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Abstract. The daily photograph scheduling problem of earth observation satellites such as Spot 5 consists of 
scheduling a subset of mono or stereo photographs from a given set of candidates to different cameras. The 
scheduling must maximize a profit function while satisfyîng a large number of constraints. In this paper, we 
first present a formulation of the problem as a generalized version of the well-known knapsack mode!, which 
includes large numbers of bînary and ternary "logical" constraints. We then develop a tabu search algorithm 
which integrates some important features includîng an efficient neîghborhood, a dynamic tabu tenure mechanism, 
techniques for constraint handling, intensification and diversification. Extensive experiments on a set of large and 
realistic benchmark instances show the effectiveness of this approach. 

Keywords: tabu search, heuristics, satellite photograph scheduling, multidimensiona! knapsack, constraîned 
combinatorial optimization 

1. Introduction

The daily photograph scheduling problem (DPSP) is one of the key applications for an earih 
observation salellite such as Spot 5. The main purpose of the DPSP is to schedule a subset 
of photographs from a set of candidate photographs which will be effectively taken by the 
satellite. The resulting subset of photographs must satisfy a large number of imperative 
constraints of different types and at the same time maximize a given profit function. 

The profit function reflects several criteria such as client importance, demand urgency, 

meteorological forecasts and so on. The constraints include both physical constraints such 

as the recording capacity on board of the satellite and logic constraints such as non over

lapping trials and meeting the minimal transition time between two successive trials on the 

same camera. 

This problem is also important and interesting from a complexity point of view. Indeed, 

it can be modeled as a generalized Knapsack problem, which is known to be NP-bard. So 

far, several methods have been proposed to tackle this problem. These methods include 

exact algorithms based on Branch and Bound techniques l 17], integer linear programming 



with CPLEX and constraint programming with the !LOG solver [ 12[ as well as heuristics 

based on greedy fonctions, simulated annealing and tabu search [2_]. 
The goal of this paper is two fold. First, we introduce a new formulation of the DPSP 

using the well-known 0/1 knapsack model. Second, we develop an original and effective 
tabu search (TS) algorithm based on this formulation. This TS algorithm includes a set 
of important features including an efficient neighborhood, an incremental technique for 
move evaluation, a mechanisrn for dynamic tabu tenure, constraint handling techniques, 
and mechanisms for intensification and diversification. 

This algorithm is extensively evaluated on a set of large and realistic instances provided 
by the French National Space Agency CNES (Centre National d'Etudes Spatiales). Exper

irnental results show the effectiveness of this algorithm both in terms of solution quality 
and speed of execution. Indeed, the algorithm easily obtains the previously best known 
results for these instances. More importantly, it produces much better solutions for the 
most difficult instances with very reasonable computing times. 

The paper is organized as follows, in the next section, the DPSP is described and modeled. 
Section 3 presents the details of the TS algorithm. Numerical results and comparisons are 
presented in Section 4. Implications are discussed in Section 5 and Section 6 concludes the 
paper. 

2. Photograph daily scheduling problem (DPSP)

2.1. Problem dejinition 

The photograph daily scheduling problem can be informally described as follows [ 1]. 

Prohlem Components 

• A set P = {pi, p2, ... , p
11 } of candidate photographs, mono or stereo, which can be

scheduled to be taken on the "next day" under appropriate conditions of the satellite
trajectory and oblique viewing capability.

• A "profit" associated with each photograph Pi, which is the result of the aggregation of
several criteria such as client importance, demand urgency, meteorological forecasts and
so on,

• A "size" associated with each photograph Pi, which represents the amount of memory
required to record Pi when it is taken.

• A set of possibilities associated with each photograph Pi in P corresponding to the
different ways to take Pi : 1) for a mono Pi, there are three possibilities because a mono
photograph can be taken by any of the three cameras (front, middle and rear) on the
satellite and 2) for a stereo Pi, there is one single possibility because a stereo photograph

requires simultaneously the front and the rear camera.
• A set of imperative bard constraints, which must be satisfied:

1. any two trials must not overlap and the minimal transition time between two succes

sive photographs on the same camera must be met;



2. limitations on the instantaneous data flow through the satellite telemetry resulting
from simultaneous photographs on different cameras;

3. capacity constraint: the recording capacity on board must not be exceeded.

Problem Objective 

The DPSP is to find a subset P' of P which satisfies all the imperative constraints and 
maximizes the sum of the profits of the photographs in P'. Thus, the goal is to maximize 
the total value of the items (photographs) packed in the "knapsack," subject to the constraint 
that the total size of all the packed items does not exceed the knapsack capacity ( constraint 3) 
and subject to other "logical constraints" ( constraints 1 and 2 above ). The DPSP is therefore 
a constrained combinatorial optimization problern. 

In practice, the number of photographs in P may be quite large (up to 1057 for the 
largest instance we tested), implying a huge search space. Moreover, the presence of a 
large number of hard constraints (up to tens of thousands) makes the problem difficult to 
solve. 

2. 2. Problem formulation

2.2.1. Representing a schedule. Let P be the set of candidate photographs and n = 1 P 1-
With each mono photograph Pi in P, we associate three pairs of elements (p;, camera_l), 
(pi, camera_2), (Pi, camera_3). Similarly, with each stereo photograph Pi in P, we associate 
one pair (Pt, camera_13). Letting n 1 and n2 be respectively the number of mono and stereo 
photographs in P(n = ni + n2), there are in total m = 3 * n 1 + n2 possible pairs of 
elements for the given set P of candidates. Now, associating a binary ( decision) variable 
xi with each such pair, a photograph schedule corresponds to a binary vector: 

where x1 = l if the corresponding pair (photo, camera) is present in the schedule, and 
x; = 0 otherwise. 

For example, if P = {p1, p2, p3) where p 1 and p2 are mono photographs and p3 is a 
stereo photograph, then x = (1, 0, 0, 0, 0, 0, l) represents a schedule in which p 1 is taken 
by camera 1, p2 is rejected and p3 is taken by cameras 1 and 3. (Remember that a stereo 
photograph requires the front and the rear cameras simultaneously.) 

2.2.2. Evaluation of a schedule. Define the profit of a pair (p, camera) (or its 0-1 variable) 
to be the profit of the photograph p. The total profit of al! the pairs of the given set P is 
then represented by a vector: 

g = (g,, gz, • • •, gm) 

where gi = g; (i # j) if gi and g.i cmTespond to two different pairs of elements involving 
the same photograph p, i.e. (p, camera_x) and (p, camera_y). 



Then the total profit value of a schedule x = (x 1, x2, ... , Xm) is the surn of the profits of 
the photographs in s, i.e. 

f(x) = L g; -x;
lsism 

2.2.3. Constraints 

• Capacity constraint

Define the size of a pair (p, camera) (or its 0-1 variable) as the size of the photograph p. 

The total size of all the pairs of the given set P is then represented by a vector: 

where ci = cj (i f. j) if ci and Cj correspond to two different pairs of elements involving 
the same photograph p, i.e. (p, camera_x) and (p, camera_y). 

The capacity constraint states that the sum of the sizes of the photographs in a sched
ule x = (xi, Xz, ... , Xm ) cannot exceed the maximal recording capacity on board. This 
constraint is easily expressed as a knapsack constraint: 

L Ci · Xi :5: Ma:ccapacity
1:::ë_iSm 

• Binary constraints

The constraints involving the non overlapping of two trials and the minimal transition time 
between two successive trials of a camera, and also some constraints involving limitations 
on instantaneous data flow are conveniently expressed by simple relations over two pairs 
(photo, camera). Such a binary constraint corresponds to forbidding the simultaneous 
presence of a pair (p;, ki) and another pair (P.i, k.i) in a schedule. If Xi and x,1 are the
corresponding decision variables of such two pairs, then a binary constraint is defined as 
follows: 

Let C2 denote the set of ail such pairs (x;, x j) which should verify the above binary con
straint. 

• Ternary constraints

Sorne constraints involving limitations on instantaneous data flow cannot be expressed in the 
form ofbinary constraints as above. These rernaining constraints may however be expressed 
by relations over three pairs (photo, camera). Such a ternary constraint corresponds to 
forbidding the simultaneous presence ofthree pairs (p;, k;), (pj, kj), and (p 1, k 1). Letting 
xi, x j and x 1 be the decision variables corresponding to these pairs, then such a ternary 



constraint is written: 

x1+xj+x1::;2 

Let C3_1 denote the set of all such triplets (x,, Xj, x1) which should verify this ternary 
constraint. 

Finally, we need to be sure that a schedule contains no more than one pair from { (p, ki ), 
(p, kj), (p, k 1)) for any (mono) photograph p. Letting x1, Xj and x 1 be the decision vari
ables corresponding to these pairs, then this (ternary) constraint is expressed as: 

Clearly there are exactly ni ternary constraints ofthis type. Let C3_2 denote the set of ail 
such triplets (xi, Xj, x1) which verify this second type of ternary constraints. Use C3 to 
denote the union of C3_] and C3_2, i.e. C3 = C3_] U C3_2. 

2.2.4. Final mode/. Now the DPSP can be formally stated as the following generalized 
0/1 Knapsack problem: 

Max.f(x) = L g, · x,
1::':::.i-:Sm 

where X = (x,' X2, ... , Xm) E (0, 1 lm and g = (g,, g2, ... , g,n) E z+m 

subject to 

1) Î:J<i<m Ci· Xi ::'S Max_capacity with Max_capacity E z+ and
C =-(Ci , C2, ... , Cm) E z+m

2) V(Xt,Xj) E C2,x1 +xj :" 1
3) V(xt,Xj,Xk) E C3_1,x, +xi +x, :" 2
4) V(x,, Xj, x,) E C3-2, x, + Xj + x, :" 1

This formulation is a special instance of the multidimensional knapsack problem (MKP) 
[14]. However, let us point out a notable difference. While the constraints in a MKP 
are ail "knapsack constraints" like Eq. (1 ), the formulation above has a single "knapsack 
constraint" and three types of "logic constraints" like Eqs. (2-4). Moreover, while the 
number of constraints in a MKP is rarely large (for instance, well-known benchmark prob
lems have at most 30 constraints), the number of logic constraints may be very high (up to 
36000 for some solved instances). Therefore, special techniques are needed for handling 
these constraints in an effective way. 

3. A TS algorithm for DPSP

3.1. Revie>v ofTS 

This section gives a brief review of Tabu Search, emphasizing the most important features 
which have been implemented in our TS algorithm. For a comprehensive presentation of 
TS, the reader is invited to consul! the recent book by Glover and Laguna [9]. 



Tabu Search is a meta-heuristic designed for tackling hard combinatorial optirnization 

problems. Contrary to randomizing approaches such as SA where randornness is extensiveJy 

used, TS is based on the belief that intelligent searching should embrace more systematic 
forrns of guidance which are based on adaptive mernory and learning. 

TS can be described as a forrn of neighborhood search with a set of critical and comple

mentary components. For a given instance of an optimization problem (S, f) characterized 

by a search space S and an objective fonction f, a neighborhood N is first introduced to 

associate, for each sin S, a non-ernpty subset N(s) of S. A typical TS algorithrn begins 

then with an initial configuration s in S and then proceeds repeatedly to visit a series of 
locaJly best configurations fol!owing the neighborhood function. At each iteration, one of 

the best neighbors s' E N(s) is sought to replace the current configuration even ifs' does 

not improve the current configuration in terms of the cost fonction. To avoid the problem of 

possible cyc!ing and to allow the search to go beyond local optima, TS introduces the notion 

of tabu list, which is a foundation for the sh01i term memory component of the method. 
A tabu list rnaintains a selective history H, composed of previously encountered solutions 

or, more generally, pertinent attributes of such solutions. A simple TS strategy based on 
this short term rnemory H consists in preventing solutions of H from being reconsidered 

for the next k iterations, called the tabu tenure. The tabu tenure can vary for different 
attributes, and in general is problem dependent. At each iteration, TS searches for a best 

neighbor frorn this dynamically modified neighborhood N(H, s), instead of N(s) itself. 
Such a strategy prevents the search from being trapped in sh01i terrn cycling and imparts 

rigor to the search. 

By means of the tabu restriction mediated by this memory, some non-visited, yet inter

esting solutions may be prevented from being considered. Accordingly, aspiration criteria 
are introduced to overcome this problem. A simple and widely used aspiration criterion 

consists of removing a tabu classification from a rnove when the move leads to a solution 

better !han the best obtained so far. 
1\vo other important ingredients of TS are intensification and diversification [9]. Inten

sification consists in focusing the search to exploit regions of the space, or characteristics 

of solutions, that the search history suggests are promising. For example, it may be applied 

to seek improved solutions by incorporating "good attributes" of previously encountered 

solutions. On the other band, diversification undertakes to explore regions that differ in 

significant respects from regions previously visited. 

3.2. Components of the TS algorithm 

3.2.1. Unconstrained and constrained search space 

Definition 1. The unconstrained search .'Jpace S is composed of all binary vectors of 

m elernents: 

S = { (x,, X2, . . .  , x,,,) E {O, I )"' ) 

The size of S may become huge for high values of m. For some instances we solved, the 

value of m can be as large as 2355, implying a search space of 22355
. However, a solution 



must verify lhe constraints defined by Eqs. ( 1 )-( 4) and thus belongs to a constrained space. 
This leads to the following definition. 

Dejinition 2. The totally constrained search ,space X is composed of all binary vectors of 
m elements, satisfying the "knapsack constraint" and the "logic constraints," i.e. 

X = {s E S I s satis fies ail the constraints defined by Eqs. ( 1 )-( 4)} 1

ln general, an algorithm may work with either Sor X. It is equally possible for an a}gorithm 
to work with an interrnediary space where some constraints are relaxed. lt is this last 
approach which is adopted in this work. For this purpose, we define a partially constrained
search space C where the knapsack constraint (Eq. (1)) is relaxed. 

De finition 3. The partially constrained search space C is cornposed of all binary vectors 
of m elements, satisfying the "logic constraints," i.e. 

C = { s E S I s verifies the Jogic constraints defined by Eqs. (2)-( 4)} 

Note that not all the configurations in C are equally interesting. For example, s = (0, 0, 
... , 0) is trivially in C but far from any global optimum. The following definition identifies 
a subset of C which is particularly interesting from the point of view of the profit fonction. 

De.finition 4. The saturated partially constrained search space M is a subset of C such 
that: 

M = {s E C I V(xi = 0) E s, setting Xi = I violates some binary or ternary 
constraints defined by Eqs. (2) and (3)} 

Thus a configuration s E C is saturated when no more pair (photo, camera) can be added 
without violating some logic constraints. 

The saturated set M is similar to the notions of "critical events" 18] and "promising 
zones" [11] developed for the MKP. The principle here is that the TS algorithm will search 
for its solutions in the partial ly constrained search space C and try to stay at the frontier of 
this saturated (promising) area. 

3.3.2. Neighborhood and move. We introduce now the neighborhoodfunction Nover the 
partiaily constrained search space C. More precisely, this tll.nction N: C -+ (2c - 0) is 
defined as follows. 

Lets = (xi, x2, ... , x111 ) E C and s' = (x;, x�, ... , x;), then s' is a neighbor of s, i.e. 
s' E N (s ), if and only if the following conditions are verified: 

1) 3 ! ; such thatx; = Oanctx; 
= 1 (1 Si Sm) 

2) for the above i, V(x;, Xj) E C2, x; = 0 (1 S j Sm)
3) forthe abovei,V(x;,Xj,Xk)EC3_1,x;+x; S 1 (1 :,j,k:,m)



Thus, a neighbor of s can be obtained by adding a pair (photo, camera) (flipping a variable X; 

from O to 1) in the current schedule and then dropping some pairs (photo, camera) (flipping 
some x j from 1 to 0) to repair binary and ternary constraint violations. Consequently, a move 
mv to obtain a neighbor s' from a configurations = (xi, x2, x3, ... , Xm) is characterized
by a series of flipping operations: 

xi from O to 1 

XJ from 1 to 0 

x, from 1 toO 

where x; ... xk are variables linked to Xi by a binary or ternary constraint. We use mv(i) =
(xi : 0 ----fr- 1, Xj ... xk : 1 ---:>- 0) to denote such a move. 

The repair of a violation of a binary constraint (x;, x j) E C2 is a simple operation:
it sufficies to set xf, to O in s' (xj = l in s). Repairing a ternary constraint violation 
(x;, XJ, Xk) E C3 is.more complex since there are different ways to proceed. For example, 
one may set either xj or x{ to Oin s 1 randomly or according to some criteria, one may set 
both xj and xf to O and so on. More details on this topic are discussed later (Section 5.3). 

It should be clear that from a configurations = 
(xi, x2, ... , Xm), the number of possi

ble moves equals the number of variables in s having value O. Letting Z = {x1 Es I s = 
(x 1, x2, ••• , xm) and x, = 0), then N (s) has exactly IZI neighboring configurations. 

Note that similar neighborhoods based on adding-dropping have been used in many 
heuristic algorithms for MKP [3-6, 8, 11, 13]. However, one difference remains that con
cerns the repair operation after adding an element; constraint repairing here is much simpler 
since it concerns only binary and ternary logic constraints. 

3.3.3. Incremental evaluation of the neighborhood. TS uses an aggressive search strategy 
to exploit its neighborhood, i.e. at each iteration, the TS algorithm examines the value f(s') 
for each candidate neighbor s' E N (s) and chooses one that has the best value. In order to 
do this in an efficient way, we use an incremental evaluation technique. The main idea 
is to keep in a special data structure O the move value for each possible move (neighbor) 
of the cun-ent configuration. Thus ifs' = s + mv(i), then o(i) is equal to the difference 
f(s') - f(s). Each time a move is carried out, the elements of this data structure affected 
by the move are updated accordingly. 

Since the number of possible moves for each configuration is defined by I Z 1 (1 Z I S m ), 
the data structure O can be implemented with a vector of m elements: 8(i) gives the move 
value f(s) - f(s') if the con-esponding move mv(i) is carried out. The vector can be 
initialized at the beginning of the search and updated after a move in time O(IC2_i 1 + IC3_i 1) 
where C2_i and C3_i are subsets of the sets of binary and ternary logic constraints (see 
Section 2.2) involving the element x;. Searching for a best move within 8 requires time O (m ). 

3.3.4. Tabu list management. The role of a tabu list is to prevent the search from short-terrn 
cycling (x;: 1-+ 0 ➔ 1 ➔ 0 · · ·). Remember that a move mv(i) = (x;: 0 ➔ l, x.i ... Xq: 

I ➔ 0) consists in flipping x, from O to 1 and flipping then x .i, . . . , x
q 

from 1 to O (to repair 



constraint violations). Each tirne such a move is carried out, the moves mv(j) = (xj 
0 ➔ 1, , , ,) , , , mv(q) = (x

q 
: 0 ➔ 1, , , ,) are classified tabu during some iterations (tabu 

tenure), forbidding to reset any of Xj,,,,, Xq from 0 to L The number of iterations k(t)

during which a move mv(t) (t = j , , , q) is classified tabu is dynamically defined as follows: 

k(t) = C(t) + a x FREQ(t) 

where C (t) is the number ofbinary and ternary constraints involving the elementx,, FREQ(t) 
the number of times xr is flipped frorn l to O from the beginning of the search, and 
a = (L

1 
<i<m C(i))/ m reflecting the hardness of an instance in terms of logic constraints. 

Therefore� the tabu tenure of a move depends on two factors: the number of constraints 
containing the variable of the move and the flipping frequency of the variable. 

The idea for the first part of the fonction C(t) is the following, A variable involved in 
a large number of constraints bas naturally more risk to be flipped during a move than a 
variable having few constraints on it. It is thus logic to give a longer tabu tenure for a move 
whose variable has many constraints on it. Therefore, each time x1 is flipped from l to 0, 
x1 cannot be reset to 1 until at least C(t) iterations have been realized. Similarly, a move 
concerning a variable involved in a low number of constraints is given shorter tabu tenure. 

The second part of the function is dynamic and proportional to the flipping frequency of 
the variable x1 (from 1 to 0). The basic idea is to penalize a move which repeats too often. 
The coefficient ais instance-dependent and defines a penalty factor for each move. For the 
instances we solved, the values of a vary from 10 to 30. 

At this stage, let us notice that FREQ(t) is the essential part in the above tabu tenure 
function. Other frequency-based tabu tenures are also possible. For instance, the following 
ones have been experimented. 

k2(t) = FREQ(t) 

k3(t) = a x FREQ(t) (ais a constant) 

k4(t) = C(t) + FREQ(t) 

In practice, we observe that all these formulae lead to comparable results in term of quality 
of the solutions found. However, according to the formula used, the resolution time may be 
quite different. lndeed, for a same solution quality, the search using formula k(t) requires 
in general much shorter tirne. 

It should now be clear that using the frequency of a move to tune the tabu tenure of the 
move may be considered as a general princîple and thus applicable to other problems. 

Finally, in orderto implernent the tabu list, a vector T of m elements is used. As suggested 
in [9], each element T(i) (1 :S; :Sm) records k(i) + iter, instead of k(i) where iter is the 
current number of iterations. In this way, it is very easy to know if a mv(i) is tabu or not at 
iteration ): if T(i) > j, mv(i) is a forbidden move; otherwise, mv(i) is a possible move, 

3.3.5. Aspiration criteria. The tabu status of a rnove mv(i) is canceled if one of the two 
conditions (two-level aspiration criteria) below is verified. 



1) if the move mv(i) leads to a configurations strictly better than the best configuration s*
found so far, i.e. /(s) > f(s*) even ifs requires more memory,

2) if the move mv(i) leads to a configurations of the sarne quality buts occupies Jess
memory, i.e. f(s) = f(s*) and L

i ::::i:sm ci· Xi < L
i ::::i:sm c; · xt.

3.3.6. Heuristics for carrying out a move. Lets be the current configuration at a given 
iteration. Let M be the set of candidate moves from s, i.e. the moves which are not 
forbidden by the tabu list and the moves which verifies the aspiration criteria. Now, ail the 
best moves (i.e. those having the highest 8(i) values) are identified and then one of them 
is chosen at random. Once such a move is determined, a best neighbor s' of s is obtained 
(s' = s + mv(i)). Before moving to the next iteration, corresponding data structures such 
as T (tabu list) and 8 (table of move values) are updated accordingly. 

3.3. 7. Intensification and diversification. The tabu mechanism may lead to a state where 
no move is admissible. This occurs when each possible move has been tried a large number of 
times without improving the best configuration found. When this happens, an intensification 
phase will be started. 

The intensification used by the algorithm is based on a heuristic using long-term infor
mation: if an element is present in a large number of good configurations, then it is highly 
possible that this elernent is part of an optimal configuration. Heuristics of this kind are 
presented in [9] and used by many TS algorithms. 

To implement this heuristic, the algorithm uses a vector ker* of m elements ker* = 
(k,, k2, ...• k,,,) to collect high frequency elements. This vector is updated dynamically. 
following one of the two ways below. 

• Each time the algorithrn finds a configurations= (x1, x2, ... , x111 ) giving the same profit as
the best one found, i.e. f (s) = .f"', ker' is updated as follows: ker' = (x 1 • k 1• x2 · k2 • . . .  , 

Xm · k111 ). 
• Each time the algorithm finds a configurations= (x1, x2, . .. , x11i ) having a better profit

than the best one found, i.e. f (s) > f*, ker* is reset to s, i.e. ker* = s.

From the vector ker*, we construct the search space / (for intensification) of indices of 
ker' in the following way. Let To_l be the set of indices of ker' that are equal to l and 
To_O those equal to O. Then the set / _ç To_O contains such indices of elements that the 
flipping of these elements does not affect the elements of To_ 1 even after repairing the logic 
constraints. The set l corresponds thus to regions of the search space where the elements of 
ker* are fixed. During an intensification phase, the algorithm mns on the set / and from the 
initial configuration sü = ker*. In this way, the intensification forces the search to exploit 
exclusively the areas around the kerne1 ker*. 

However, it is possible that ker" corresponds to a set of configurations trapped in a local 
optimum. lt is for this reason that the algorithm builds dynarnically another set D (for 
diversification) which collects the indices of elernents having a flipping frequency lower 
than the average. Thus the set D corresponds to less visited regions of the search space. 
During a diversification phase, the algorithm runs exclusively on the set D and from the 



initial configuration sO = O. In this way, the diversification drives the search to explore 
areas that are either new or have not been visited very often. 

3.3.8. Relaxation of the capacity constraint. During the search, the capacity (knapsack) 
constraint may be violated by the current configurations= (x1, x2, ... , xm), i.e., the total 
size of s may exceed the maximal allowed capacity CL

i
::J:sm c 1 • Xi > Max_capacity). To

satisfy the capacity constraint, the following mechanism is devised. Each time the current 
configuration is improved, the capacity constraint is checked. If the constraint is violated, the 
configuration is irnmediately repaired by suppressing the elements Xi which have the worst 
ratio gi /ci until the capacity constraint is satisfied, i.e. L l:é.i:'Sm c; · Xi � Max_capacity.

Note that since we have only one knapsack constraint, the relaxation handling is much 
simpler compared with the techniques used for the MKP 18, 10, 11, 15]. lndeed, for the 
MKP, one must decide how many and which knapsack constraints are to be relaxed. Non 
trivial special techniques are also needed to deal with the relaxed constraints. 

3.3.9. General algorithm. The TS algorithm follows a general schema composed of three 
iterative phases: exploration, intensification and diversification. The skeleton of the TS 
algorithm is given below. 

General TS search alqorithm 

s = (0 ... 0) 

repeat the following steps 

1. Expolation: 

search over all the elements of the partially constrained space C

(Section 3.2) whenever a non tabu move exists 

compute the set I and the set D (Section 3. 3. 7) 

reset tabu list 

set s =  ker* /* ker* is constructed during the search */ 

go to Intensification 

2. Intensification: 

search over the elements of the restricted space I (Section 3. 3. 7) whenever 

a non tabu move exists 

reset tabu list 

set s = {O ... 0) 

go to Diversification 

3. Diversification: 

search over the elements of the restricted space D (Section 3. 3. 7) whenever 

a non tabu move exists 

reset tabu list 

set s = best solution found during this diversification step 

go ta Exploration 

(Continued on nexl page.) 



(Continued). 
TS search engine 

1. Let s and s* be respectively the current and the best configurations; 

2. Let M(S) be the set of candidate moves from S (M(S) induces a particular 

search space C, I or D, see Section 3. 3. 6) 

3. while :3 possible moves in M(S} do 

choose a bes t move mv(i) {break ties randomly} ( c. f. Section 3 . 3 . 3, Section 3 . 3. 6}

s' :c s + mv(i}; 

s = s'; 

update tabu list T and table of move values 8; ( c. f. Section 3. 3 . 3, Section 3. 3. 4) 

update ker*; (c.f. Section 3.3.6) 

handle (relaxed} capacity constraint 

if s is better than s* then s *  = s; 

(c. f. Section 3 .3. 8) 

The general stop condition is defined by a maximum number of iterations allowed. The 

algorithm returns the best solutions* found during the search. An alternative condition can 
be used to stop the algorithm when a given value of the profit fonction is reached. 

The different phases (exploration, intensification and diversification) use the same tabu 
search engine ( with different search spaces C, / and D). Each phase is triggered and stopped 

automatically by the tabu list management (Section 3.3.4), i.e. whenever no more moves 
are admissible. This is particularly the case for intensification and diversification. This app
roach is quite different from previous work on MKP where the rhythm of intensification 
and diversification phases are controlled by some supplementary parameters [8, 10, l l]. 
Finally, it should be noted that the tabu list management is claimed to be dynamic, however, 
in a different meaning than that described e.g. in [4]. 

4. Experimentation and results

4.1. Test data 

Experiments are carried out on a set of 20 realistic instances2 provided by the French 
National Space Agency CNES and described in details in [l]. We sketch here only some 
main characteristics of these instances. 

These instances belong to two different sets: without capacity constraint (l3 instances) 
and with capacity constraint (7 instances). 

l) Set No. 1 (without capacity constraint): The first set includes l 3 instances having 67

to 364 candidate photographs, giving up to 809 binary variables and 14175 constraints.
2) Set No. 2 (with capacity constraint): The second set includes 7 instances having 209 to

1057 candidate photographs, giving up to 2355 binary variables and 35933 constraints.

For the instances of the first set, the optima are known thanks to two exact algorithrns: 
a CPLEX commercial software using an ILP formulation and a non-standard Branch and 
Bo und algorithm using a Valued Constraint Satisfaction Problem (VCSP) formulation [ 17]. 



For the instances of the second set, existing exact algorithms are unable to solve optimally 

these instances except the smallest one, due to the existence of the capacity constraint and 
the large size. For these instances, only sub-optimal solutions are known, which have been 
obtained by another tabu search algorithm [2]. 

4.2. Experimental settings 

Our TS algorithm is programmed in C, and compiled using VisualC++ on a PC running 

Windows NT (32 MB RAM, 200 MHz). To obtain our computational results, the TS algo

rithm is run 100 times on each instance with different random seeds. Two stop conditions 

are used, when a given profit value is reached or when a gîven maximum number of itera

tions are realized. The tabu tenure is managed dynamically and automatically according to 

the formula given in Section 3.3.4. 

4.3. Results on instances without capacity constraint 

Sin ce the optima are known for this set of instances, the algorithm is stopped when a solution 
of an optimal profit value is found. We wish to know whether our algorithm is able to find 

the optimal solutions for the instances in this set. Table 1 shows the results of the TS 

algorithm on these instances. 
For each instance, the following information is given. The first 4 columns give the name 

of the instance, the number of candidate photographs n in P, the number of 0/ 1 variables 

Table 1. Results on instances without capacity constraint. 

No. of photos 

Best Average prefor. selected Similarity 
Distinct 

Pb. " m opt. profit iter iter time(s) max. min. max. min. solution 

54 67 [25 70 70 7[ 280 45 45 45 29 63 

29 82 120 [2032 12032 35 8[ 34 34 34 [8 97 

42 190 304 [08067 [08067 llO 29[ 80 80 76 38 [00 

28 230 346 56053 56053 88 1296 47 46 46 7 95 

5 309 809 115 [ [5 256 26007 7 96 93 7[ 15 [00 

404 100 158 49 49 36 596 33 31 31 15 [00 

408 200 328 3082 3082 684 8479 63 60 52 23 100 

412 300 544 16102 16102 831 33278 5 79 77 67 23 100 

li 364 692 22120 22120 1540 133889 29 98 95 84 33 100 

503 143 259 9096 9096 84 907 70 69 55 25 100 

505 240 448 13100 13 IOO 910 25116 3 85 82 66 28 100 

507 311 573 15137 15137 1885 97489 18 92 89 73 32 100 

509 348 652 19125 [9125 2094 l04408 22 96 93 78 29 100 



m and the known optimum. Columns 5-6 give the best (maximal) profit found by the 
TS algorithm, the minimal number of iterations needed to find a solution of such a profit. 
Columns 7-8 indicate the number of iterations and the running time needed to find a solution 
averaged over l 00 runs. 

Columns 9-10 indicate the maximal and minimal numbers of selected photographs among 

100 solutions. Columns 11-12 show how similar these solutions are when they are compared 
in pairs: the maximum and the minimum of the (100 * 99)/2 bit-wise comparisons are given. 
The last column indicates the number of distinct solutions among the hundred solutions 

found. 
Thus the fifth line means that the instance called 28 has 230 mono and stereo candidates 

corresponding to 346 binary variables and an optimal schedule has a profit of 56053. The 

TS algorithm finds a solution of profit 56053 (optimal value) after 88 iterations (in average 
1296 iterations and one second over 100 runs). Any schedule among 100 solutions found 
contains al least 46 and at most 47 photographs. When the 100 schedules are compared in 
pairs, at least 7 and at most 46 pairs (photo, camera) are shared by two schedules. Finally, 
among (100 * 99)/2 possible pairs of schedules, 95% of them are different. 

Now let us make several comments about these results. First, the TS algorithm is very effi
cient and robust for these instances. lndeed, for each instance and for each of 100 runs, the al
gorithm is able to find an optimal solution. (It is for this reason that only the average iterations 
and cornputing times over 100 runs, but not the average profit are given in the table.) 

Secondly, the TS algorithm is fast. Indeed, both the number of iterations and computing 
lime needed to find an optimal solution are quite low (fewer than 140000 iterations for 

29 seconds for the larges! instance). On average, the algorithm performs 3715 to 8372 
iterations per second. 

Thirdly, these instances seem highly constrained since only a small number of candidate 
photographs are selected in an optimal solution (column 9-10). We observe also that 

except for three instances, all the optimal solutions found (100 for each instance) are 
different, though they share always a subset of pairs (photo, camera). This implies that 
these instances probably have rnany optimal solutions, therefore are easy to solve. 

4.4. Results for instances with capacity constraint 

Contrary to the instances without capacity constraint, no optimal solutions are known for 
this set of instances except for the smallest one. Only sub-optimal ones are available, the 
best of them being produced by another TS algorithm developed by the CNES (we discuss 
this algorithm later in Section 5.1). 

To solve an instance, our TS algorithm is allowed to run 9 million iterations. This 
corresponds to about one hour of computing time for the largest instance ( del a y considered 
reasonable by the CNES and used by the TS algorithm of the CNES). Once again, the TS 

algorithm is run 100 times on each instance with different random seeds. Table 2 gives 
the results of the TS algorithrn together with the best known results (sub-optirna) for these 
instances. 

For each instance, the following information is indicated. The first 3 columns have 
the same meaning as for Table 1. Columns 4-5 show the profit and computing time 



Table 2. Results on instances with capacity constraînL 

Best known Best Average 
Worst 

Pb. n m profit tîme(s) profit iter* profit iter time(s) profit 

1401 488 914 174058 846 176056 4690 !76055 547882 120 176053 

1403 665 l 317 174137 1324 176137 177354 176134 816099 332 176133 

1405 855 1815 !74174 1574 176!79 5191155 176175 1418907 1314 176171 

1021 1057 2355 174238 2197 176246 8279411 176241 1707156 2422 176234 

1502 209 61158'1
' 13 61158 235 61158 1067 61158 

1504 605 1253 124238 1011 124243 !96064 !2424! 1092197 405 124239 

(in seconds)3 of the best known solutions. Columns 6-7 give, for the best solution found 

by our TS algorithm after l 00 runs, the profit value and the number of iterations needed 

to find such a solution. Columns 8-10 show the avern.ged profit, number of iterations 

and computing tirne over 100 runs. The last column gives the profit of the worst solution 

found by the TS algorithm over 100 runs. 

From the data in Table 2, we may make the following remarks. First, these instances are 
much harder than those of the first set, essentially due to the large number of variables and 

"logic constraints" (up to 2355 0/1 variable or 1057 integer variables, and more than 30 000 
constraints). Secondly, ail the solutions (even the worst ones) produced by our TS algorithrn 

improve on the best known results, both in terms of solution quality and speed of execution. 

The quality irnprovernent is important, reaching a gain of more than 2000 units of the profit 

fonction in most cases. Moreover, the computing time needed to obtain such a solution 

satisfies by far the "one hour" constraint (40 minutes for the largest instance). Thirdly, the 

TS algorithm seems very robust because the quality variations of the 100 solutions for each 
instance remain small. 

In order to see how difficult it is to reach a previously published best solution, another 
experiment is carried out. We re-ran 100 times the algorithm on each instance and stopped 

a run when the best known profit value is reached. Averaged results of this experiment is 

reported in Table 3. 

From this table, we sec that only one second upto a few minutes are needed to obtain the 
previously best solutions. Compared with the previous computing times (Column 4), the 

running times of our TS algorithm represent only a very smalt fraction (last Column). 

Table 4 gives more information about the solutions found by indicating the maximal and 

minimal numbers of selected photographs among 100 solutions, and the similarity between 

these solutions. 

From Table 4, we see that as for the instances without capacity constraint, these in
stances are also highly constrained. Indeed, only about one third to one half of candidate 

photographs are selected in a solution. Once again, the solutions found for each instance 
always share some elements (photo, camera), but the solutions are all ditferent. This implies 

that these instances have probably many (sub-optimal) solutions for a given profit value. 
This may be considered as an indicator that these results may be further improved. 



Table 3. Effort to reach a previously best rcsulL 

Pb. 

1401 

1403 

1405 

1021 

1502 

1504 

1506 

Cost 

174058 

174137 

174174 

174238 

61158 

124238 

165244 

Time(s) 

4 

30 

39 

49 

196 

TGhle 4. More information about solutions found. 

No. of Photos 

Pb. n m max. min. 

1401 488 914 148 144 

1403 665 1317 213 208 

1405 855 1815 253 242 

1021 1057 2355 318 300 

1502 209 413 166 166 

1504 605 1253 280 274 

1506 940 2060 314 299 

5. Discussions

5.1. Related work 

Ratio best-known/TS 

846 

33! 

52 

55 

13 

21 

10 

Similarity 

max. min. 

127 40 

170 65 

189 71 

225 82 

114 69 

188 102 

221 95 

Distinct solution 

100 

100 

100 

100 

100 

100 

100 

As mentioned before, both exact and non exact algorithms have been developed for the 
DPSP. We describe here briefly two such algorithms: an exact algorithm called Pseudo
Dynamic Search (PDS) [17] and another TS algorithm developed by the CNES [2]. Let 
us notice first both algorithrns are based on an integer formulation of the problem: each 
variable represents a candidate photograph and is associated to a value domaîn of {0, 1, 2, 
3} or {O, l 3} according to whether it is a mono or stereo photograph. A configuration in the
search space corresponds thus to a n-dimensional integer vector for a problem composed

of n candidate photographs.
The PDS algorithm is an hybridization of dynamic programming and Branch & Bound 

(B&B) techniques. This algorithm consists in performing n searches (n being the number 
of variables of the problem). each solving. with a depth first B&B, a sub-problem limited to 
a subset of the n variables. Once a sub-problem is solved, its best profit value is recorded. 
This value is then used later as a lower bound for another unsolved sub-problem. This 
algorithm bas proven the optimality for the 13 instances without capacity constraint (but 
failed for the instances with capacity constraint). 



The TS algorithm of the CNES, denoted by TS-CNES hereafter, is qui te different from our 
algorithm. First, TS-CNES uses a different (integer)formulation of the problem. Secondly, 

it manipulates only feusible configurations, i.e. those verifying all the constraints of the 
problem. Thirdly, it uses a different neighborhood. Fourthly, it considers only a subset 

of neighboring configurations to make a move. This is probably because no incrementa1 
evaluation technique is available. Fifthly, the tabu tenure for each move is randomly taken 
from predefined (very small) ranges: (3 .. 5) for problems of size Jess than 500 candidate 
photographs and (7 .. 10) for larger ones. 

The TS-CNES algorithm has been compared with various forms of greedy and simulated 
annealing algorithms and proved to be the best non-exact algorithm. Compared with our 
TS algorithm, however, TS-CNES is Jess effective in terms of search power and speed of 
execution. Indeed, as shown in Section 4, our TS algorithm significantly improves upon 
the best results of the TS-CNES algorithm for both sets of instances (let us mention also 
that TS-CNES failed to find an optimal solution for 4 of the 13 instances without capacity 
constraint [2]). 

5.2. Upper bounds 

The computational results reported in this paper are much better than the previous best 
ones, in particular for the instances of the second set with capacity constraint. Now, we 
can ask how far these results are from optimal solutions. Currently, no definitive answer 
is known yet since all previously atternpts for finding optimal solutions failed. Another 
possible answer to this question consists in seeking strong upper bounds. In this section, 
we review the known studies in this area. 

One obvious solution concerns the continuous linear programming. However, it is well 
known that this approach could lead to a significant gap between the optimal discrete and 
continuous values. Eric Bensana et al. have applied this approach to the problem described 
in this paper [2, 16]. They have used CPLEX, an efficient implementation of the simplex 
algorithm, to solve the relaxed problem (integrity constraints relaxed). Eric Bensana et al. 
reported continuous optimal values (COV) which are largely above the discrete optimal 
values (DOV) for the instances of the first set (Recall that optimal values are known for 
these instances). In fact, the ratio (COV-DOV)/COV goes from 28% to 74%! Even if they 
have not reported bounds on the instances of the second set, it is reasonable to believe that 
LP bounds on these instances should be much worse, given the fact that the instances of the 
second set are much larger and much more difficult. 

Very recently, another attempt has been reported, which tries to tighten the bounds with 
a new ILP formulation of the problem and the column generation technique [7]. In this 
new formulation, the initial problem is decornposed into three independent sub-problems, 
one per camera. For the resolution of the problem, CPLEX 4.1 is employed, together 
with a column generation procedure. This approach improves the previous bounds for the 
instances of the first set, reducing the (COV-DOV)/COV ratio to the range of 0% to 20%. 
However, like for the initial ILP formulation, no bound was reported for the instances of 
the second set, due to the huge number of columns that have to be generated during the 
resolution. 



Currently, studies continue on upper bounds for the instances of the second set. lt should 
be clear that deriving good upper bounds for these instances is quite difficult and constitutes 
itself a challenging research topic. 

5.3. Repairing logic constraints 

As indicated in Section 3.3.2, binary or ternary constraint violations are repaired when a 
rnove is carried out. A binary constraint violation is easy to repair since there is a single 
way to do this. However, the case for a ternary constraint violation is more complicated 
since there are different ways to achieve such a repair. 

Suppose that x.i = xk = l and the move sets xi to 1. The constraint Xi + x.i + xk =:: 2 is 
thus violated and needs to be repaired. Four cases are possible: 

1) set bath XJ and xk to 0,
2) randomly set either x.i or Xk to 0,
3) set to Othe element which bas a smaller profit,
4) look ahead in an exhaustive way to determine the best choice in terms of lost profit.

We have tested and compared these possibilities on all the instances used in this study. We 
observe that 3) and 4) give significantly better results than the other ones. ln choosing 
between 3) and 4), the technique 4), which is more time consuming, gives slightly better 
results than 3) in a few cases. For the instances used in this study, experirnents showed 
that no more than 5 elements need to be reset to repair a ternary constraint violation after 
a rnove, implying that an exhaustive look ahead is still possible. For the cases where more 
elements need to be forward-checked, the technique 3) should be the best choice. 

5.4. Handling the capacity constraint 

The algorithm presented so far works within the partially constrained search space C 
(Section 3.2. 1 Definition 3). The capacity constraint is relaxed, i.e. during the search, the 
total capacity of the current configuration may exceed the maximal allowed capacity. An 
alternative is to impose the satisfaction of the capacity constraint during the search. ln this 
case, the algorithm works within the totally constrained search space and manipulates only 
feasible configurations. However, the relaxation of the capacity constraint helps to obtain 
better results and to accelerate the search. Intuitively, optimal or high quality sub-optimal 
solutions are located at the frontier of feasibility. Often these solutions are difficult to reach 
uniquely from the feasible side. A more effective way is to allow the search to oscillate 
around the feasibility frontier, increasing the chance to reach good solutions. Strategies of 
this kind have been successfully applied to the MKP [8, 11]. We show below that this is 
also the case for our application, even if the relaxation technique we used is different frorn 
those developed for the MKP. 

To illustrate these points, experiments have been carried out to compare two versions 
of our algorithm with and without capacity constraint relaxation. We re-run these two 
versions for the same number of iterations and compare the quality of the solutions found. 



profit 

172000 

162000 

152000 

142000 

132000 

122000 

-.:l' LO CO t-- 00 
O) C\J l.0 00 ..-

,- ,- ,- C\J 

iterations/1 oo 

(a) 

profit 

172000 

162000 

= 

152000 

142000 

122000 

C\J ("} s::l' I.O C.O t-- CO  
C'J (O O) C\J IO OCl ..

,- ,- ,- C\J  

iterations/100 

(b) 

Figure 1. Comparative results without (a) and wîth (b) capacity constraint relaxation. 

Figure !(a) and (b) show the comparative results on the instance 1504 (20 runs for each 
version of the algorithm, each run being given 300 000 iterations). 

From these figures, we observe that the relaxation technique gives solutions of better 

quality for the same search effort. Moreover, the relaxation version of the algorithm needs 

fewer iterations to reach a solution of the same quality. Finally, the relaxation version is 

much more robust since it is Jess sensitive to the initial randorn seeds used. 

6. Conclusions

In this paper, we have introduced a "logic constrained" knapsack formulation for a real 

world application, the photograph daily scheduling problem of the satellite Spot 5. Based 

on this formulation, we have developed a highly effective tabu search algorithm. This 

algorithrn incorporates some important features including an efficient neighborhood, a 

fast and incremental technique for move evaluation, a method for automatic tabu tenure 

management, and intensification and diversification mechanisms. 

Computational results on a set of realistic benchmark instances have showed the effec

tiveness of this algorithm. For the instances without capacity constraint, the algorithm finds 
all optimal solutions very easily, For the instances with capacity constraint, the algorithm 

finds with little computational effort previously best known results. More importantly, the 

algorithm significantly improves upon the best known results using Jess than one hour of 

computing time on a pentium PC. 



An analysis of the solutions ( 100 for each instance) produced by the algorithm showed 
that only one third to half of the candidate photographs are retained in a schedule, indicating 
that these instances are highly constrained. We observed that the solutions found for a given 
instance are quite different, though they do share some elements in common. This implies 
that the density of solutions for a given profit is probably high. Therefore, we conjecture 
that if the obtained results (for the instances with capacity constraint) are not optimal, they 
may be further improved by more powerful search methods. 

Unfortunately, for the moment nothing is known about the distance between the solutions 

found and optimal solutions. An exact algorithm would allow us to answer definitively this 
question. Given the hardness of these instances, a more realistic approach would be to 
develop more powerful techniques for deriving strong upper bounds.4 
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Notes 

!. Hereafter, we wi!l use the letter s instea<l of x to denote a configuration (x1. x2,. . x,,, ). 
2. These instances are available via ftp from ftp.cert.fr/pub/lemaitre/LVCSP/Pbs/SPOT5.tgz. 

3. The TS algorîthm of the CNES is programmed in Fortran 77 and was run on a Sparc 20/50 workstation.

4. Since the final revision of the paper, the authors have obtaine<l tight upper boun<ls; see the paper "Upper bounds

for the SPOT 5 daily photograph scheduling problem" by M. Vasquez and J.K. Hao, to appear in Journal of

Combinatorial Optimization.
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