
HAL Id: hal-00359381
https://hal.science/hal-00359381v1

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upper bounds for the SPOT 5 daily photograph
scheduling problem

Michel Vasquez, Jin-Kao Hao

To cite this version:
Michel Vasquez, Jin-Kao Hao. Upper bounds for the SPOT 5 daily photograph scheduling problem.
Journal of Combinatorial Optimization, 2003, 7 (1), pp.87-103. �10.1023/A:1021950608048�. �hal-
00359381�

https://hal.science/hal-00359381v1
https://hal.archives-ouvertes.fr

Upper Bounds for the SPOT 5 Daily Photograph
Scheduling Problem

vasquez@site-eerie.ema.fr

hao@info.univ-angers.fr

MICHEL VASQUEZ
LGI2P-EMA, Parc Scientifique G. Besse, 30035 Nı̂mes Cedex 1, France

JIN-KAO HAO
LERIA Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 1, France

Abstract. This paper introduces tight upper bounds for the daily photograph scheduling problem of earth
observation satellites. These bounds, which were unavailable until now, allow us to assess the quality of the
heuristic solutions obtained previously. These bounds are obtained with a partition-based approach following the
“divide and pas conquer” principle. Dynamic programming and tabu search are conjointly used in this approach.
We present also simplex-based linear programming relaxation and a relaxed knapsack approach for the problem.

Keywords: bounds, partition, constraint relaxation, tabu search, branch & bound

1. Introduction

The daily photograph scheduling problem (DPSP) is one of the key applications for an earth
observation satellite such as Spot 5. The main purpose of the DPSP is to schedule a subset
of photographs from a set of candidate photographs which will be effectively taken by the
satellite. The resulting subset of photographs must satisfy a large number of imperative
constraints of different types and at the same time maximize a given profit function. The
profit function reflects several criteria such as client importance, demand urgency, meteo-
rological forecasts and so on. The constraints include both physical constraints such as the
recording capacity on board of the satellite and logic constraints such as non overlapping
trials and meeting the minimal transition time between two successive trials on the same
camera. This constrained maximization problem is also important and interesting from a
complexity point of view. Indeed, it can be formulated as a generalized knapsack problem,
which is known to be NP-hard.

So far, several methods have been proposed to tackle this problem. In Verfaillie et al.
(1996), the authors introduced an exact algorithm called Pseudo Dynamic Search, which
embodies a Branch & Bound technique within an iterative optimization process. This ap-
proach has been used to solve 20 benchmark instances presented in Bensana et al. (1999).
For the 13 simple single-orbit instances, the approach managed to solve all of them to opti-
mality. On the contrary, this method was unable to solve 6 of 7 multi-orbit instances within
reasonable time. Indeed, the multi-orbit case is much more difficult than the single-orbit
case due to the much larger size of the instances and the presence of a knapsack constraint.

Several heuristic approaches have also been developed for the DPSP. These heuristics
include, among others, greedy procedures, algorithms based on simulated annealing and
tabu search (Bensana et al., 1996; Vasquez and Hao, 2001). In particular, in Vasquez and
Hao (2001), the authors presented an advanced tabu algorithm which finds the optimal
solution for the single orbit instances and improves on the previously best known results for
the multi-orbit instances. Notice that these heuristic solutions gives lower bounds for this
maximization problem. Upper bounds are needed to assess the quality of heuristic solutions.

In Bensana et al. (1996), the authors mentioned linear programming (LP) relaxation for
this problem, but they did not report computational results. In Gabrel (1999), the author ex-
perimented this approach using CPLEX 4.1 and reported continuous optimal values (COV)
for the single-orbit instances. However, these upper bounds are largely above the discrete
optimal values (DOV): the ratio (COV-DOV)/COV goes from 28% to 74%! No result was
reported for the much larger multi-orbit instances. The author also tried a new integer linear
programming formulation of the problem based on decomposition and column generation
techniques (Gabrel, 1999). Using CPLEX 4.1, together with a column generation proce-
dure, this approach produced better upper bounds for the single-orbit instances, reducing
the above (COV-DOV)/COV ratio to the range of 0 to 20%. Once again however, no result
was obtained for the multi-orbit instances, due to the huge number of columns that have
to be managed during the resolution. Until now, there is no upper bound available for the
multi-orbit instances of the daily photograph scheduling problem.

The study presented in this paper tries to fill this important gap. To achieve this goal, we
experiment first with the most evident approach based on linear programming relaxation.
We continue our investigation with dynamic programming applied to the problem where
logic constraints are relaxed. As we see later, these approaches are unable to find tight upper
bounds. We devise finaly a partition-based approach which gives much better bounds.

The paper is organized as follows. The DPSP problem and its “logic constrained” knap-
sack formulation are introduced in Section 2. The benchmark instances of the DPSP together
with their best known results are presented in Section 3. In Sections 4 and 5 are presented LP
relaxation approach and logic constraint relaxation approach. The partition-based approach
is presented in Section 6. Upper bounds obtained with this approach are shown in Section 7.
Conclusions are given in the last section.

2. SPOT photograph daily scheduling problem (DPSP)

We give now a brief review of the problem as well as a “logic-constrained” knapsack
formulation presented in Vasquez and Hao (2001).

2.1. Problem definition

We are given the following problem components.

• A set P = {p1, p2, . . . , pn} of candidate photographs, mono or stereo, which can be
scheduled to be taken on the “next day” under appropriate conditions of the satellite
trajectory and oblique viewing capability.

• A “profit” associated with each photograph pi , which is the result of the aggregation of
several criteria such as client importance, demand urgency, meteorological forecasts and
so on.

• A “size” associated with each photograph pi , which represents the amount of memory
required to record pi when it is taken.

• A set of possibilities associated with each photograph pi in P corresponding to the
different ways to take pi : (1) for a mono pi , there are three possibilities because a mono
photograph can be taken by any of the three cameras (front, middle and rear) on the
satellite and (2) for a stereo pi , there is one single possibility because a stereo photograph
requires simultaneously the front and the rear camera.

• A set of imperative constraints:

1. Binary constraint: for some couples (photo, camera), it is forbidden to schedule simul-
taneously p1 on the camera x and p2 on y. This constraint is the first type of logical
constraint.

2. Ternary constraint: for some couples (photo, camera), it is forbidden to schedule
simultaneously p1 on the camera x , p2 on y and p3 on z. This constraint is the second
type of logical constraint.

3. Capacity (or knapsack) constraint: the sum of the sizes of the scheduled photos cannot
exceed the recording capacity on board.

The DPSP is then to find a subset P ′ of P which maximizes the sum of the profits of the
photographs in P ′ and satisfies all the logical and knapsack constraints. In practice, both
the number of photographs in P and the number of logical constraints may be quite large
(more than one thousand for P and tens of thousands for logical constraints).

2.2. A “logic-constrained” knapsack formulation

A first integer formulation consists in considering a photo as an integer variable and rep-
resenting the three cameras by 1, 2 and 3. Thus, a variable for a mono photo has a value
domain of {0, 1, 2, 3} where the value 0 means the photo is not scheduled. Similarly, a
variable for a stereo photo has a value domain of {0, 13} where the value 13 represents
the simultaneous use of the cameras 1 and 3. Constraints and objective function may be
deduced accordingly. More details about this formulation is given in Bensana et al. (1996).

Another formulation is based on binary variables, each representing a couple (photo cam-
era): xi = (p, c) takes the value 1 if the photo p is taken by the camera c, 0 otherwise. A
schedule corresponds to the non-zero components of a binary vector. This formulation re-
quires the introduction of a supplementary constraint, called consistency constraint, stating
that a photo will not be scheduled more than once.

We give now the formal definition of this formulation (Vasquez and Hao, 2001). Let us
define the following notations:

• m1: the cardinality of the set P of candidate photos;
• D(p): the value domain of the photo p, D(p) = {1, 2, 3} if p is a mono photo, D(p) = {13}

otherwise;

• n = ∑p=m1
p=1 |D(p)|: the number of binary variables of the problem;

• m1 vectors A1, . . . , Am1 ∈ {0, 1}n: the non-zero components of each Ap correspond to
all the possible couples (p, c) for the photo p with c being a camera;

• m2 vectors Am1+1, . . . , Am1+m2 ∈ {0, 1}n: for each Ai , m1 + 1 ≤ i ≤ m1 + m2, its 2 non-
zero components correspond to the 2 couples (p1, c1), (p2, c2) involved in the (i − m1)th

binary constraint;
• m3 vectors Am1+m2+1, . . . , Am1+m2+m3 ∈ {0, 1}n: for each Ai , m1 + m2 + 1 ≤ i ≤

m1 + m2 + m3, its 2 non-zero components correspond to the couples (p1, c1), (p2, c2),
(p3, c3) involved in the (i − (m1 + m2))th ternary constraint;

• m = m1 + m2 + m3 + 1: the total number of constraints;
• Am ∈ N

n: the memory size of each couple (p, c), i.e. the memory required to record p;
• A ∈ N

m×n: the matrix composed of m vectors A1, ..., Am ;
• b ∈ N

m :

– ∀i ∈ [1, m1 + m2] bi = 1: consistency constraint and binary logical constraints;
– ∀i ∈ [m1 + m2 + 1, m1 + m2 + m3] bi = 2: ternary constraints;
– bm : recording capacity or knapsack constraint.

• c ∈ N
n: the vector of profits associated to each couple (photo camera).

A1, . . . , Am−1 represent logical constraints. Am represents the knapsack constraint. The
parameters n and m characterize the dimension of a given instance of the problem in this
formulation: n is the number of binary variables and m the total number of constraints to
be satisfied.

Using these notations, the initial daily photograph scheduling problem can be formulated
as follows:

DPSP01

{
maximize z = c · x

subject to A · x ≤ b and x ∈ {0, 1}n

We have thus a logic-constrained 0-1 knapsack problem, which is a special case of the
general multidimensionnel knapsack problem (MKP01). Let us notice that in practice, the
number of constraints in this formulation may be very important, up to several tens of
thousands compared with only several tens constraints for well-known MKP01 benchmark
instances.

3. Benchmark instances and their lower bounds

In Bensana et al. (1999), the authors presented a set of 20 benchmark instances for the
DPSP.1 These instances belong to two series of different complexities. The first one has
13 instances corresponding to the simpler single-orbit case where the recording capacity
(knapsack) constraint is absent. The second series includes 7 instances corresponding to
the multi-orbit case where the recording capacity (knapsack) constraint is present. All the
single-orbit instances have been solved to optimality. No optimal solution is known yet for
6 of the 7 multi-orbit instances.

3.1. Single-orbit instances

Table 1 summarizes the main characteristics of the 13 instances of the simple-orbit series.
The first column gives the label of each instance, the second column the number of candidate
photos in set P , the third column the number of binary variables. The next three columns
indicate the number of binary and ternary constraints. The column z∗ indicates the optimal
(maximal) values (given in italic numbers) for the objective function. These values have
been obtained thanks to an exact algorithm called Pseudo Dynamic Search (Verfaillie et al.,
1996). The last column 1 · x∗ indicates the range for the number of taken photos in solutions
found by the tabu search algorithms of Vasquez and Hao (2001).

3.2. Multi-orbit instances

Table 2 shows the main characteristics of the 7 instances of the multi-orbit case. The first
six columns have the same meanings as in Table 1. The column bm defines the maximal

Table 1. Benchmark instances for the simple-orbit case.

Pb. Photos n m1 m2 m3 z∗ 1 · x∗

54 67 125 67 389 23 70 45

29 82 120 82 610 0 12032 34

42 190 304 190 1762 64 108067 80

28 230 346 230 6302 590 56053 46–47

5 309 809 309 13982 367 115 93–96

404 100 158 100 919 18 49 31–33

408 200 328 200 2560 389 3082 60–63

412 300 544 300 6585 389 16102 77–79

112 364 692 364 9456 4719 22120 95–98

503 143 259 143 705 86 9096 69–70

505 240 448 240 2666 526 13100 82–85

507 311 573 311 5545 2293 15137 89–92

509 348 652 348 7968 3927 19125 93–96

Table 2. Benchmark instances for the multi-orbit case.

Pb. Photos n m1 m2 m3 bm z∗ 1 · x∗

1401 488 914 488 11893 2913 200 176056 146

1403 665 1317 665 14997 3874 200 176140 216

1405 855 1815 855 24366 4700 200 176179 249

10213 1057 2355 1057 30058 5875 200 176245 309

1502 209 413 209 296 29 200 61158 166

1504 605 1253 605 5106 882 200 124243 276

1506 940 2060 940 19033 4775 200 168247 307

recording capacity for the knapsack constraint. The column z∗ indicates either the optimal
value of the objectif fonction (given in italic numbers) or the lower bound for each instance.
Notice that in addition to the presence of knapsack constraint, these instances are much
larger than those of the single-orbit case.

Except the smallest instance 1502, neither optimal solution nor upper bound is known yet
for these instances. The best known results have been obtained by the tabu search algorithm
of Vasquez and Hao (2001), giving lower bounds for these instances.

4. Linear programming relaxation

One basic and general approach for generating upper bounds is Linear Programming (LP)
relaxation. In LP relaxation we relax the integrality constraint of the initial problem and
solve the relaxed problem using a standard method like simplex. Given the fact that there
is no known result of LP relaxation for the muilti-orbit case of the general DPSP01. We
decided to study first this basic approach.

Let us define the relaxed problem (denoted by DPSP in contrast to DPSP01) as follows:

DPSP

{
maximize z = c · x

subject to A · x ≤ b and x ∈ [0, 1]n

We solved exactly this relaxed DPSP using the simplex method. Given the huge size of
some multi-orbit instances, we had to implement a compact version of the simplex method
using the code proposed in Press et al. (1992). Our implementation allowed us to deal with
the most important instances which require up to 600 MB RAM.

We applied this approach to the instances of the single-orbit and multi-orbit cases. Upper
bounds are reported in Tables 3 and 4.

4.1. Upper bounds for single-orbit instances

From Table 3, we remark that the upper bounds z̄ are very far from the optimal values
z∗ of Table 1. The last column of Table 3 quantifies the gap between optimal continuous
and binary values of the objectif function by the relative deviation (z̄ − z∗)/z̄. The gap is
in general more than 40% and goes beyong 50% for two instances. The gap may also be
observed by comparing the columns 1 · x̄ of Table 3 and 1 · x∗ of Table 1.

4.2. Upper bounds for multi-orbit instances

From Table 4, we observe that the upper bounds for the multi-orbit instances are in general
of better quality than for the single-orbit ones. Given the fact that the values z∗ of Table 2
are lower bounds obtained by tabu search, the stability of the relative deviation (z̄ − z∗)/z̄
constitutes a good indicator concerning the quality of the solutions of tabu search. Notice,
however, the absolute values of z̄ and 1 · x̄ remain far away from those of z∗ and 1 · x∗.

Table 3. Upper bounds with LP relaxation: Single-orbit instances.

Pb. n m Pivots z̄ 1 · x̄ (z̄ − z∗)/z̄ (%)

54 125 479 136 83.00 55.00 15.66

29 120 692 140 13057.00 54.50 7.85

42 304 2016 460 190567.50 125.00 43.29

28 346 7122 599 221090.50 147.50 74.65

5 809 14658 1625 315.00 281.25 63.49

404 158 1037 181 96.00 64.50 48.96

408 328 3149 436 5188.00 133.00 40.59

412 544 7274 801 31323.50 212.50 48.59

11 692 14539 1108 40416.00 266.00 45.27

503 259 934 292 12637.50 101.75 28.02

505 448 3432 564 22236.00 173.50 41.09

507 573 8149 833 27361.50 222.50 44.68

509 652 12243 1005 36394.00 252.00 47.45

Table 4. Upper bounds with LP relaxation: Multi-orbit instances.

Pb. n m Pivots z̄ 1 · x̄ Am .x̄ (z̄ − z∗)/z̄ (%)

1401 914 15295 3261 300000.00 151.00 200.00 41.31

1403 1317 19537 3828 300149.00 283.75 200.00 41.32

1405 1815 29922 4342 300207.00 344.25 200.00 41.31

1021 2355 36991 5122 300385.00 507.75 200.00 41.33

1502 413 535 313 64160.50 169.75 147.50 4.68

1504 1253 6594 1368 191279.00 352.25 200.00 35.05

1506 2060 24749 3682 276863.00 492.25 200.00 39.23

It is generally believed that LP relaxation is not very powerful for generating good upper
bounds. The above results are consistent with this fact.

5. Relaxing logic constraints

Given that the DPSP01 is defined by a knapsack constraint and a large number of logical
constraints, we experimented a second approach based on the relaxation of these logi-
cal constraints. In this relaxed problem, the integrality constraint over the variables xi is
maintained. Such a relaxation leads to the following binary knapsack problem (KP01):

KP01

{
maximize z = c · x

subject to Am · x ≤ bm and x ∈ {0, 1}n

Table 5. Maxima of KP01.

Pb. z̃ Pb. z̃

1401 332000 1502 89196

1403 332182 1504 245276

1405 332255 1506 294440

1021 332462

For this relaxed problem KP01, there are several exact algorithms for solving instances
of medium size (n ≤ 200) (Fayard and Plateau, 1982; Nauss, 1976). When the values of
the profit vector c are loosely correlated to the coefficients of the knapsack constraint Am ,
there is an algorithm for solving instances of very large size (n ≤ 100,000) (Martello and
Toth, 1990).

There exists also a pseudo polynomial algorithm for solving KP01 using dynamic pro-
gramming (Bellman and Stuart, 1962; Gondran and Minoux, 1985; Smith, 1990). This
algorithm has a space and time complexity O(n × (bm + 1)). In our case, bm = 200 for
all the multi-orbit instances, this algorithm is quite interesting for the problem. We have
implemented this algorithm and the results for the multi-orbit instances are given in Table 5.

From Table 5, one observes that bounds z̃ are worse that those of z̄ obtained with LP
relaxation. This is not really surprising given the large number of relaxed logical constraints.
However, compared with LP relaxation, the running time of this approach is much faster: on
a PIII500 MHZ, less than 2 seconds are necessary for the dynamic programming algorithm,
10 minutes to three days for the simplex algorithm.

In summary, neither LP relaxation nor relaxing logical constraints is able to produce good
upper bounds for the benchmark instances. In the next section, we present a specialized
approach which will give us upper bounds of high quality.

6. A partition based approach

6.1. Rationale

The partition-based approach follows the well-known “divide and conquer” principle. The
rationale of this approach is the following.

We have exhaustive search algorithms which are able to solve exactly small problems,
but have difficulties to tackle larger ones. We divide thus a large DPSP problem into several
smaller sub-problems and solve these smaller problems exactly. Using such a strategy,
we relax naturally the constraints which link some sub-problems. The sum of the optimal
values of all the sub-problems must be greater or equal to the optimum of the initial problem,
leading to an upper bound. This argument may be formally stated as follows.

• Let X be the set of all the couples (p, c) (variables) of a DPSP01 instance;
• Let z̊ be the optimal value of DPSP01;
• Let {Xl}1≤l≤k a partition of X composed of k classes;

• Define now k sub-problems DPSP01(Xl) for 1 ≤ l ≤ k, each DPSP01(Xl) being defined
by the set of variables Xl and the constraints containing only these variables;

• Let {z̊l}1≤l≤k the set of optimal values of the above k sub-problems DPSP01(Xl).

Here constraints connecting two or more sub-problems are ignored, thus the set of sub-
problems DPSP01(Xl), 1 ≤ l ≤ k constitutes a relaxation of the initial problem DPSP01.
Thus, we have the following relation:

ẑ =
k∑

l=1

z̊l ≥ z̊

That is, the value ẑ gives an upper bound of the initial DPSP01(X) instance.
Our partition-based approach may be summarized as follows.

1. Generate a partition {Xl}1≤l≤k of the variable set X of the given DPSP01 instance.
2. Solve exactly each of k sub-problems DPSP01(Xl) (1 ≤ l ≤ k) to get the set of optimal

values {z̊l}1≤l≤k .
3. Sum up the values of the set {z̊l}1≤l≤k .

In what follows, we describe first the exact algorithm for solving the sub-problems and
then the heuristics for partitioning an initial problem.

6.2. An iterative enumerative algorithm

To solve exactly each DPSP01(Xl), we developed an iterative backtracking algorithm. This
algorithm is inspired of the Russian Doll Search (Bensana et al., 1996; Verfaillie et al., 1996),
which is itself a nested Branch & Bound algorithm. For each set of variables Xl 1 ≤ l ≤ k,
the algorithm solves successively Xl nested sub-problems including only 1 variable, then 2
variables...then |Xl | variables (see Algorithm 1). The exact value obtained at a step is used
at the next step in order to prune the search tree.

This algorithm uses a static order of the variables in Xl = {x1 · · · x|Xl |}. Each entry i of
the table zmax records the optimal value of the sub-problem DPSP01({xi+1 · · · x|Xl |}).

Algorithm 1: SOLVE(Xl)

begin
i ← |Xl |
zmax[i] ← 0
i ← i − 1
while i ≥ 0 do

zmax[i] ← ENUMERATE(Xl , i)
i ← i − 1

z̊l ← zmax[0]
end

Algorithm 2: ENUMERATE(Xl , i)

begin
j, z, z∗ ← i, 0, −1
go forward

if j = |Xl | then
[1] if z > z∗ then z∗ ← z

backtrack
else

j ← j + 1
x j ← 1
z ← z + l j

if there is constraint violation then backtrack
go forward

backtrack
if x j = 0 then

j ← j − 1
if j = i then return z∗

backtrack
else

x j ← 0
z ← z − l j

[2] if z + zmax[j] ≤ z∗ then backtrack
go forward

end

The most important element of this nested search procedure is ENUMERATE(Xl , i) (see
Algorithm 2). This algorithm realises a deep-first search, backtracks only on the last |Xl |− i
elements of the set Xl . Line (2), together with the update of line (1) allows a better pruning
of the search tree than a standard depth first Branch & Bound search.

Not surprisingly, this algorithm has an exponential time complexity in the worse case
with respect to the number of the variables of the problem. However, the algorithm is able
to solve problems of reasonable size. Next section describes a way allowing us to partition
a large problem into such solvable (sub-)problems.

6.3. Heuristics for partitioning

6.3.1. An equal size partition. In order to partition a given DPSP01, one must answer
two questions. First, what is the appropriate number k of the sub-problems? Second, for a
fixed k, how should the initial problem be partitioned. Intuitively, both points would have
important influence on the quality of the bounds. These issues are further studied in the next
section. In fact, we will see that an optimal solution for these two points may be as hard as
solving the initial problem. For the moment, we limit ourselves to a trivial partition in order
to get a primary idea about the merit of this partition-based approach for upper bounds.

For a fixed number k, the n variables of the problem are divided into k classes of equal
size �n/k� following their order in n: the first �n/k� variables of n go to the class X1, the
next �n/k� variables to the class X2 and so on.4

Table 6. Trivial partitions for the instance 1401.

k #RC ẑ k #RC ẑ

20 8635 263069 15 7728 247070

19 8459 252070 14 7242 240064

18 8321 258066 13 6973 245062

17 8039 254067 12 6648 242064

16 7865 247067 11 6513 243063

Table 6 shows the results for the instance 1401 (n = 914) using this partition strat-
egy with k fixed at 10 different values from 20 to 11. The column #RC indicates the
number of relaxed constraints (for a total of 15294 constraints): a relaxed constraint is
one whose variables belong to more than one variable class (except the knapsack con-
straint which is not relaxed). Comparing Tables 6 and 4, we observe that these upper
bounds are better than those of LP relaxation. However, these bounds are still far from
the best known lower bound which is 176056 (see Table 2). To improve these bounds,
we may decrease the number of partitions k. Unfortunately, this increases rapidly the
running time of the approach. We observe also that the bounds don’t improve regularly
when the number of partitions decreases: the bound with 19 partitions is better than those
with 18 and 17.

In fact, for a given instance, there exist some partitions better than others. In particular, the
number of relaxed constraints should be used as a criterion for determining the partitions.
This idea is studied in detail in the next section leading to a heuristic method for a more
efficient partitioning.

6.3.2. A criterion for optimized partitioning. In this section, we introduce an optimization
criterion for a better partitioning. The basic idea is the following. For a fixed number k of
classes, a good partition should minimize the “number” of inter-class constraints. Such a
partition will generate classes with a maximum of intra-class constraints, helpful for the
exact algorithm.

Recall that there are different constraints in the DPSP01. The optimization criterion
considers consistency, binary and ternary constraints and introduces a hierarchy for these
constraints with a decreasing importance in that order.5 Let {Xl}1≤l≤k be a partition of X .
We represent this hierarchy by using the ω function:

ω(xi , x j) =

8 if ∃k ∈ [1, m1] such that Aki .Akj = 1

4 if ∃k ∈ [m1 + 1, m1 + m2] such that Aki .Akj = 1

1 si ∃k ∈ [m1 + m2 + 1, m − 1] such that Aki .Akj = 1

The values 8, 4 and 1 represent the relative importance that we give to each constraint and
are empirically determined.

Figure 1. Example of a partition: k = 3, #RC = 4 et f = 17.

We define also the following binary function κ:

κ(xi , x j) =
{

0 if variables xi and x j belong to a same class

1 otherwise

Then we look for a partition {Xl}∗ of X which minimizes the function:

f ({Xl}) =
∑
i< j

κ(i, j).ω(i, j)

Figure 1 shows a small example with a partition of three classes. The points represent
couples (photo, camera). The edges represent logical inter-class contraints. All the possible
cases are given in this figure:

• one consistency constraint between couples (1,1) and (1,2);
• one inter-class binary constraint between couples (3,1) and (4,2);
• the two possible cases for inter-class ternary constraints: (2,1), (8,2) and (9,3) on the one

hand, (5,1), (6,2) and (7,3) on the other hand.

Now, consider the graph whose nodes represent the classes of a partition and whose
(weighted) edges represent constraints of the given DPSP01 instance. Then the task is to
find a partition such that cut edges (those having their two end points in different classes)
have a minimal total sum of their weights. This problem is thus a generalized version of the
well-known NP-hard graph partitioning problem (Garey and Johnson, 1979, p. 209).

6.3.3. Partitioning with tabu search. Given the intrinsic difficulty of the above partitioning
problem, we turn to a heuristic approach for generating good but not necessarily optimal par-
titions. For this purpose, we developed a tabu search algorithm, which improves iteratively
an initial trivial partition. Notice that tabu search has been applied to the the conventional
graph partitioning problem, see for instance (Friden et al., 1989; Rolland et al., 1996). Our
tabu search algorithm shares some common features with these previous implementation.
Some specific techniques are introduced to cope with the particular nature of our problem.

Given a DPSP01 instance and a fixed number k, the tabu search algorithm tries to find a
partition {Xl}1≤l≤k of the initial variable set X while minimizing the previously defined f
fonction (Section 6.3.2). In the tabu search algorithm, a configuration represents a partition
composed of a fixed number k classes. We describe now the neighborhood relations and
tabu tenure of this Tabu algorithm.

Two neighborhood relations are used by the algorithm in an alternative way. The first
neighborhood is symmetric and the size of each class of a partition is kept constant.6 A
neighboring partition is obtained by simply exchanging two nodes between two classes.
More precisely, at each iteration of the algorithm, we first select a node s such that it has
the maximal number of edges going out from its class Xs . We then exchange s with a node
t of another class Xt (Xs �= Xt).

The second neighborhood is not symmetric. The size of each class of a partition may
vary during the search. With this neighborhood, one chooses a variable s in a class Xs such
that |Xs | ≥ smin and moves s into another class Xt such that |Xt | < smax. smin and smax are
two symmetric values around n/k:(

smax − n

k

)
=

(
n

k
− smin

)

This principle, inspired of the work presented in Rolland et al. (1996) has, among others,
the advantage of encouraging the grouping of the binary variables of a same photo in a same
class.

The complexity of searching the first neighborhood is linear with respect to the instance
size, because the first element of a move is chosen independently of the second element. For
the second neighborhood, a trivial implementation will lead to a complexity of O(n × k).
This complexity may be reduced using special data structures such as buckets (Battiti and
Bertossi, 1999) when the number of the classes k is greater than two.

The tabu search algorithm uses mainly the first neighborhood during its search, i.e. during
its search intensification phases and changes to the second neighborhood during its search
diversification phases.

Each time a move is carried out, the reversing move is classified tabu for a number of
iterations (tabu tenure). The tabu tenure of a move is determined dynamically using the
following formula:

date(t, Xs) + freq(t) ≥ iter

where iter is the current iteration number, freq(t) the number of times node t has been
exchanged with another node, date(t, Xs) the time stamps (an iteration number) when t was
moved into Xs .

Table 7. Advanced partitions with tabu search for the instance 1401.

k #RC ẑ k #RC ẑ

20 3094 187062 15 2585 184062

19 3532 186064 14 3789 188062

18 3382 187063 13 3217 186062

17 3210 187062 12 2560 184062

16 3297 186063 11 1940 185062

In addition to the number of classes k for a partition, the tabu search algorithm requires
some other parameters, in particular, smin and smax.

In order to get a rough idea about the merit of this approach, we take again the instance
1401 used for the trivial partition (see Section 6.3.1). As before, we use 10 different partition
sizes going from 20 classes to 11 classes. Using the approach described in this section, we
obtain the results showed in Table 7.

We observe that these upper bounds ẑ are much better than previous ones and the number
of relaxed constraints #RC is much smaller. The running time to obtain these results is
less than one minute on a PIII500 PC. Next section shows more detailed results for all the
benchmark instances using this approach.

7. Upper bounds for the DPSP01 benchmark instances

7.1. New upper bounds for the single-orbit instances

For the single-orbit instances, we may compare directly our results with the optimal values
z∗ reported in Verfaillie et al. (1996). Comparisons are also given with previous known
upper bounds obtained with column generation techniques (Gabrel, 1999). This allows one
to further appreciate the advantage of the partition-based approach. Results are given in
Table 8 (“-” means no result is available).

From the table, we see that the upper bound of 9 out of 13 instances coincides with the
optimal value and for the 4 remaining instances, two bounds are very close to the optimal
value. We remark that the best partition found has only two or three classes. Finally, we
observe the partition-based bounds are much better than the previous known ones.

7.2. Tight upper bounds for the multi-orbit instances

We present now the most important results of this paper, i.e. the upper bounds for the
multi-orbit instances, which remained unknown so far. Results are given in Table 9.

The first column z∗ shows the lower bounds obtained with the tabu search algorithm
described in Vasquez and Hao (2001). Columns c1, c2, c3, Am .x̂ have the following meaning
and together they give indications about the degree of unfeasibility of the solutions.

• c1 = the number of relaxed consistency constraints;
• c2 = the number of relaxed binary constraints;

Table 8. Comparison of upper bounds for the simple-orbit instances.

Column-generation-based upper bounds Partition-based upper bounds

Pb. ẑ (ẑ − z∗)/ẑ (%) k ẑ (ẑ − z∗)/ẑ (%)

54 71.44 2.02 2 70 0

29 – – 3 12032 0

42 108067 0.00 3 108067 0

28 70053.00 19.98 2 58053 3.45

5 119.00 3.36 3 116 0.86

404 53.66 8.68 3 49 0

408 3091.75 0.32 3 3083 0.03

412 71.44 2.02 2 16102 0

11 – – 2 22120 0

503 9595.00 5.20 2 9096 0

505 14107.75 7.14 3 13103 0.02

507 17639.22 14.19 2 15137 0

509 – – 2 19125 0

Table 9. Tight upper bounds for the multi-orbit instances.

Pb. z∗ k ẑ c1 c2 c3 Am · x̂ (ẑ − z∗)/ẑ (%)

1401 176056 8 180062 13 25 1 221 2.22

1403 176140 7 180160 6 15 0 249 2.23

1405 176179 6 179226 2 11 3 283 1.70

1021 176246 10 177304 5 21 5 291 0.60

1502 61158 2 61158 0 0 0 148 0

1504 124243 3 124258 0 3 0 237 0.01

1506 168247 6 168294 2 13 0 283 0.03

• c3 = the number of relaxed ternary constraints;
• Am · x̂ = memory consummation which should be ≤200 according to the knapsack

constraint.

The last column (ẑ − z∗)/ẑ contains the most important information. We observe that the
upper bounds ẑ are close or very close to the lower bounds z∗ for these instances. This
observation has two immediate important implications. First, we may conclude that the
heuristic solutions presented in Vasquez and Hao (2001) are of high quality. For three
instances (1021, 1504, 1506), the heuristic solution is already very close to the optimal
value, if it is not optimal. Second, we may conclude that these upper bounds are very tight,
especially for the last four instances in the table. On the contrary, further improvements
may be expected concerning the first three instances for both upper and lower bounds.

In general, few logical constraints are violated (relaxed). On the contrary, we observe
an important memory excess with respect to the capacity constraint (≤200). This is not
surprising given that the knapsack constraint is not taken into account by the partition
algorithm.

Finally, the total resolution time (partitioning with a tabu search plus exact resolution of
each sub-problem) varies from several hours to several days on a PIII 500 MHZ.

8. Conclusion

The main result of this study is the achievement of a set of tight upper bounds for a set
of benchmark instances of the daily photograph scheduling problem of earth observation
satellites such as Spot 5. Contrasting these upper bounds with the lower bounds of Vasquez
and Hao (2001) allows us not only to assess the quality of the previous heuristic solutions
but also to assess the quality of the upper bounds on the other hand. These upper bounds
may be also helpful for devising more efficient exact algorithms. Such an algorithm may
hopefully solve optimally all the benchmark instances.

The upper bounds are obtained with an original partition-based approach. This approach
is based on the well-known “divide and conquer” principle. The initial problem is divided
into sub-problems which are solved exactly by an iterative enumeration algorithm. A tabu
search algorithm is used to determine optimized partitions.

Two more conventional approaches were also experimented. The first one is based on LP
relaxation with simplex. The second relaxes the logical constraints and solves a knapsack
problem with dynamic programming. Both approaches led only to weak upper bounds.

Finally, this work shows the interest of combining a heuristic search and an exact search
for large and difficult combinatorial optimization.

Acknowledgments

The authors highly appreciate the valuable and detailed comments of the anonymous re-
viewers, which helped to improve the presentation of the paper.

Notes

1. These benchmark instances are available from ftp://ftp.cert.fr/pub/lemaitre/LVCSP/Pbs
2. In Bensana et al. (1999), this instance is identified by 414.
3. In Bensana et al. (1999), this instance is identified by 1407.
4. If k ∗ �n/k� �= n, the last n − k ∗ �n/k� variables go to the last class.
5. Given the global nature of the knapsack constraint, this constraint is completely relaxed in this approach.
6. Two different classes may have different sizes however.

References

R. Battiti and A.A. Bertossi, “Greedy, prohibition, and reactive heuristics for graph partitioning,” IEEE Transac-
tions on Computers, vol. 48, no. 4, pp. 361–385, 1999.

R. Bellman and D. Stuart, Applied Dynamic Programming, Princeton University Press, 1962.

E. Bensana, M. Lemaı̂tre, and G. Verfaillie, “Earth observation satellite management,” Constraints, vol. 4, no. 3,
pp. 293–299, 1999.

E. Bensana, G. Verfaillie, J.C. Agnèse, N. Bataille, and D. Blumstein, “Exact and inexact methods for the daily
management of an earth observation satellite,” in Proc. 4th Intl. Symposium on Space Mission Operations and
Ground Data Systems, Münich, Germany, 1996.

D. Fayard and G. Plateau, “An algorithm for the solution of the 0-1 knapsack problem,” Computing, vol. 28, pp.
269–287, 1982.

C. Friden, A. Hertz, and D. de Werra, “Stabulus: A technique for finding stable sets in large graphs with tabu
search,” Computing, vol. 42, pp. 35–44, 1989.

V. Gabrel, “Improved linear programming bounds via column generation procedure for the daily scheduling of
earth observation satellite,” Research Report 99-01, LIPN, Paris XIII University, Jan. 1999.

M. Garey and D. Johnson, Computers & Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman
and Company, 1979.

M. Gondran and M. Minoux, Graphes & Algorithmes, Eyrolles, 1985.
S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley: New York,

1990.
R.M. Nauss, “An efficient algorithm for 0-1 knapsack problem,” Management Science, vol. 23, ppp. 27–31, 1976.
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, Cambridge University

Press: Cambridge, 1992.
E. Rolland, H.P. Pirkul, and F. Glover, “Tabu search for graph partitioning,” Annals of Operations Research, vol.

63, pp. 209–232, 1996.
D.K. Smith, Dynamic Programming: A Practical Introduction, Ellis Horwood, 1990.
M. Vasquez and J.K. Hao, “A logic-constrained” knapsack formulation and a tabu algorithm for the daily photo-

graph scheduling of an earth observation satellite,” Journal of Computational Optimization and Applications,
vol. 20, pp. 137–157, 2001.

G. Verfaillie, M. Lemaı̂tre, and T. Schiex, “Russian doll search for solving constraint optimization problems,” in
Proc. 13th National Conference on Artificial Intelligence, Portland, USA, 1996, pp. 182–187.

