. The daily photograph scheduling problem of earth observation satellites such as Spot 5 consists of
scheduling a subset of mono or stereo photographs from a given set of candidates to different cameras. The
scheduling must maximize a profit function while satisfyîng a large number of constraints. In this paper, we
first present a formulation of the problem as a generalized version of the well-known knapsack mode!, which
includes large numbers of bînary and ternary "logical" constraints. We then develop a tabu search algorithm
which integrates some important features includîng an efficient neîghborhood, a dynamic tabu tenure mechanism,
techniques for constraint handling, intensification and diversification. Extensive experiments on a set of large and
realistic benchmark instances show the effectiveness of this approach.

Keywords: tabu search, heuristics, satellite photograph scheduling, multidimensiona! knapsack, constraîned
combinatorial optimization

1. Introduction

The daily photograph scheduling problem (DPSP) is one of the key applications for an earih
observation salellite such as Spot 5. The main purpose of the DPSP is to schedule a subset
of photographs from a set of candidate photographs which will be effectively taken by the
satellite. The resulting subset of photographs must satisfy a large number of imperative
constraints of different types and at the same time maximize a given profit function.

The profit function reflects several criteria such as client importance, demand urgency,

meteorological forecasts and so on. The constraints include both physical constraints such

as the recording capacity on board of the satellite and logic constraints such as non over

lapping trials and meeting the minimal transition time between two successive trials on the

same camera.

This problem is also important and interesting from a complexity point of view. Indeed,

it can be modeled as a generalized Knapsack problem, which is known to be NP-bard. So

far, several methods have been proposed to tackle this problem. These methods include

exact algorithms based on Branch and Bound techniques l 17], integer linear programming

with CPLEX and constraint programming with the !LOG solver [12[as well as heuristics

based on greedy fonctions, simulated annealing and tabu search [2_].
The goal of this paper is two fold. First, we introduce a new formulation of the DPSP

using the well-known 0/1 knapsack model. Second, we develop an original and effective
tabu search (TS) algorithm based on this formulation. This TS algorithm includes a set
of important features including an efficient neighborhood, an incremental technique for
move evaluation, a mechanisrn for dynamic tabu tenure, constraint handling techniques,
and mechanisms for intensification and diversification.

This algorithm is extensively evaluated on a set of large and realistic instances provided
by the French National Space Agency CNES (Centre National d'Etudes Spatiales). Exper

irnental results show the effectiveness of this algorithm both in terms of solution quality
and speed of execution. Indeed, the algorithm easily obtains the previously best known
results for these instances. More importantly, it produces much better solutions for the
most difficult instances with very reasonable computing times.

The paper is organized as follows, in the next section, the DPSP is described and modeled.
Section 3 presents the details of the TS algorithm. Numerical results and comparisons are
presented in Section 4. Implications are discussed in Section 5 and Section 6 concludes the
paper.

2. Photograph daily scheduling problem (DPSP)

2.1. Problem dejinition

The photograph daily scheduling problem can be informally described as follows [1].

Prohlem Components

• A set P = {pi, p2, ... , p
11 } of candidate photographs, mono or stereo, which can be

scheduled to be taken on the "next day" under appropriate conditions of the satellite
trajectory and oblique viewing capability.

• A "profit" associated with each photograph Pi, which is the result of the aggregation of
several criteria such as client importance, demand urgency, meteorological forecasts and
so on,

• A "size" associated with each photograph Pi, which represents the amount of memory
required to record Pi when it is taken.

• A set of possibilities associated with each photograph Pi in P corresponding to the
different ways to take Pi : 1) for a mono Pi, there are three possibilities because a mono
photograph can be taken by any of the three cameras (front, middle and rear) on the
satellite and 2) for a stereo Pi, there is one single possibility because a stereo photograph

requires simultaneously the front and the rear camera.
• A set of imperative bard constraints, which must be satisfied:

1. any two trials must not overlap and the minimal transition time between two succes

sive photographs on the same camera must be met;

2. limitations on the instantaneous data flow through the satellite telemetry resulting
from simultaneous photographs on different cameras;

3. capacity constraint: the recording capacity on board must not be exceeded.

Problem Objective

The DPSP is to find a subset P' of P which satisfies all the imperative constraints and
maximizes the sum of the profits of the photographs in P'. Thus, the goal is to maximize
the total value of the items (photographs) packed in the "knapsack," subject to the constraint
that the total size of all the packed items does not exceed the knapsack capacity (constraint 3)
and subject to other "logical constraints" (constraints 1 and 2 above). The DPSP is therefore
a constrained combinatorial optimization problern.

In practice, the number of photographs in P may be quite large (up to 1057 for the
largest instance we tested), implying a huge search space. Moreover, the presence of a
large number of hard constraints (up to tens of thousands) makes the problem difficult to
solve.

2. 2. Problem formulation

2.2.1. Representing a schedule. Let P be the set of candidate photographs and n = 1 P 1-
With each mono photograph Pi in P, we associate three pairs of elements (p;, camera_l),
(pi, camera_2), (Pi, camera_3). Similarly, with each stereo photograph Pi in P, we associate
one pair (Pt, camera_13). Letting n 1 and n2 be respectively the number of mono and stereo
photographs in P(n = ni + n2), there are in total m = 3 * n 1 + n2 possible pairs of
elements for the given set P of candidates. Now, associating a binary (decision) variable
xi with each such pair, a photograph schedule corresponds to a binary vector:

where x1 = l if the corresponding pair (photo, camera) is present in the schedule, and
x; = 0 otherwise.

For example, if P = {p1, p2, p3) where p 1 and p2 are mono photographs and p3 is a
stereo photograph, then x = (1, 0, 0, 0, 0, 0, l) represents a schedule in which p 1 is taken
by camera 1, p2 is rejected and p3 is taken by cameras 1 and 3. (Remember that a stereo
photograph requires the front and the rear cameras simultaneously.)

2.2.2. Evaluation of a schedule. Define the profit of a pair (p, camera) (or its 0-1 variable)
to be the profit of the photograph p. The total profit of al! the pairs of the given set P is
then represented by a vector:

g = (g,, gz, • • •, gm)

where gi = g; (i # j) if gi and g.i cmTespond to two different pairs of elements involving
the same photograph p, i.e. (p, camera_x) and (p, camera_y).

Then the total profit value of a schedule x = (x 1, x2, ... , Xm) is the surn of the profits of
the photographs in s, i.e.

f(x) = L g; -x;
lsism

2.2.3. Constraints

• Capacity constraint

Define the size of a pair (p, camera) (or its 0-1 variable) as the size of the photograph p.

The total size of all the pairs of the given set P is then represented by a vector:

where ci = cj (i f. j) if ci and Cj correspond to two different pairs of elements involving
the same photograph p, i.e. (p, camera_x) and (p, camera_y).

The capacity constraint states that the sum of the sizes of the photographs in a sched
ule x = (xi, Xz, ... , Xm) cannot exceed the maximal recording capacity on board. This
constraint is easily expressed as a knapsack constraint:

L Ci · Xi :5: Ma:ccapacity
1:::ë_iSm

• Binary constraints

The constraints involving the non overlapping of two trials and the minimal transition time
between two successive trials of a camera, and also some constraints involving limitations
on instantaneous data flow are conveniently expressed by simple relations over two pairs
(photo, camera). Such a binary constraint corresponds to forbidding the simultaneous
presence of a pair (p;, ki) and another pair (P.i, k.i) in a schedule. If Xi and x,1 are the
corresponding decision variables of such two pairs, then a binary constraint is defined as
follows:

Let C2 denote the set of ail such pairs (x;, x j) which should verify the above binary con
straint.

• Ternary constraints

Sorne constraints involving limitations on instantaneous data flow cannot be expressed in the
form ofbinary constraints as above. These rernaining constraints may however be expressed
by relations over three pairs (photo, camera). Such a ternary constraint corresponds to
forbidding the simultaneous presence ofthree pairs (p;, k;), (pj, kj), and (p 1, k 1). Letting
xi, x j and x 1 be the decision variables corresponding to these pairs, then such a ternary

constraint is written:

x1+xj+x1::;2

Let C3_1 denote the set of all such triplets (x,, Xj, x1) which should verify this ternary
constraint.

Finally, we need to be sure that a schedule contains no more than one pair from { (p, ki),
(p, kj), (p, k 1)) for any (mono) photograph p. Letting x1, Xj and x 1 be the decision vari
ables corresponding to these pairs, then this (ternary) constraint is expressed as:

Clearly there are exactly ni ternary constraints ofthis type. Let C3_2 denote the set of ail
such triplets (xi, Xj, x1) which verify this second type of ternary constraints. Use C3 to
denote the union of C3_] and C3_2, i.e. C3 = C3_] U C3_2.

2.2.4. Final mode/. Now the DPSP can be formally stated as the following generalized
0/1 Knapsack problem:

Max.f(x) = L g, · x,
1::':::.i-:Sm

where X = (x,' X2, ... , Xm) E (0, 1 lm and g = (g,, g2, ... , g,n) E z+m

subject to

1) Î:J<i<m Ci· Xi ::'S Max_capacity with Max_capacity E z+ and
C =-(Ci , C2, ... , Cm) E z+m

2) V(Xt,Xj) E C2,x1 +xj :" 1
3) V(xt,Xj,Xk) E C3_1,x, +xi +x, :" 2
4) V(x,, Xj, x,) E C3-2, x, + Xj + x, :" 1

This formulation is a special instance of the multidimensional knapsack problem (MKP)
[14]. However, let us point out a notable difference. While the constraints in a MKP
are ail "knapsack constraints" like Eq. (1), the formulation above has a single "knapsack
constraint" and three types of "logic constraints" like Eqs. (2-4). Moreover, while the
number of constraints in a MKP is rarely large (for instance, well-known benchmark prob
lems have at most 30 constraints), the number of logic constraints may be very high (up to
36000 for some solved instances). Therefore, special techniques are needed for handling
these constraints in an effective way.

3. A TS algorithm for DPSP

3.1. Revie>v ofTS

This section gives a brief review of Tabu Search, emphasizing the most important features
which have been implemented in our TS algorithm. For a comprehensive presentation of
TS, the reader is invited to consul! the recent book by Glover and Laguna [9].

Tabu Search is a meta-heuristic designed for tackling hard combinatorial optirnization

problems. Contrary to randomizing approaches such as SA where randornness is extensiveJy

used, TS is based on the belief that intelligent searching should embrace more systematic
forrns of guidance which are based on adaptive mernory and learning.

TS can be described as a forrn of neighborhood search with a set of critical and comple

mentary components. For a given instance of an optimization problem (S, f) characterized

by a search space S and an objective fonction f, a neighborhood N is first introduced to

associate, for each sin S, a non-ernpty subset N(s) of S. A typical TS algorithrn begins

then with an initial configuration s in S and then proceeds repeatedly to visit a series of
locaJly best configurations fol!owing the neighborhood function. At each iteration, one of

the best neighbors s' E N(s) is sought to replace the current configuration even ifs' does

not improve the current configuration in terms of the cost fonction. To avoid the problem of

possible cyc!ing and to allow the search to go beyond local optima, TS introduces the notion

of tabu list, which is a foundation for the sh01i term memory component of the method.
A tabu list rnaintains a selective history H, composed of previously encountered solutions

or, more generally, pertinent attributes of such solutions. A simple TS strategy based on
this short term rnemory H consists in preventing solutions of H from being reconsidered

for the next k iterations, called the tabu tenure. The tabu tenure can vary for different
attributes, and in general is problem dependent. At each iteration, TS searches for a best

neighbor frorn this dynamically modified neighborhood N(H, s), instead of N(s) itself.
Such a strategy prevents the search from being trapped in sh01i terrn cycling and imparts

rigor to the search.

By means of the tabu restriction mediated by this memory, some non-visited, yet inter

esting solutions may be prevented from being considered. Accordingly, aspiration criteria
are introduced to overcome this problem. A simple and widely used aspiration criterion

consists of removing a tabu classification from a rnove when the move leads to a solution

better !han the best obtained so far.
1\vo other important ingredients of TS are intensification and diversification [9]. Inten

sification consists in focusing the search to exploit regions of the space, or characteristics

of solutions, that the search history suggests are promising. For example, it may be applied

to seek improved solutions by incorporating "good attributes" of previously encountered

solutions. On the other band, diversification undertakes to explore regions that differ in

significant respects from regions previously visited.

3.2. Components of the TS algorithm

3.2.1. Unconstrained and constrained search space

Definition 1. The unconstrained search .'Jpace S is composed of all binary vectors of

m elernents:

S = { (x,, X2, . . . , x,,,) E {O, I)"')

The size of S may become huge for high values of m. For some instances we solved, the

value of m can be as large as 2355, implying a search space of 22355
. However, a solution

must verify lhe constraints defined by Eqs. (1)-(4) and thus belongs to a constrained space.
This leads to the following definition.

Dejinition 2. The totally constrained search ,space X is composed of all binary vectors of
m elements, satisfying the "knapsack constraint" and the "logic constraints," i.e.

X = {s E S I s satis fies ail the constraints defined by Eqs. (1)-(4)} 1

ln general, an algorithm may work with either Sor X. It is equally possible for an a}gorithm
to work with an interrnediary space where some constraints are relaxed. lt is this last
approach which is adopted in this work. For this purpose, we define a partially constrained
search space C where the knapsack constraint (Eq. (1)) is relaxed.

De finition 3. The partially constrained search space C is cornposed of all binary vectors
of m elements, satisfying the "logic constraints," i.e.

C = { s E S I s verifies the Jogic constraints defined by Eqs. (2)-(4)}

Note that not all the configurations in C are equally interesting. For example, s = (0, 0,
... , 0) is trivially in C but far from any global optimum. The following definition identifies
a subset of C which is particularly interesting from the point of view of the profit fonction.

De.finition 4. The saturated partially constrained search space M is a subset of C such
that:

M = {s E C I V(xi = 0) E s, setting Xi = I violates some binary or ternary
constraints defined by Eqs. (2) and (3)}

Thus a configuration s E C is saturated when no more pair (photo, camera) can be added
without violating some logic constraints.

The saturated set M is similar to the notions of "critical events" 18] and "promising
zones" [11] developed for the MKP. The principle here is that the TS algorithm will search
for its solutions in the partial ly constrained search space C and try to stay at the frontier of
this saturated (promising) area.

3.3.2. Neighborhood and move. We introduce now the neighborhoodfunction Nover the
partiaily constrained search space C. More precisely, this tll.nction N: C -+ (2c - 0) is
defined as follows.

Lets = (xi, x2, ... , x111) E C and s' = (x;, x�, ... , x;), then s' is a neighbor of s, i.e.
s' E N (s), if and only if the following conditions are verified:

1) 3 ! ; such thatx; = Oanctx;
= 1 (1 Si Sm)

2) for the above i, V(x;, Xj) E C2, x; = 0 (1 S j Sm)
3) forthe abovei,V(x;,Xj,Xk)EC3_1,x;+x; S 1 (1 :,j,k:,m)

Thus, a neighbor of s can be obtained by adding a pair (photo, camera) (flipping a variable X;

from O to 1) in the current schedule and then dropping some pairs (photo, camera) (flipping
some x j from 1 to 0) to repair binary and ternary constraint violations. Consequently, a move
mv to obtain a neighbor s' from a configurations = (xi, x2, x3, ... , Xm) is characterized
by a series of flipping operations:

xi from O to 1

XJ from 1 to 0

x, from 1 toO

where x; ... xk are variables linked to Xi by a binary or ternary constraint. We use mv(i) =
(xi : 0 ----fr- 1, Xj ... xk : 1 ---:>- 0) to denote such a move.

The repair of a violation of a binary constraint (x;, x j) E C2 is a simple operation:
it sufficies to set xf, to O in s' (xj = l in s). Repairing a ternary constraint violation
(x;, XJ, Xk) E C3 is.more complex since there are different ways to proceed. For example,
one may set either xj or x{ to Oin s 1 randomly or according to some criteria, one may set
both xj and xf to O and so on. More details on this topic are discussed later (Section 5.3).

It should be clear that from a configurations =
(xi, x2, ... , Xm), the number of possi

ble moves equals the number of variables in s having value O. Letting Z = {x1 Es I s =
(x 1, x2, ••• , xm) and x, = 0), then N (s) has exactly IZI neighboring configurations.

Note that similar neighborhoods based on adding-dropping have been used in many
heuristic algorithms for MKP [3-6, 8, 11, 13]. However, one difference remains that con
cerns the repair operation after adding an element; constraint repairing here is much simpler
since it concerns only binary and ternary logic constraints.

3.3.3. Incremental evaluation of the neighborhood. TS uses an aggressive search strategy
to exploit its neighborhood, i.e. at each iteration, the TS algorithm examines the value f(s')
for each candidate neighbor s' E N (s) and chooses one that has the best value. In order to
do this in an efficient way, we use an incremental evaluation technique. The main idea
is to keep in a special data structure O the move value for each possible move (neighbor)
of the cun-ent configuration. Thus ifs' = s + mv(i), then o(i) is equal to the difference
f(s') - f(s). Each time a move is carried out, the elements of this data structure affected
by the move are updated accordingly.

Since the number of possible moves for each configuration is defined by I Z 1 (1 Z I S m),
the data structure O can be implemented with a vector of m elements: 8(i) gives the move
value f(s) - f(s') if the con-esponding move mv(i) is carried out. The vector can be
initialized at the beginning of the search and updated after a move in time O(IC2_i 1 + IC3_i 1)
where C2_i and C3_i are subsets of the sets of binary and ternary logic constraints (see
Section 2.2) involving the element x;. Searching for a best move within 8 requires time O (m).

3.3.4. Tabu list management. The role of a tabu list is to prevent the search from short-terrn
cycling (x;: 1-+ 0 ➔ 1 ➔ 0 · · ·). Remember that a move mv(i) = (x;: 0 ➔ l, x.i ... Xq:

I ➔ 0) consists in flipping x, from O to 1 and flipping then x .i, . . . , x
q

from 1 to O (to repair

constraint violations). Each tirne such a move is carried out, the moves mv(j) = (xj
0 ➔ 1, , , ,) , , , mv(q) = (x

q
: 0 ➔ 1, , , ,) are classified tabu during some iterations (tabu

tenure), forbidding to reset any of Xj,,,,, Xq from 0 to L The number of iterations k(t)

during which a move mv(t) (t = j , , , q) is classified tabu is dynamically defined as follows:

k(t) = C(t) + a x FREQ(t)

where C (t) is the number ofbinary and ternary constraints involving the elementx,, FREQ(t)
the number of times xr is flipped frorn l to O from the beginning of the search, and
a = (L

1
<i<m C(i))/ m reflecting the hardness of an instance in terms of logic constraints.

Therefore� the tabu tenure of a move depends on two factors: the number of constraints
containing the variable of the move and the flipping frequency of the variable.

The idea for the first part of the fonction C(t) is the following, A variable involved in
a large number of constraints bas naturally more risk to be flipped during a move than a
variable having few constraints on it. It is thus logic to give a longer tabu tenure for a move
whose variable has many constraints on it. Therefore, each time x1 is flipped from l to 0,
x1 cannot be reset to 1 until at least C(t) iterations have been realized. Similarly, a move
concerning a variable involved in a low number of constraints is given shorter tabu tenure.

The second part of the function is dynamic and proportional to the flipping frequency of
the variable x1 (from 1 to 0). The basic idea is to penalize a move which repeats too often.
The coefficient ais instance-dependent and defines a penalty factor for each move. For the
instances we solved, the values of a vary from 10 to 30.

At this stage, let us notice that FREQ(t) is the essential part in the above tabu tenure
function. Other frequency-based tabu tenures are also possible. For instance, the following
ones have been experimented.

k2(t) = FREQ(t)

k3(t) = a x FREQ(t) (ais a constant)

k4(t) = C(t) + FREQ(t)

In practice, we observe that all these formulae lead to comparable results in term of quality
of the solutions found. However, according to the formula used, the resolution time may be
quite different. lndeed, for a same solution quality, the search using formula k(t) requires
in general much shorter tirne.

It should now be clear that using the frequency of a move to tune the tabu tenure of the
move may be considered as a general princîple and thus applicable to other problems.

Finally, in orderto implernent the tabu list, a vector T of m elements is used. As suggested
in [9], each element T(i) (1 :S; :Sm) records k(i) + iter, instead of k(i) where iter is the
current number of iterations. In this way, it is very easy to know if a mv(i) is tabu or not at
iteration): if T(i) > j, mv(i) is a forbidden move; otherwise, mv(i) is a possible move,

3.3.5. Aspiration criteria. The tabu status of a rnove mv(i) is canceled if one of the two
conditions (two-level aspiration criteria) below is verified.

1) if the move mv(i) leads to a configurations strictly better than the best configuration s*
found so far, i.e. /(s) > f(s*) even ifs requires more memory,

2) if the move mv(i) leads to a configurations of the sarne quality buts occupies Jess
memory, i.e. f(s) = f(s*) and L

i ::::i:sm ci· Xi < L
i ::::i:sm c; · xt.

3.3.6. Heuristics for carrying out a move. Lets be the current configuration at a given
iteration. Let M be the set of candidate moves from s, i.e. the moves which are not
forbidden by the tabu list and the moves which verifies the aspiration criteria. Now, ail the
best moves (i.e. those having the highest 8(i) values) are identified and then one of them
is chosen at random. Once such a move is determined, a best neighbor s' of s is obtained
(s' = s + mv(i)). Before moving to the next iteration, corresponding data structures such
as T (tabu list) and 8 (table of move values) are updated accordingly.

3.3. 7. Intensification and diversification. The tabu mechanism may lead to a state where
no move is admissible. This occurs when each possible move has been tried a large number of
times without improving the best configuration found. When this happens, an intensification
phase will be started.

The intensification used by the algorithm is based on a heuristic using long-term infor
mation: if an element is present in a large number of good configurations, then it is highly
possible that this elernent is part of an optimal configuration. Heuristics of this kind are
presented in [9] and used by many TS algorithms.

To implement this heuristic, the algorithm uses a vector ker* of m elements ker* =
(k,, k2, ...• k,,,) to collect high frequency elements. This vector is updated dynamically.
following one of the two ways below.

• Each time the algorithrn finds a configurations= (x1, x2, ... , x111) giving the same profit as
the best one found, i.e. f (s) = .f"', ker' is updated as follows: ker' = (x 1 • k 1• x2 · k2 • . . . ,

Xm · k111).
• Each time the algorithm finds a configurations= (x1, x2, . .. , x11i) having a better profit

than the best one found, i.e. f (s) > f*, ker* is reset to s, i.e. ker* = s.

From the vector ker*, we construct the search space / (for intensification) of indices of
ker' in the following way. Let To_l be the set of indices of ker' that are equal to l and
To_O those equal to O. Then the set / _ç To_O contains such indices of elements that the
flipping of these elements does not affect the elements of To_ 1 even after repairing the logic
constraints. The set l corresponds thus to regions of the search space where the elements of
ker* are fixed. During an intensification phase, the algorithm mns on the set / and from the
initial configuration sü = ker*. In this way, the intensification forces the search to exploit
exclusively the areas around the kerne1 ker*.

However, it is possible that ker" corresponds to a set of configurations trapped in a local
optimum. lt is for this reason that the algorithm builds dynarnically another set D (for
diversification) which collects the indices of elernents having a flipping frequency lower
than the average. Thus the set D corresponds to less visited regions of the search space.
During a diversification phase, the algorithm runs exclusively on the set D and from the

initial configuration sO = O. In this way, the diversification drives the search to explore
areas that are either new or have not been visited very often.

3.3.8. Relaxation of the capacity constraint. During the search, the capacity (knapsack)
constraint may be violated by the current configurations= (x1, x2, ... , xm), i.e., the total
size of s may exceed the maximal allowed capacity CL

i
::J:sm c 1 • Xi > Max_capacity). To

satisfy the capacity constraint, the following mechanism is devised. Each time the current
configuration is improved, the capacity constraint is checked. If the constraint is violated, the
configuration is irnmediately repaired by suppressing the elements Xi which have the worst
ratio gi /ci until the capacity constraint is satisfied, i.e. L l:é.i:'Sm c; · Xi � Max_capacity.

Note that since we have only one knapsack constraint, the relaxation handling is much
simpler compared with the techniques used for the MKP 18, 10, 11, 15]. lndeed, for the
MKP, one must decide how many and which knapsack constraints are to be relaxed. Non
trivial special techniques are also needed to deal with the relaxed constraints.

3.3.9. General algorithm. The TS algorithm follows a general schema composed of three
iterative phases: exploration, intensification and diversification. The skeleton of the TS
algorithm is given below.

General TS search alqorithm

s = (0 ... 0)

repeat the following steps

1. Expolation:

search over all the elements of the partially constrained space C

(Section 3.2) whenever a non tabu move exists

compute the set I and the set D (Section 3. 3. 7)

reset tabu list

set s = ker* /* ker* is constructed during the search */

go to Intensification

2. Intensification:

search over the elements of the restricted space I (Section 3. 3. 7) whenever

a non tabu move exists

reset tabu list

set s = {O ... 0)

go to Diversification

3. Diversification:

search over the elements of the restricted space D (Section 3. 3. 7) whenever

a non tabu move exists

reset tabu list

set s = best solution found during this diversification step

go ta Exploration

(Continued on nexl page.)

(Continued).
TS search engine

1. Let s and s* be respectively the current and the best configurations;

2. Let M(S) be the set of candidate moves from S (M(S) induces a particular

search space C, I or D, see Section 3. 3. 6)

3. while :3 possible moves in M(S} do

choose a bes t move mv(i) {break ties randomly} (c. f. Section 3 . 3 . 3, Section 3 . 3. 6}

s' :c s + mv(i};

s = s';

update tabu list T and table of move values 8; (c. f. Section 3. 3 . 3, Section 3. 3. 4)

update ker*; (c.f. Section 3.3.6)

handle (relaxed} capacity constraint

if s is better than s* then s * = s;

(c. f. Section 3 .3. 8)

The general stop condition is defined by a maximum number of iterations allowed. The

algorithm returns the best solutions* found during the search. An alternative condition can
be used to stop the algorithm when a given value of the profit fonction is reached.

The different phases (exploration, intensification and diversification) use the same tabu
search engine (with different search spaces C, / and D). Each phase is triggered and stopped

automatically by the tabu list management (Section 3.3.4), i.e. whenever no more moves
are admissible. This is particularly the case for intensification and diversification. This app
roach is quite different from previous work on MKP where the rhythm of intensification
and diversification phases are controlled by some supplementary parameters [8, 10, l l].
Finally, it should be noted that the tabu list management is claimed to be dynamic, however,
in a different meaning than that described e.g. in [4].

4. Experimentation and results

4.1. Test data

Experiments are carried out on a set of 20 realistic instances2 provided by the French
National Space Agency CNES and described in details in [l]. We sketch here only some
main characteristics of these instances.

These instances belong to two different sets: without capacity constraint (l3 instances)
and with capacity constraint (7 instances).

l) Set No. 1 (without capacity constraint): The first set includes l 3 instances having 67

to 364 candidate photographs, giving up to 809 binary variables and 14175 constraints.
2) Set No. 2 (with capacity constraint): The second set includes 7 instances having 209 to

1057 candidate photographs, giving up to 2355 binary variables and 35933 constraints.

For the instances of the first set, the optima are known thanks to two exact algorithrns:
a CPLEX commercial software using an ILP formulation and a non-standard Branch and
Bo und algorithm using a Valued Constraint Satisfaction Problem (VCSP) formulation [17].

For the instances of the second set, existing exact algorithms are unable to solve optimally

these instances except the smallest one, due to the existence of the capacity constraint and
the large size. For these instances, only sub-optimal solutions are known, which have been
obtained by another tabu search algorithm [2].

4.2. Experimental settings

Our TS algorithm is programmed in C, and compiled using VisualC++ on a PC running

Windows NT (32 MB RAM, 200 MHz). To obtain our computational results, the TS algo

rithm is run 100 times on each instance with different random seeds. Two stop conditions

are used, when a given profit value is reached or when a gîven maximum number of itera

tions are realized. The tabu tenure is managed dynamically and automatically according to

the formula given in Section 3.3.4.

4.3. Results on instances without capacity constraint

Sin ce the optima are known for this set of instances, the algorithm is stopped when a solution
of an optimal profit value is found. We wish to know whether our algorithm is able to find

the optimal solutions for the instances in this set. Table 1 shows the results of the TS

algorithm on these instances.
For each instance, the following information is given. The first 4 columns give the name

of the instance, the number of candidate photographs n in P, the number of 0/ 1 variables

Table 1. Results on instances without capacity constraint.

No. of photos

Best Average prefor. selected Similarity
Distinct

Pb. " m opt. profit iter iter time(s) max. min. max. min. solution

54 67 [25 70 70 7[280 45 45 45 29 63

29 82 120 [2032 12032 35 8[34 34 34 [8 97

42 190 304 [08067 [08067 llO 29[80 80 76 38 [00

28 230 346 56053 56053 88 1296 47 46 46 7 95

5 309 809 115 [[5 256 26007 7 96 93 7[15 [00

404 100 158 49 49 36 596 33 31 31 15 [00

408 200 328 3082 3082 684 8479 63 60 52 23 100

412 300 544 16102 16102 831 33278 5 79 77 67 23 100

li 364 692 22120 22120 1540 133889 29 98 95 84 33 100

503 143 259 9096 9096 84 907 70 69 55 25 100

505 240 448 13100 13 IOO 910 25116 3 85 82 66 28 100

507 311 573 15137 15137 1885 97489 18 92 89 73 32 100

509 348 652 19125 [9125 2094 l04408 22 96 93 78 29 100

m and the known optimum. Columns 5-6 give the best (maximal) profit found by the
TS algorithm, the minimal number of iterations needed to find a solution of such a profit.
Columns 7-8 indicate the number of iterations and the running time needed to find a solution
averaged over l 00 runs.

Columns 9-10 indicate the maximal and minimal numbers of selected photographs among

100 solutions. Columns 11-12 show how similar these solutions are when they are compared
in pairs: the maximum and the minimum of the (100 * 99)/2 bit-wise comparisons are given.
The last column indicates the number of distinct solutions among the hundred solutions

found.
Thus the fifth line means that the instance called 28 has 230 mono and stereo candidates

corresponding to 346 binary variables and an optimal schedule has a profit of 56053. The

TS algorithm finds a solution of profit 56053 (optimal value) after 88 iterations (in average
1296 iterations and one second over 100 runs). Any schedule among 100 solutions found
contains al least 46 and at most 47 photographs. When the 100 schedules are compared in
pairs, at least 7 and at most 46 pairs (photo, camera) are shared by two schedules. Finally,
among (100 * 99)/2 possible pairs of schedules, 95% of them are different.

Now let us make several comments about these results. First, the TS algorithm is very effi
cient and robust for these instances. lndeed, for each instance and for each of 100 runs, the al
gorithm is able to find an optimal solution. (It is for this reason that only the average iterations
and cornputing times over 100 runs, but not the average profit are given in the table.)

Secondly, the TS algorithm is fast. Indeed, both the number of iterations and computing
lime needed to find an optimal solution are quite low (fewer than 140000 iterations for

29 seconds for the larges! instance). On average, the algorithm performs 3715 to 8372
iterations per second.

Thirdly, these instances seem highly constrained since only a small number of candidate
photographs are selected in an optimal solution (column 9-10). We observe also that

except for three instances, all the optimal solutions found (100 for each instance) are
different, though they share always a subset of pairs (photo, camera). This implies that
these instances probably have rnany optimal solutions, therefore are easy to solve.

4.4. Results for instances with capacity constraint

Contrary to the instances without capacity constraint, no optimal solutions are known for
this set of instances except for the smallest one. Only sub-optimal ones are available, the
best of them being produced by another TS algorithm developed by the CNES (we discuss
this algorithm later in Section 5.1).

To solve an instance, our TS algorithm is allowed to run 9 million iterations. This
corresponds to about one hour of computing time for the largest instance (del a y considered
reasonable by the CNES and used by the TS algorithm of the CNES). Once again, the TS

algorithm is run 100 times on each instance with different random seeds. Table 2 gives
the results of the TS algorithrn together with the best known results (sub-optirna) for these
instances.

For each instance, the following information is indicated. The first 3 columns have
the same meaning as for Table 1. Columns 4-5 show the profit and computing time

Table 2. Results on instances with capacity constraînL

Best known Best Average
Worst

Pb. n m profit tîme(s) profit iter* profit iter time(s) profit

1401 488 914 174058 846 176056 4690 !76055 547882 120 176053

1403 665 l 317 174137 1324 176137 177354 176134 816099 332 176133

1405 855 1815 !74174 1574 176!79 5191155 176175 1418907 1314 176171

1021 1057 2355 174238 2197 176246 8279411 176241 1707156 2422 176234

1502 209 61158'1
' 13 61158 235 61158 1067 61158

1504 605 1253 124238 1011 124243 !96064 !2424! 1092197 405 124239

(in seconds)3 of the best known solutions. Columns 6-7 give, for the best solution found

by our TS algorithm after l 00 runs, the profit value and the number of iterations needed

to find such a solution. Columns 8-10 show the avern.ged profit, number of iterations

and computing tirne over 100 runs. The last column gives the profit of the worst solution

found by the TS algorithm over 100 runs.

From the data in Table 2, we may make the following remarks. First, these instances are
much harder than those of the first set, essentially due to the large number of variables and

"logic constraints" (up to 2355 0/1 variable or 1057 integer variables, and more than 30 000
constraints). Secondly, ail the solutions (even the worst ones) produced by our TS algorithrn

improve on the best known results, both in terms of solution quality and speed of execution.

The quality irnprovernent is important, reaching a gain of more than 2000 units of the profit

fonction in most cases. Moreover, the computing time needed to obtain such a solution

satisfies by far the "one hour" constraint (40 minutes for the largest instance). Thirdly, the

TS algorithm seems very robust because the quality variations of the 100 solutions for each
instance remain small.

In order to see how difficult it is to reach a previously published best solution, another
experiment is carried out. We re-ran 100 times the algorithm on each instance and stopped

a run when the best known profit value is reached. Averaged results of this experiment is

reported in Table 3.

From this table, we sec that only one second upto a few minutes are needed to obtain the
previously best solutions. Compared with the previous computing times (Column 4), the

running times of our TS algorithm represent only a very smalt fraction (last Column).

Table 4 gives more information about the solutions found by indicating the maximal and

minimal numbers of selected photographs among 100 solutions, and the similarity between

these solutions.

From Table 4, we see that as for the instances without capacity constraint, these in
stances are also highly constrained. Indeed, only about one third to one half of candidate

photographs are selected in a solution. Once again, the solutions found for each instance
always share some elements (photo, camera), but the solutions are all ditferent. This implies

that these instances have probably many (sub-optimal) solutions for a given profit value.
This may be considered as an indicator that these results may be further improved.

Table 3. Effort to reach a previously best rcsulL

Pb.

1401

1403

1405

1021

1502

1504

1506

Cost

174058

174137

174174

174238

61158

124238

165244

Time(s)

4

30

39

49

196

TGhle 4. More information about solutions found.

No. of Photos

Pb. n m max. min.

1401 488 914 148 144

1403 665 1317 213 208

1405 855 1815 253 242

1021 1057 2355 318 300

1502 209 413 166 166

1504 605 1253 280 274

1506 940 2060 314 299

5. Discussions

5.1. Related work

Ratio best-known/TS

846

33!

52

55

13

21

10

Similarity

max. min.

127 40

170 65

189 71

225 82

114 69

188 102

221 95

Distinct solution

100

100

100

100

100

100

100

As mentioned before, both exact and non exact algorithms have been developed for the
DPSP. We describe here briefly two such algorithms: an exact algorithm called Pseudo
Dynamic Search (PDS) [17] and another TS algorithm developed by the CNES [2]. Let
us notice first both algorithrns are based on an integer formulation of the problem: each
variable represents a candidate photograph and is associated to a value domaîn of {0, 1, 2,
3} or {O, l 3} according to whether it is a mono or stereo photograph. A configuration in the
search space corresponds thus to a n-dimensional integer vector for a problem composed

of n candidate photographs.
The PDS algorithm is an hybridization of dynamic programming and Branch & Bound

(B&B) techniques. This algorithm consists in performing n searches (n being the number
of variables of the problem). each solving. with a depth first B&B, a sub-problem limited to
a subset of the n variables. Once a sub-problem is solved, its best profit value is recorded.
This value is then used later as a lower bound for another unsolved sub-problem. This
algorithm bas proven the optimality for the 13 instances without capacity constraint (but
failed for the instances with capacity constraint).

The TS algorithm of the CNES, denoted by TS-CNES hereafter, is qui te different from our
algorithm. First, TS-CNES uses a different (integer)formulation of the problem. Secondly,

it manipulates only feusible configurations, i.e. those verifying all the constraints of the
problem. Thirdly, it uses a different neighborhood. Fourthly, it considers only a subset

of neighboring configurations to make a move. This is probably because no incrementa1
evaluation technique is available. Fifthly, the tabu tenure for each move is randomly taken
from predefined (very small) ranges: (3 .. 5) for problems of size Jess than 500 candidate
photographs and (7 .. 10) for larger ones.

The TS-CNES algorithm has been compared with various forms of greedy and simulated
annealing algorithms and proved to be the best non-exact algorithm. Compared with our
TS algorithm, however, TS-CNES is Jess effective in terms of search power and speed of
execution. Indeed, as shown in Section 4, our TS algorithm significantly improves upon
the best results of the TS-CNES algorithm for both sets of instances (let us mention also
that TS-CNES failed to find an optimal solution for 4 of the 13 instances without capacity
constraint [2]).

5.2. Upper bounds

The computational results reported in this paper are much better than the previous best
ones, in particular for the instances of the second set with capacity constraint. Now, we
can ask how far these results are from optimal solutions. Currently, no definitive answer
is known yet since all previously atternpts for finding optimal solutions failed. Another
possible answer to this question consists in seeking strong upper bounds. In this section,
we review the known studies in this area.

One obvious solution concerns the continuous linear programming. However, it is well
known that this approach could lead to a significant gap between the optimal discrete and
continuous values. Eric Bensana et al. have applied this approach to the problem described
in this paper [2, 16]. They have used CPLEX, an efficient implementation of the simplex
algorithm, to solve the relaxed problem (integrity constraints relaxed). Eric Bensana et al.
reported continuous optimal values (COV) which are largely above the discrete optimal
values (DOV) for the instances of the first set (Recall that optimal values are known for
these instances). In fact, the ratio (COV-DOV)/COV goes from 28% to 74%! Even if they
have not reported bounds on the instances of the second set, it is reasonable to believe that
LP bounds on these instances should be much worse, given the fact that the instances of the
second set are much larger and much more difficult.

Very recently, another attempt has been reported, which tries to tighten the bounds with
a new ILP formulation of the problem and the column generation technique [7]. In this
new formulation, the initial problem is decornposed into three independent sub-problems,
one per camera. For the resolution of the problem, CPLEX 4.1 is employed, together
with a column generation procedure. This approach improves the previous bounds for the
instances of the first set, reducing the (COV-DOV)/COV ratio to the range of 0% to 20%.
However, like for the initial ILP formulation, no bound was reported for the instances of
the second set, due to the huge number of columns that have to be generated during the
resolution.

Currently, studies continue on upper bounds for the instances of the second set. lt should
be clear that deriving good upper bounds for these instances is quite difficult and constitutes
itself a challenging research topic.

5.3. Repairing logic constraints

As indicated in Section 3.3.2, binary or ternary constraint violations are repaired when a
rnove is carried out. A binary constraint violation is easy to repair since there is a single
way to do this. However, the case for a ternary constraint violation is more complicated
since there are different ways to achieve such a repair.

Suppose that x.i = xk = l and the move sets xi to 1. The constraint Xi + x.i + xk =:: 2 is
thus violated and needs to be repaired. Four cases are possible:

1) set bath XJ and xk to 0,
2) randomly set either x.i or Xk to 0,
3) set to Othe element which bas a smaller profit,
4) look ahead in an exhaustive way to determine the best choice in terms of lost profit.

We have tested and compared these possibilities on all the instances used in this study. We
observe that 3) and 4) give significantly better results than the other ones. ln choosing
between 3) and 4), the technique 4), which is more time consuming, gives slightly better
results than 3) in a few cases. For the instances used in this study, experirnents showed
that no more than 5 elements need to be reset to repair a ternary constraint violation after
a rnove, implying that an exhaustive look ahead is still possible. For the cases where more
elements need to be forward-checked, the technique 3) should be the best choice.

5.4. Handling the capacity constraint

The algorithm presented so far works within the partially constrained search space C
(Section 3.2. 1 Definition 3). The capacity constraint is relaxed, i.e. during the search, the
total capacity of the current configuration may exceed the maximal allowed capacity. An
alternative is to impose the satisfaction of the capacity constraint during the search. ln this
case, the algorithm works within the totally constrained search space and manipulates only
feasible configurations. However, the relaxation of the capacity constraint helps to obtain
better results and to accelerate the search. Intuitively, optimal or high quality sub-optimal
solutions are located at the frontier of feasibility. Often these solutions are difficult to reach
uniquely from the feasible side. A more effective way is to allow the search to oscillate
around the feasibility frontier, increasing the chance to reach good solutions. Strategies of
this kind have been successfully applied to the MKP [8, 11]. We show below that this is
also the case for our application, even if the relaxation technique we used is different frorn
those developed for the MKP.

To illustrate these points, experiments have been carried out to compare two versions
of our algorithm with and without capacity constraint relaxation. We re-run these two
versions for the same number of iterations and compare the quality of the solutions found.

profit

172000

162000

152000

142000

132000

122000

-.:l' LO CO t-- 00
O) C\J l.0 00 ..-

,- ,- ,- C\J

iterations/1 oo

(a)

profit

172000

162000

=

152000

142000

122000

C\J ("} s::l' I.O C.O t-- CO
C'J (O O) C\J IO OCl ..

,- ,- ,- C\J

iterations/100

(b)

Figure 1. Comparative results without (a) and wîth (b) capacity constraint relaxation.

Figure !(a) and (b) show the comparative results on the instance 1504 (20 runs for each
version of the algorithm, each run being given 300 000 iterations).

From these figures, we observe that the relaxation technique gives solutions of better

quality for the same search effort. Moreover, the relaxation version of the algorithm needs

fewer iterations to reach a solution of the same quality. Finally, the relaxation version is

much more robust since it is Jess sensitive to the initial randorn seeds used.

6. Conclusions

In this paper, we have introduced a "logic constrained" knapsack formulation for a real

world application, the photograph daily scheduling problem of the satellite Spot 5. Based

on this formulation, we have developed a highly effective tabu search algorithm. This

algorithrn incorporates some important features including an efficient neighborhood, a

fast and incremental technique for move evaluation, a method for automatic tabu tenure

management, and intensification and diversification mechanisms.

Computational results on a set of realistic benchmark instances have showed the effec

tiveness of this algorithm. For the instances without capacity constraint, the algorithm finds
all optimal solutions very easily, For the instances with capacity constraint, the algorithm

finds with little computational effort previously best known results. More importantly, the

algorithm significantly improves upon the best known results using Jess than one hour of

computing time on a pentium PC.

An analysis of the solutions (100 for each instance) produced by the algorithm showed
that only one third to half of the candidate photographs are retained in a schedule, indicating
that these instances are highly constrained. We observed that the solutions found for a given
instance are quite different, though they do share some elements in common. This implies
that the density of solutions for a given profit is probably high. Therefore, we conjecture
that if the obtained results (for the instances with capacity constraint) are not optimal, they
may be further improved by more powerful search methods.

Unfortunately, for the moment nothing is known about the distance between the solutions

found and optimal solutions. An exact algorithm would allow us to answer definitively this
question. Given the hardness of these instances, a more realistic approach would be to
develop more powerful techniques for deriving strong upper bounds.4

Acknowledgments

We would like to thank gratefully the following people: Dr. Gérard Verfaillie from CERT
Toulouse for many useful discussions on this application, Prof. Fred Glover and the referees
of the paper for their very useful comments and careful corrections, Steve Hurley for his

corrections on the final version of the paper. Thanks go also to the CNES for having defined
and made available the tested instances.

Notes

!. Hereafter, we wi!l use the letter s instea<l of x to denote a configuration (x1. x2,. . x,,,).
2. These instances are available via ftp from ftp.cert.fr/pub/lemaitre/LVCSP/Pbs/SPOT5.tgz.

3. The TS algorîthm of the CNES is programmed in Fortran 77 and was run on a Sparc 20/50 workstation.

4. Since the final revision of the paper, the authors have obtaine<l tight upper boun<ls; see the paper "Upper bounds

for the SPOT 5 daily photograph scheduling problem" by M. Vasquez and J.K. Hao, to appear in Journal of

Combinatorial Optimization.

References

1. E. Bensana, M. Lemaître, and G. Verfaillie, "Benchmark problems: earth observation satellite management."

Constraints, An International Journal, vol. 4, pp. 293-299, 1999.

2. E. Bensana, G. Verfaillie, J.C. Agnèse, N. Bataille, and D. Blumstein, "Exact and approximate meth

ods for the daily management of an earth observation satellîte," in Proc. of the 4th Inti. Sympo�

sium on Space Mission Operatîons and Ground Data Systems (Spaceüps-96), Munich, Germany, 1996.

ftp://flp.cert.fr/pub/verfaillie/spaceops96.ps.

3. P.C. Chu and J.E. Beasley, "A genetic algorithm for the multidimensional knapsack prob\em," Journal or

Heurislics, vol. 4, pp. 63-86, 1998.

4. F. Dammeyer and S. Voss, "Dynamic tabu list management using reverse elimination method," Annals of

Operations Research, vol. 41, pp. 3 l-46, l 993.

S. A. Fréville and G. Plateau, "An efficient preprocessing procedure for the multidimensiona! 0-1 knapsack
prob!em," Dîscrete Applied Mathematics, vol. 49, pp. 189-212, 1994.

6. A. Fréville and G. Plateau, "The 0-1 bidimensional knapsack problem: toward an efficient high-level primitive

tool," Journal ofHeuristics, vol. 2, pp. 147-167, 1997.

7. Y. Gabre], Improved linear programming bounds via column generation for daily scheduling of earth obser

vation satellite. Research Report 99---01, LIPN, Université de Paris XIII, January 1999.

8. F. Glover and G.A. Kochenberger, "Critical event tabu search for multîdîmensional knapsack problems", in
Mcta-Heuristics: Theory and Applications, J.H. Osman and J.P. Kelly (Eds.), Kluwer Academic Publishers,

1996, pp, 407-428,
9. F. Glover and M. Laguna, Tabu Search, Kluwer Academic PubHshers, 1997.

l O. S. Hanafi, A. Freville, and A.EL Abdellaoui, "Comparison ofheurîstics for the 0-! multidimensîonal knapsack

problem," in Meta-Heuristics: Theory and Applications, I.H. Osman and J.P. Kelly (Eds.), Kluwer Academic

Publishers, 1996, pp. 449-465.

11. S. Hanafi and A. Freville, "An efficient tabu search approach for the Q-.1 multidimensiona! knapsack problem,"

European Journal of Operationa! Research, Special Tabu Search Issue, vol. 106, no. (2-3) pp. 663--697, 1998.

12. M. Lemaître and G. Verfaillie, "Daily management of an earth observation satellite: comparison of Ilog sol ver

with dedicated algorithms for valued constraint satisfaction problems," in Proc. of the 3rd Ilog Inti. Users

Meeting, P aris, France, 1997. ftp://ftp.cert.fr/pub/verfai1lie/i1og97 .ps.

13. A. Lokketangcn and F. Glover, "So\ving zero-one mixed integer programming problems using tabu search",

European Journal of Operational Research, Special Tabu Search Issue, vol. 106, no. (2-3), pp. 627-662, l 998.

14. S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley Chichester,

1990,
l5. H. Pirkul, "A heuristic solution procedure for the multiconstraint zero-one knapsack problem," Naval Research

Logistics, vol. 34, pp. 161-172, 1987.

16. G. Verfaiilie, Personalcommunîcations. Apr 1999.
17. G. Verfaillie, M. Lemaître, and T. Schiex, "Russian doll search for solving constraint optimization prob�

lems," in Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland, USA, l 996,

pp, 181-187,

