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Abstract 

The antenna-positioning problem concerns finding a set of sites for antennas from a set of pre-defined candidate 
sites, and for each se\ected site, to dctermine the number and types of antennas, as well as the associated values 
for each of the antenna parameters. Ail these choiccs must satisfy a set of imperative constraints and optîmize 
a set of objectives. This paper presents a hcuristic approach for tackling this complex and highly combinatorial 
problem. The proposed approach is cornposed of three phases: a constraint-based pre-processing phase to fil ter out 
bad configurations, an optimization phase using tabu search, and a post-optimization phase to improve solutions 
given by tabu search. To validate the approach, computational results arè prcsented using large and realistîc data 
sets. 

Key Words: large scale combinatorial optimîzatîon, tabu search, radio network planning 

1. Introdnction

The planning process of mobile radio networks may be roughly divided into two different 
problems: the Antenna Positioning Problem (APP) and the Frequency Assignment Problem 
(FAP). The basic APP is concerned with a series of decisions, such as the site locations 

for the antennas, the number and types of antennas for each site, and the associated values 
for the antenna parameters. The FAP has to do with the assignment of a set of available 
frequencies to the antennas of the network. Both problems involve a great deal of constraints, 
and they are closely related, because a good (bad) antenna positioning may make frequency 
assignment easier (harder). 

Until now, many studies have been carried out for the FAP and highly effective 
optirnization algorithms have been developed; see for instance, (Box, 1978; Crampton, 
Hurley and Stephen, 1994; Duque-Anton, Kunz and Ruber, 1993; Funabiki and Takefuji, 
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1992; Hao and Dorne, 1995; Hao, Dorne and Galinier, 1998; Hurley, Thiel and Smith, 
1996; Lai and Coghill, Jaumard et al., 2000). Many network operators now routinely use 
frequency-planning tools integrating such algorithms. 

On the contrary, studies on optimization algorithms for the antenna-positioning problem 
seem much more limited. Indeed, most existing studies are oriented towards small-scale 
micro-cellular or indoor systems involving only several antennas (Fortune et al., 1995; 
McGeehan and Anderson, 1994; Sherali, Pendyala and Rappaport, 1996). Other studies fo
cus on optimizing some antenna parameters or some specific objective such as the coverage 

of a (relatively small) area (Calégari et al., 1996; Molina, Athanasiadou and Nix, 1999). 
No real optimization algorithm is available yet for antenna positioning and optimization of 
large-scale radio networks. Tasks related to antenna positioning are essentially carried out 

with the help of engineering tools integrating some simulation functions, which leads to 
largely sub-optimal solutions. 

With the continuous and rapid growth of communication traffic, large scale planning 
becomes more and more difficult and cannot be realized in an optimal or near optimal 
manner. Automatic or interactive optimization algorithms and tools would be very useful 
and helpful. Advances in this area will certainly lead to important improvements concerning 
the service quality in tenus of coverage and interference and allowing the decrease of the 

installation cost. The APP thus constitutes a significant stage in the process of cellular 
network planning. 

The general antenna-positioning problem can be informally described as follows. Given a 
list of candidate sites for antennas, several types of antennas, and a discretized geographical 
working area characterized by a set of points with information related to traffic estimation 
and the radio threshold, the aim is to select some sites among the candidate sites, and for 
each selected site determine the nurnber and types of antennas, as well as the associated 
values for each of the antenna parameters. All these decisions must satisfy a set of irnperative 
constraints ( cover, handover, one connected-component cell) and optimize a set of objectives 
(number of sites used, amount of traffic that can be handled, level of potential interference, 
efficiency of transmitters). It is easy to see that the problem is highly combinatorial. The 
number of possible combinations is enormous for realistic networks, leading to search 

spaces as large as 24·000,000. 

The heuristic approach we develop is composed of three sequential phases: a constraint 
based pre-processing phase to eliminate a large number of "bad" combinations, an opti
mization phase by tabu search working in a reduced search space, and a post optimization 
phase by fine tuning of antenna parameters. 

This approach is applied to two large and realistic test data sets corresponding respectively 
to an urban network and a highway network in a GSM system. Experimentation shows that 
the proposed approach is highly effective, robust, and flexible. 

2, Problem description 

In this section, we give the basic elements necessary for the general understanding of the 
antenna-positioning problem. A more detailed presentation of the APP can be found in 



Table 1. Characteristics of a real network data set. 

Area width Area length RTP STP TTP Sum of traffic 

Urban network 46.5 km 45.8 km 56792 17393 6652 2988,08 Erlangs 

Candidate sites 

568 

Reininger (1997) and Reininger and Caminada ( 1998a). A cellular network is composed 
of three entities: a discretized geographical working area, where signals and traffic are 
measured, mobile ( cellular) stations (MS), which define the services, and antennas, which 
can be placed on some pre-defined sites within the geographical area. 

2.1. Working area 

The geographical working area on which a network is deployed is discretized into a finite 
number of points called reception test points (RTP). For each RTP, a radio signal is tested. 
From the set of RTP, two other sets are defined: 

• the set of service test points (STP), where the radio signal must be higher than a threshold
Sq to allow the establishment of communications (Section 2.2),

• the set of traffic test points (TTP), for each of which the traffic of communication measured
in Erlang is estimated.

The traffic implies the communication, a TTP is thus necessarily a STP and the following 
relation is always verified: 

{TTP} C {STP} c {RTP} 

The working area is also described by a list of pre-defined candidate sites on which antennas 
may be placed. 

Table 1 and figure 1 summarize ail these concepts. This example corresponds to an urban 
area of 49.6 km x 45.8 km. 

The mesh step for the discretization is 200 meters. We thus have 248 x 229 = 56792 
RTP. 

2.2. Mobile station (MS) 

A network provides a service for a category of mobile stations. A quality threshold, noted 
Sq hereafter, defines this service. A network may provide different services, thus different 
quality threshold. If the radio signal al a given point of the working area is higher than 
the required Sq, then the cellular phones that are al this point can communicate. The value 
of the threshold Sq is dependent on the MS considered and expressed in decibel ( dBm) 
(Table 2). 



RTP : points where 
radio signals is 
computed 

Candidate sites 

Table 2. Examplcs of thresholds per 

service. 

Mobile station 

2 Watt incar 

2 Watt outdoor 

8 Watt outdoor 

Sq in dBm 

-78 

-84

-90 

Fiiure l. A real network working arca and its candidate sites. 

STP : points where 
radio signais must 
be;, Sq 

TTP : points where 
traffic is estimated 

An MS has another specific characteristic that must be considered: the reception sensitiv
ity of the MS, or mobile sensitivity (Sm). Sm has an average value of -99 dBm, however, a 

signal ofthis value is not sufficient for an MS to establish communication with an antenna, 
but it does scramble an already-established communication. This point wiH be re-examined 
later when we evoke the noise level of a network. 

2.3. Antennas 

In general, there are several types of antennas available in a network, characterized primarily 
by their transmission gain (Gs) and their propagation diagrams (figure 2). In this work, we 
consider 3 types of antennas: omnidirectional (OMNI), large directional (LD), and small 

directional (SD). 

The principal parameters of these antennas are: 

• the power, PS, which can vary frorn 26 to 55 dBm,

• the azimuth (for a directional antenna) between 0° and 360° ,

• the tilt (for a directional antenna) between -15° and O',



Large Directional (LD): 
Gs = 15.65 dBm 

270° 

Fixure 2. 3 types of antennas. 

O" 

1 
180° 

►I Small Directional (SD): 
1 Gs=l7.15dBm 

90° 

� Omnidirectional (OMNI): 
. Gs=ll.15dBm 

• the number of transmitters (TRX) assigned to the antenna for a given traffic. In a GSM
system, a conversion table determines this number according to the material used. Table 3
shows such an example where an antenna may require I to 7 TRX (thus I to 7 channels).
Note that the number of TRX is directly determined by the traffic and does not need to
be tuned by the optimization algorithm.

These antennas can be placed on pre-defined candidate sites in the working area. In our
case, a site can host either one OMNI antenna or one to three LD or SD antennas. 

2.4. Base station and cell 

A base station, BS b, is defined by a quintuplet b = (site, antenna, tilt, azimuth, power). It 
corresponds thus to the choice of a site, an antenna on this site and the parameter values of the 
antenna. For example, for the above network, the BS b = (356, LD, 0, 30, 38) corresponds 
to the placement of a LD antenna on the site numbered 356. This antenna has a tilt of 0', 
an azimuth of 30° , and a power of 38 dBm. 

Other components are also involved in the definition of a BS, such as BS transmitter 
loss and BS receiver sensibility (Reininger, 1997; Reininger and Caminada, 1998a), and the 
same applies to the MS (Section 2.2). Since these values are constant for a given situation, 
they will not be further discussed in this paper. 

In order to assess the signal quality at each point, a radio wave propagation model is 
needed. Such a mode! is able to predict the propagation loss of an electromagnetic field 
between a site and each RTP of the working area. To compute the prediction, the mode! 
takes into account the site coordinates, its height, the RTP coordinates, the set of obstacles 
between the site and the RTP (buildings, mountains ... ), and the angle of incidence between 
the site and the RTP. 

Table 3. Number of transmitters and traffic capacities. 

TRX 2 

Erlang 2.9 8.2 

3 4 5 

15 22 28 

6 7 

35.5 43 



Directive antenna 
on a site 

Figure 3. Cell corresponding to b = (356, LD, 0, 30, 38). 

We evoked above only downlink signais emitted by base stations towards cellular phones. 
Infact, il is also necessary to take into account signais from MS towards BS (uplink signais). 
It is, however, shown in Reininger and Caminada (1998a) that if the downlink signal, coming 
from a BS, is higher than the quality threshold Sq and the uplink signal is stronger than the 
downlink signal (which is indeed the case in GSM systems), then it is not necessary to be 
concerned with uplink signais. 

Thus, starting from the data of a BS in a network we will be able to calculate, for each 
point of the geographical area, a radio signal, noted hereafter as Cd. The cell of a BS 
corresponds thus to the set of STP covered by the BS, i.e. for which the signal received 
from this BS is the best one and higher than the quality threshold Sq. Figure 3 illustrates 
the link between an isolated BS and its cell. 

Since radio wave propagation is never homogeneous and isotropie, the cell of a 
BS is always irregularly bounded, depending on the topography and the transmitting 
power. Moreover, the cell of a BS is dependant on other BS emitting from overlapping 
areas. 1 

2.5. Constraints 

Each STP must be served by at least one BS. Therefore, the union of the cells in a given 
network must be equal to the set of all the STP located in the working area. This necessity 
constitutes the global coverage constraint for a network. 

When an MS moves from one cell to another, the network must be able to guaran
tee the continuity of the communication. To accomplish this, it is essential that each 
cell has a nonempty intersection (handover area) with ils neighboring cells. This require
ment constitutes the handover constraint, which must be respected by all the cells of the 
network. 

The STP contained in a cell may constitute several connected components. Connected 

components play a significant (and negative) role in the quality of a network (Reininger 
and Caminada, 1998b): the more connected components there are for a cell, the more in
terference there may be, Also, cells having more connected components make it difficult 

to manager the handover. Therefore, one of the constraints of the APP is that each cell 
of the network constitutes only one connected component. This local constraint is called 
one connected component (OCC) constraint, for which in this paper, on1y components 



containing more than 8 STP are taken into account (see Section 3.3). For example, the 
cell in figure 3 satisfies the OCC constraint, even if, in addition to the main connected 
cornponent, the cell has one component of 2 STP and six other components of 

lSTP. 

2.6. Objectives 

The installation of a new site is usually very expensive for the network operator. For this 
reason, a major objective of APP is to minimize the number of sites used. 

A cornplete network is made up of a certain number of ce lis (typically one hundred forthe 
networks we studied). Each STP receives signals coming from several BS. These overlap
ping signals are necessary for the purpose of handover, but at the same time generate interfer

ing noise. Therefore, a second important objective is to minimize the level of noise within the 
network. 

A cell covers a certain number of traffic test point TTP. However, given that the total 
traffic served by a cell cannot exceed 43 Erlang (see Table 3), it is possible that the traffic of 

some TTP within a cell may not be totally served. Therefore, a third objective is to maximize 
the total traffic supported by the network. 

One notices from Table 3 that the closer the traffic of a cell is to the maximum accepted 
by a given number of TRX, the better the output of these TRX will be. This leads to 
a fourth objective, which is to maximize the traffic yield of the BS transmitters in the 

network. 
The preceding classification of constraints and objectives corresponds to a particular 

scenario that was used within the framework of this study. Of course a network operator 
can interpret ail these concepts differently and exchange some constraints and objectives. 

Moreover, other constraints and objectives may be introduced. 

The above constraints and objectives are rather interdependent of each other, and often 
have confticting natures. First, the coverage constraint is opposed to the objective of min
imizing the number of sites used. Second, the handover constraint implies the existence 
of several signals at one same point, and can increase the level of noise which one wants 
to minimize. Third, in order to maximize the amount of traffic the network can handle, 

one needs to limit the size of each cell. Now in order to guarantee coverage, one need to 
increase the size or the number of cells. In both cases, the increase îs accompanied by an 
increase in the level of noise, as well as an increase in difficulty of managing the OCC 
constraint. Finally, one notices also that it is not easy to jointly satisfy the OCC constraint 
and the coverage constraint. This last observation is important, since it irnplies the difficulty 
of producing feasible solutions for the APP. 

In the previous discussion, we have presented in the most general way the concepts that 
highlight the antenna-positioning problem. The problem thus consists in choosing, among 
all the possible BS, a set ofBS which satisfies the coverage, handover, and OCC constraints, 

while minimizing the number of sites used, maximizing the ensured traffic and yield of the 
transmitters, and minimizing the noise level. 

Now, if one considers cells rather than BS, the APP can also be seen as a cover

age problem of a plane surface: one wishes to cover the surface (working area) with 



various forms of cells with multiple constraints between these forms, while optimizing the 
objectives. 

3. Formulation of problem

ln this part, the mathematical mode! for the APP used in this work is presented. The details 
of this mode! can be found in Reininger ( 1997), Reininger and Caminada ( 1998a, 1998b ). 
The model shown here reflects only a pmticular scenario. Other models are surely possible. 
However, the basic idea of the heuristic approach presented in this paper may be applied to 
other scenarios. 

3./. Basic notations 

• ST

• Sq
• Sm
• TT

• Ps
• BS
• BS/

• Cdb,p
•L

set of ail the service test points STP in the working area, 
service threshold defined by a power value for a given station (Table 2), 
cellular phone station receiver sensitivity defined by a power value, 
set of the traffic test points TTP of the working area: TT c ST, 

antenna power, 

quintuplet (site, antenna, tilt, azimuth, Ps), 
set of selected BS that correspond to a network design, 
field strength received al a STT p E STP from a BS b E B S l, 
set of the candidate sites for a given network, 

The positioning of an antenna corresponds to the choice of a finite number of BS, denoted 
by B S 1, chosen among ail possible ones. 

For each b belonging to BS1 we define ils cell Cell(b) as follows: 

Cell(b) = {p E ST/Cdb,p 2: Sq and 1/b' E BSI b' cfabCdb .p > Cdb,,p) 

The second part of this de finition is important. lt indicates that the cell of a BS de pends not 
only on this BS but also on the other BS in the network. 

3.2. Coverage constraint 

Ali the STP of the working area must be covered by an antenna. This constraint is formally 
expressed by the following formula: 

ST= U Ce/l(b)
bEBSl 

3.3. One connected compfment (OCC) constraint 

(1) 

Each cell defined by a BS b must have only one connected component. If we define Cb the 
number of connected components of Cell(b), this constraint is expressed by the following 
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Figure 4. Connected components of a single ce!!. 

formula: 

\lb E BSJ Cb = 1 

Ili Ill IIHHHI 11111111 
51 llli 11111151 Ili 111111 
51 Ili 1111 1111 Ill Ill Ill Ili 
Ili Ili■ 1111 Ill Ill Ili Ili
Ili Ili 11111111 Ili Ili Ili 1111 
IIHIIIIHll llll lili ■ Ill 

2 connected "0 
componants 

(2) 

In this work, we do not take into account cornponents containing fewer than MINC STP. 
MINC is an integer parameter to be fixed. In this study, MINC = 9 is used. 2 Figure 4 
illustrates this principle. 

One notices that the OCC constraint would be difficult to satisfy if the coverage constraint 
is taken into account at the same time. Indeed, when one adds a BS or increases the size of 
a cell to get a larger cover, one may "eut" a one CC cell into two cells or create a cell of 
multiple components. 

3.4. Handover constraint 

The handover area of a cell is defined by the set of STP p covered by the BS b, such that 
there is at least one other BS b', from which the field strength Cdb:p on pis greater than the 
threshold Sq, and at most 7 dBm above or below the field strength Cdb,p received from the 
BS b, or, 

handCell(b) = (p E Cell(b)/3 b' E BSJ and Cdb:p è" Sq and 

ICdb,,-Cdb:pl s 7dBm} 

The handover constraint, which requires a non-empty handover area for each cell, is 
expressed by the following formula, 

\lb E BSJ handCell(b) ')', 0 (3) 

One notices that the model does not take into account the location and the number of 
handover points (Reininger and Caminada, 1998a). This definition corresponds in fact to a 



weak form of the handover requirement (number of minimal handover point= 1 per cell) and 
may be easily extended to include more than one minimal handover points. Computational 
simulations show that this weak form of handover is sufficient to ensure good handover in 
a network when the coverage constraint is satisfied. This observation may be interpreted as 
an indicator that the coverage constraint implies somewhat handover. We observe also that 
the handover constraint defined by (3) is satisfied as soon as there are a sufficient number 
of cells in the network. 

3.5. Minimize the number of sites used 

This objective is defined by: 

min Le; x Yi, 
iEL { 

1
, 

Y;
= 

O, 
if site i is selected 
otherwise 

ci is the cost of site i. In this paper, we suppose all the sites have a unit cost:3 

Vi E L, c; = 1 

(4) 

This restriction corresponds to networks in construction. There are, however, networks in 
extension for which the cost of a site depends on the operation that one carries out: creation 
of a new site, rnodific8.tion or suppression of an existing site in the initial network. We will 
discuss this point in the conclusion section and show that the resolution approach presented 
in the paper remains valid in this situation. 

3.6. Minimize the noise level 

Noise level estimation is not straightforward. If there is too rmicL overlap between cells, 
noise level will be very high, We have defined a cell as the set of ST? wîth the best signal 
corning from the same BS b. So Cdb,p is the best signal reccived st a given point p of 
the cell Cell(b). Ideally, each STP ofCell(b) should not reœive more than h signais lower 
than Cdb.p and greater than the required sensitivity threshotcl Srn (.Section 2.2.). These h 
signais are used for handover. In our work, h value is fixed at :1,, bt!t lt i;; a pararneter that 
can be varied according to the model used. Signais after the hth �tnd greater than Sm are 
considered as noise. For each point p of Cell(b ), consider rhe sorted hst of signais greater 
than Sm: 

Cdb.p :,: Cdhl.p :,: · · · Cdbh.p :,: · · · Cdbk.p > Sm 

Hence the noise level at point p is given by: 

Y (p) = L Cdbj, 
P 

- Sm (k is dependent on p)
h<j�k 



The objective of minimizing the total amount of noise is expressed as follows:

min L ,(p)
pEST 

3.7. Maximize the amount oftraffic of the network 

The total traffic a BS b can handle is given by the following formula:

traffic_BS (b) = trafficpoint(p)
pETTnCell(h) 

(5) 

According to this value, one will assign a number of transmitters TRX to this station by
using the conversion Table 3. If the total traffic required by the TTP of a BS exceeds 43
Erlang, then the exceeding traffic may be lost It is for this reason that we introduce the
concept of the traffic hold of a cell: 

{ 
traffic(b)

trafficHold(b) = 

43 
if (traffic(b) :o 43),
otherwise.

The objective of maximizing the arnount of traffic hold of a network is expressed by:

max L trafficHold(b)
bEBSJ 

3.8. Maximize trqffic yield 

(6) 

Given the traffic hold of a BS b and the traffic capacity of b (see Section 2.3 and Table 3),
we define the traffic yield for a cell by: 

trafficHold(b) 
trafficYield(b) = -----

trafficCapacity(b)

Hence, the objective of maximizing the traffic yield is expressed by the following formula:

max L traffic Yield(b) 
bEBSJ 

4. Problem analysis

(7)

This section presents the main characteristics of the APP, allowing us to have an idea 

about the difficulty of the problem. These characteristics are: a very high number of



search combinations, a high complexity of computation, and a high requirement of 
memory. 

4.1. Large number ofcombinations 

The values of the parameters of antennas were discretîzed as follows: 

• Ps E [26 .. 55] and oPs = 2 dBm -+ IPsl = 15, 
• azimuth E [0 . .359] and oazimuth = 10' -+ jazimuthl = 36, 
• tilt E [-15 .. 0] and otilt = 3° -+ ltiltl = 6. 

These values were considered to be sufficient for the precision of cakulations and the 
resolution of the problems. This quantification is a first step towards reducing the number 
of search combinations. 

Thus, an omnidirectional antenna has IPsl = 15 possible settings, and a directional 
one has IPsl x lazimuthl x ltiltl = 3240 possible settings. Thus, to put a BS at a site, we 
have 15 + 3240 + 3240 = 6495 possible choices (denoted by IBS,;,el). If ILI represents 
the number of candidate sites of a network number of candidate sites, we get Ill x IBSsitel 
possible choices for a BS in the network. 

To build a network is to find a combination of base stations, among the possible ILI x 
IBSs itel ones, which satisfies all the constraints and optimizes the objectives. We thus have 
2ILI x IBSsitel potential cboices of configurations, even if a large number of them are not 
feasible. 

For example, the network of figure l bas 568 candidate sites, and thus a search space of 
2s6s x 6495 = iL689. 160 combinations.

4.2. Computational complexity 

For the purpose of clarity and conciseness, we did not evoke all the computation rules 
for calculating electromagnetic fields. These rules, given in Reininger ( 1997), are primarily 
trigonometrical formulas of angles between STP and sites. A priori, an optimization process 
has to check at each stage that ail the constraints involved are satisfied, and to count those 
that are violated. For the OCC and handover constraints, the computing complexity gener
ated by this task is about IBSll x ISTI, where IBSll represents the number of BS selected 
at a given stage of the optimization process. 

Cell management, which is essential for the representation of most of the constraints and 
certain objectives, is very expensive to compute. Indeed, on the one hand, it is necessary to 
calculate the signais emitted by al! the selected BS on all the STP, and to sort these values 
for each STP, in order to determine the cells associated with the best fields, and, on the other 
band, to calculate the noise level and indicate the other fields higher than Sm. 

For an average of 100 selected BS, the network of figure I requires about 100 x 17393 
non-trivial calculations (arctang, real divisions, sorting of Cd, calculation of connected com
ponents) to evaluate a configuration. This requires more than one million non-elementary 
operations. 



Table 4. Data for the APP. 

Set of candidate sites: L 

Set of RTP: R 

Sc! or STP 

Set of TTP 

Propagation !oss matrix 

Angle of incidence matrix 

4.3. Memory consumption 

ILl~500 

!RI~ 100000

From 10000 to ! 00000 

Front 5000 to 100000 

IL! X IRI 

ILI X IRI 

Computing the signals dynamically using a radio propagation modcl is very time consuming, 
and, therefore, cannot be used during an optimization process. Propagation loss data are 
thus pre-computed and stored in a propagation loss matrix where propagation loss has been 
prcdicted from each site to each RTP. Associated to these values we have an incidence 
matrix that gives the incidence angle for each couple (site, RTP). For each type of antenna, 
we also have the horizontal and vertical diagrams. Using this data, one can compute the 
field strength Cdb.p by using the formulas detailed in Reininger (1997). Table 4 gives an 
idea about the quantity of data necessary for the problems that we solved. 

Typically, the data concerning the radio signal, the values of traftic, the coordinates of 
the sites, and the points of a network require more than 200 MB of memory. 

5. General heuristic approach for the APP

The APPis thus highly combinatorial and very difficult to resolve. This remains true even for 
finding feasible solutions satisfying all the constraints. In particular, it is not at ail obvious 
how the OCC and coverage constraints can be satisfied simultaneously. 

To tackle the APP, we have developed a heuristic approach, which is composed of three 
sequential phases: a pre-processing phase based on a fi.ltering principle, an optimization 
phase based on tabu search, and a post-optimization phase by fine tuning antenna para
meters. 

The pre-processing phase uses some .filtering criteria to eliminate or filter out many 
undesirable base stations (or cells) that cannot contribute to a good solution. We calculate, 
site by site and antenna by antenna, all the possible cells generated by each BS (site, antenna, 
power, tilt, azimuth). According to the filtering criteria, we decide for each cell whether the 
cell is kept or rejected. For example, if the filtering criterion used is the OCC constraint, 
then any cell violating this constraint will be definitively eliminated. Sirnilarly, if we want 
to limit the size of the cells, we may use this criterion to filter out the cells exceeding the 
desired size. Therefore, this pre-processing step allows us to greatly reduce the number of 
combinations of the search space. For network such as the one we used, this step retains 
typically 200,000 to 400,000 BS, from some 4,000,000 possible ones. Let us notice another 
important point: Computations of field strengths for each point in the working area are 



carried out at this phase and are no longer necessary during the optimization phase which 
is carried out by tabu search. 

From the set of BS produced by the pre-processing phase, the optimization phase by tabu 
search will construct solutions by choosing a subset of BS that satisfy ail the constraints 
of the problem and optimize the objectives. To do this, the tabu algorithm, starting with 
an empty solution, tries to extend at each iteration its current solution by adding a BS and 
dropping some existing BS, if necessary, (for instance, to continue satisfying the OCC con
straint). The choice of which BS is added at each iteration takes into account the objectives, 
and checks that the coverage constraint is satisfied. 

Finally, the post-optimization phase is applied to improve the solution produced by 
the tabu algorithm. This phase can be used to optimize objectives or repair the rare con
straints that remain unsatisfied. Post-optimization is realized by the fine-tuning of antenna 
parameters. 

6. Pre-processing

6.1. Constraint based pre-processing 

As previously mentioned, one of the main difficulties of the APP concerns the management 
of the OCC and coverage constraints. One well-known technique for constraint handling 
in general is the penalty-based approach. In this approach, constraints are considered as 
objectives and integrated into a weighted evaluation function: 

i=m i=n 

f' = Lf; + LPj x cJ)(ci) 

where: 

i=l j=l 

• f represents one initial objective,
• p; is a penalty to be defined for constraint c

j
,

• cJ)(cj) equals l if ci is satisfied, equals 0 otherwise.

An advantage of this approach lies its flexibility, while its main drawback is the difficulty 
in fine tuning the penalties. Indeed, if some constraints are incompatible and bard to satisfy, 
these constraints may never be satisfied. This is precisely the case for the OCC and coverage 
constraints. 

To cope with this difficulty, we introduce a special technique for handling the OCC con
straint (the global coverage constraint is handled with the penalty approach, see Section 7.2). 
The basic idea is to use the OCC constraint in an active way to filter out "bad" BS which 
violate this constraint, and which consequently cannot contribute to a good solution. Only 
"good" BS are retained. 

Recall that a candidate site can hast one omnidirectional (OMNI) antenna or one to three 
directional (LD or SD) antennas, which results in 6495 potential base stations. For a given 
site, all its BS configurations are not of equal interest. ln particular, a BS whose cell has 



many connected components can in no way be useful for a final solution due to the OCC 
constraint. Therefore, it would be beneticial to eliminate such ES from the search space from 
the beginning. Thal is what we do during the pre-processing phase. For every possible BS b 
= (site, antenna, power, tilt, azimuth) of every candidate site, we carry out all the necessary 
computations of field strengths to calculate the corresponding cell of the BS, and then count 
the number of its connected components having more than 9 STP (see Section 3.3). If the 
number of connected components is greater than one, i.e. the OCC constraint is violated, 
then the cell is not counted. Otherwise, the cell is recorded in a data structure together with 
all related information. Therefore, the left cell in figure 4 (Section 3.3) is kept, while the 
right one is rejected. 

To calculate the connected components, we use the "scan line blob coloring algorithm", 
which is well known in the field of computer vision (Ballard and Ballard, 1982). This 
algorithm scans the working area from top left to bottom right and labels STP belonging 
to the same cell with the same color. To accomplish this, it considers four points around 
the cun-ent one: the three neighboring points on top and the left neighboring point in an 
8-neighborhood. For a single BS, this algorithm has a time complexity of O (1 Cell(b) 1).

This OCC constraint-based pre-processing phase allows one to significantly reduce the
size of the search space, especially in the situations where many irregular obstacles are 
present in the terrain. Indeed forthe network of figure l, this filtering step retains only 294000 
BS. The combinations in our search space are thus reduced from 23689160 (intractable) to 
2294000 (tractable). 

The idea behind the pre-processing is very general and other criteria, like the noise level 
and the traffic, can be easily used separately or conjointly for this pre-processing phase. 
Such pre-processing techniques were implemented and experirnented upon in our study. 
However, we are unable to describe them further within the framework of this paper. 

Therefore, the pre-processing phase offers great flexibility, allowing us to generate many 
different search spaces with different characteristics, which can then be used by the opti
mization phase to produce various solutions. This flexibility represents a nice feature for 
multi-objective optirnization problems such as the APP. 

6.2. Connectivity con.'itraint transformation 

After this filtering stage, we have cells which satisfy the OCC constraint individually, and 
which have additional proprieties when other filterîng criteria are applied. Since the OCC is 
difficult to handle, this constraint must remain satisfied during the tabu optirnization phase, 
which consists in adding and dropping BS. For this purpose, we divide each cell into two 
parts, called the "kernel" and "border," and introduce a new constraint called the "kernel 
constraint." 

Let 8Sq be a dBm value greater than 0: 8Sq > 0 dB m. For each cell, one considers the 2 
following sets: 

kernel(b) = {p E Cell(b)/Sq + 8Sq S Cd1,.p) 

border(b) = {p E Cell(b)/Sq S Cd1,.p < Sq + 8Sq) 

Figure 5 illustrates this partition. 
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Border: 

Cd�Sq 

Then the kernel constraint states that the kernels of two different cells do not overlap: 

V(b, b') E BSJ x BSI, b ,é b' ⇒ kernel(b) n kernel(h') = Z 

Notice that the partition of a cell into kernel and border may be adjusted by the value 
given to ôSq. By varying the value of OSq, we can make the kernel constraint stronger or 
weaker. 

Now, during the tabu optimization phase, this kernel constraint is used so that the OCC 
constraint will remain satisfied. Therefore, the management of the OCC is replaced by 
handling this simpler kernel constraint. 

The kernel constraint does not forbid the overlapping of the border zone of one cell with 
that of another celL Such an overlapping zone is typically used to ensure the handover 
constraint. 

Let us now consider a more detailed example. Table 5 shows a partial solution involvîng 
4 BS. Figure 6 gives the cells of these BS (left) togetherwith their kernel and borders (right). 
In this example, ôSq = 4 dBm is used to defined the border areas. One notices that the 
overlap of the two adjacent cells concerns only their borders. 

In summary, the pre-processing step generates, from the raw data of the problem, a 
reduced set of BS, as well as their representation in terms of kernel and border. The next 
step consists in constructing a solution from these BS. 

Table 5. A partial configuration for the urban 
network. 

Site Antcnna Tilt Azimut Ps 

13! LD () 90 46 

356 LD () 30 38 

397 LD -6 300 46 

493 SD -6 90 50 
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Figure 6. Four ccl!s (left) and thcir kerne\-bordcr representation. 

cell ➔ border u kernel 

A solution will be designed by putting together some BS in such way that all the STP 
of the working area are covered, the kemel constraint is respected, each cell shares a han
dover area with some other cells, and the objectives are optimized. In practice, the handover 
constraint is automatically satisfied if a sufficiently large number of BS is present in a 
solution and if all STP are covered. The remaining task is essentially to satisfy the caver
age constraint while optimizing the objectives, which is accomplished with a tabu search 
algorithm. 

7. Optimization by tabu search

We now present the main ingredients of our optimization algorithm based on tabu search. 
For a cornplcte presentation of TS, the reader is invited to consult the comprehensive book 
by Glover and Laguna (1997). 

7. 1. Configuration

Let S be the set of BS selected by the pre-processing step. We define a first search space S 
to be the set of all possible binary vectors with IBI component: 

Lets = (b 1, ••• , b 1g 1 ) be such a vector of S. Each component bi identifies a particular BS 
in B. If bi equals 1 then the corresponding BS is retained in the partial solution, otherwise, 
the BS is re_jected. The space S thus represents all the possible networks that can be built 
starting from B. 

However, one notices that many configurations of S are not of interest, since they do not 
even verify the rule of antenna placement on a site ( one OMNI or 1 to 3 LD or SD per site, 



see Section 2.3). To translate this irnplicit constraint of the model we associate with each 
type of antenna a weight p: 

I 
p(OMNI) = 3, 

p : p(LD) = 1, 
p(SD) = L 

For a BS b we use p(b) to denote the value p (b antenna type) and define the following 
fonction: 

As: S x L r+ {0, 1, ,,,} As(s,l) =
b=l andhon site l 

p(b) 

We now define the subspace Tc S verifying the rule of antenna placement on a site: 

T = {s ES/VIEL As(s,l) :C: 3) 

It is clear that this reduced search space is of greater interest than the initial space S.

From T we now define a last search space X c T that respects the kernel constraint 
(Section 6,2): 

X= ((b,, ,,,,h1B1) ET/V;, Vj
,i #} and b; = 1 and bj = 1 

=; kernel(b,) nkernel(bj ) =0} 

Therefore, the search space X includes al! the configurations that satisfy both the rule of an
tenna positioning on a site and the kernel constraint. Since many non feasible configurations 
are excluded from X compared with the initial search space, we have IXI « ISI, 

7.2. Configuration evaluation

In order to guide the tabu algorithm to visit the search space, one needs a function for 
evaluating the configurations. Since the APP involves multiple objectives and multiple 
constraints, the evaluation is somewhat complicated. In this work, we took a hierarchical 
approach to evaluate the configurations. Formally, for a given configuration s of X, it 
is evaluated by the fol!owing vector function. 

l;(s) = (c0(s), f, (s), fz(s), fs(s), f4(s)) where: 

• co(s) = coverage(s) = number of STP covered by the cells of s,
• f1 (s) = trafficHold(s) = sum of traffic held by ail the cel!s of s,
• f2(s) = noise(s) = sum of noise generated by each selected BS of s, 
• f3(s) = number of sites where BS are installed, 
• f4(s) = traffic Yield(s),



The first component c0 of this evaluation function corresponds to the coverage constraint.

This component takes priority over the other components (f1 , f2, f3 and f4) that are related to 
the different objectives of the problem. A higher priority for the component c0 helps to 
guide the search to find first feasible solutions. Another possibility would consider the 
component c0 at the same level as the other objectives at the risk of never finding a feasible 
solution. 

For the components f t, f2 , (1 and f4 , any priority order may be used according to the im
portance we give to each objective. For our presentation, we chose arbitrarily the following 
priority order P: 

Given two configurations s1 and s2, si is said to be betterthan s2, denoted by ç(s 1) > ç(s2), 
if the following condition is verified: 

l'-ç(s1,s2) = (t.c0 (sl,s2), M 1 (sl,s2), M2(sl,s2), M3(sl,s2), M4(sl,s2)) denotes the 
vector variation of�. 

We also use another fonction of evaluation: ç' (s) = (cS(s), f, (s), f,(s), f3(s), f4(s)) where: 

cS(s) = L w(p) where w(p) is a weight value greater than 0, and 
pcovered 

ns) {} ç(s) if w(p) = 1 V p EST.

We will see the usefulness of this evaluation fonction in Section 7 .5. 

7.3. Neighborhood and move 

We now introduce the neighborhood function Nover the search space X. More precisely, 
this fonction N : X ➔ 2x is defined as follows. 

Let s= (b 1 , b2, ... , b 181 ) E X and s' = (b;, b\, b11l1 ) E X then s' is a neighbor of s, i.e.
s' E N(s), if and only if the following conditions are met: 

1) 3 1 i such that b, = 0 and b, = 1 (1 :" i :" IBI) 
2) for the above i, V j #i E { 1 ... IBI} kernel (b,) n kernel (bj) # 0 =;. b5 = 0

Thus, a neighbor of s can be obtained by adding a BS (flipping a variable b, from O to l) in 
the current configuration and then dropping some other BS (flipping some bj from 1 to 0) to 
repair the kernel constraint violation. Consequently, a move mv to obtain a neighbor s' from 



a configuration s= (b1, b2, b:; ... b 1 r.i1) is characterized by a series of flipping operations: 

b; frorn O to 1 
b,, from I to 0 

bin from l to 0 

where bi 1 ••• bin are variables linked to bi by the kernel constraint. That means that there is at 
least one same element (i.e. STP) in bath kernel (b;) and kernel(bj) for j E J, = {i 1 .. ..• i,}. 
Such a moved is denoted by mv(i) = (b; : Ü➔ 1, bj1 .. . b;,: 1 ➔Ü). Use s' = s + mv(i) to 
denote the neighbor of s obtained by applying mv(i) to s. 

lt should be clear that from a configuration s = (b1, b2 , . . . , b 1111), there are as many 
possible moves as the nurnber of variables in s having a value of O. 

Let lsl = Lusllll b,, thens bas exactly IBI - lsl neighboringconfigurations (i.e. IN(s)j =
lfll-1s1). 

7.4. Tahu List management and aspiration criteria 

The main role of a tabu list is to prevent the search from shmi-term cycling (bj : I ----+ 0 ➔ 
l ➔ 0 ... ). Given the considerable quantity of calculations to be carried out for a move,
we avoid imrnediately dropping a BS that has just been selected. To do this, a simple
frequency-based mechanism is used:

Let Freq(i) be the frequency ofa move mv(i) (i.e. the number of times the BS b; is selected 
in the partial solution), then the number of iterations during which an element bi should not 
be resct to Ois equal to Freq(i). The number is called tabu tenure of the move mv(i). 

In order to implernent the tabu list, a vector Tabu of IBI elements is used. As suggested in 
Glover and Lugana (! 997), each element Tabu(i), i.e. the tabu tenure of mv(i) ( 1 S i S IBI) 
records Freq(i) + t where t is the number of iterations when mv(i) is carried out. In this 
way, it is quite easy to know, at a later iteration t', if a mv(i) is allowed or not: if there exists 
j E J, = {i1 ... i,} such that TabuU) > t' then mv(i) is a forbidden move, otherwise, mv(i) 
is a possible move. 

The tabu status of a move mv(i), such that s1 
= s + mv(i), is canceled if s' bas a bet

ter quality than s, i.e. ç(s') > ç(s). This condition corresponds to a simple, yet important 
technique called "aspiration criteria." 

7.5. Divers(fication 

During the normal search process, the tabu algorithm chooses, at each iteration, one best 
move among all possible moves. This process is stopped and a diversification phase is 
triggered if no improved configuration is found during a fixed number of iterations. To do 
this, we re-calculate the weight of each STP in the following way: 

If the STP is already covered by a BS, its weight equals 1, otherwise, the weight equals 
1 + ISTj. One then replaces the evaluation fonction� by ç' (Section 7.2.). The evaluation 



fonction is changed in order to focus the search on the uncovered STP. This mechanism 
al\ows the search process to escape from a local optimum. 

The number of iterations that trigger a diversification is relatively small, because one does 
not want to carry out too many non-improving moves, which require many calculations. 
This number is determined automatically using a simple idea. When our algorithm arrived 
at a local optimum, it selected ls'I BS, ls'"I being the number of elements with 1 in s'", We 
consider that if it carries out, from this point, ls"'I moves without improvement then it is 
ncccssary to diversify the search. 

Let us notice that during diversification, the value of c;
i
(s) does not represent the real 

coverage ensured by the configurations. The real coverage c0(s) is kept up to date during 
the diversification. 

7.6. General aff{orithm 

The TS algorithm is composed of two iterative phases: search by exploitation and diversi
fication. The algorithm's skeleton is shown below: 

Tabu scarch 
Ilegin s t-- (O .. 0) 

s* +-- s 
Scarch: 

i +--Ü 
while ( i s:; 1s*I) do 

scarch for a non tabu movc i with the best t.Ç 
s+--s+mv(l) 
if E,(s) > E,(s') then 

s* <c-- s 
i ...... 0 

else 
i +--i+ 1 

Diversification: 

end 

set the currcnt solmion Lo the best one: s f- s"' 

set the best local solution d* lO s"': d* {- s* 
compute STP weight {§7.6.) 
i +--Û 
while ( i s:; 1s*I) do 

scarch for a non tabu move i witli the bcst L'i.Ç' 
s +-- s + mv(i) 
ifÇ'(s)>Ç' (d*)thcn 

i r-0 
el.se 

if- l + 1 
if E,(s) > E, Cd') then 

d* t- s 
if Ç(d*)>ë;(s*) then 

s f- s" 
go to Search 



The tabu algorithm stops when a diversification is not able to improve the solution with 
which the diversification starts. The algorithm returns the best solution s* found during the 
search. This TS algorithm requires no parameter to tune. Note that, ifwe are only interested 
in satisfying constraints, a stop condition may be added when the value of the!; component 
Co (i.e. coverage) is equal to 1sn. 

8. Post optimization

Generally speaking, the post-optimization phase can be used to optimize any objective (the 
noise level, the total traffic supported ... ) or to enhance constraint satisfaction in case of 
constraint violation. The basic idea of the post-optimization phase is to improve a solution 
by fine tuning some antenna parameters. 

As discussed in this paper, it is very difficult to satisfy the coverage and OCC constraints 
simultaneously. The proposed approach satisfies the OCC first and tries to satisfy the cov
erage constraint during tabu optimization. Typically, tabu optimization alone can result in 
coverage greater than 99%. If a l 00% coverage is not reached, we use the following post 
optimization technique to cover the remaining 1 % of STP. 

The principle of this post optimization process is simple: if one slightly increases the 
power of some BS selected in such a solution s*-to almost the feasibility level-we should 
be able to obtain the total coverage of the STP, without violating the other constraints. 
For this purpose, we seek the closest BS bmin of the uncovered STP (in terms of signal 
power): 

8Cdb.p = Sq - Cd6_,(p is not covered so 8Cd > 0) 

bmin = b E B S 1 / 8Cd is minimum 

If the power (Ps) of bmin verifies the relation. Ps + 8Cd :s 55 dBm, then one can increase 
the power of this BS and repeat the operation. This simple process allows us to satisfy the 
coverage constraint in most cases. 

Let us notice that for the post optimization p hase, one may use other antenna parameters 
instead of power. Moreover, this kind of tuning may be easily applied to improve an existing 
network. 

We have developed other techniques for improving objectives, such as traffic hold and 
noise level. For the purpose of simplification, these techniques are not presented here. 

9. Experimentation and numerical results

9.1. Datasets 

Computational experiments are carried out on two large and realistic data sets corresponding 
to two different types of networks: an urban network and a highway network. These test sets 
were generated by the CNET. which is France Telecom·s research laboratory. by using a very 



Table 6. Characteristics of the 2 data sets. 

Area 
Mech Trafic 

Service width length size RTP STP TTP (Erlang) sites 

Unban Network 8 watt outdoor 46,5 km 45,8 km 200m 56792 17393 6652 2988,20 568 

Highway Network 8 watt outdoor 39 km 168,8 km 200m 164580 29954 4967 32l0,94 250 

powerful engineering tool called ParcelL Each data set is described by a file containing the 
coordinates of the candidate sites, a huge propagation Joss matrix calculated using a radio 
propagation model, and other relevant information concerning the working area, antennas, 
etc. The data sets are quite large, since each one requires more than 200 MB of memory. 
The main characteristics of these data are given in Table 6. 

We notice that the urban network bas fewer STP and more candidate sites than the 
highway network. In addition, the urban network bas a more homogeneous distribution of 

traffic, A priori this first problem would be thus less difficult than the highway network 
in terms of satisfying the coverage constraints and optimizing the ability to handle traffic. 
Of course this analysis does not take into account the propagation loss matrix, which is 
determining for resolving the APP, however, it does give a first classification of these 
problems, 

9.2. Computational results 

To salve these two problems, we followed the previously presented resolution proce
dure, First, the pre-processing algorithm is run ta obtain the set B of BS satisfying the 
OCC constraints, This phase gives us typically 200,000 to 400,000 BS and takes about 
4 hours on an ULTRA SPARC 30 with 512 MB of RAM, Then, the tabu optimization 

algorithm is executed to find feasible solutions satisfying the handover and coverage con
straints. This phase is the most time consuming and takes about 24 to 48 hours to carry out 
2,000 to 4,000 iterations, Finally, a post optimization algorithm is used ta further improve 
the solution found in the second phase or to enhance the coverage constraint if needed. 
This last step takes about 10 minutes, and thus is very fast compared with the first two 
steps, 

There are several ways to obtain different solutions for a network. For example, one may 
run the tabu algorithm several times with the same B set . One may also use the pre-processing 
algorithm ta produce different B sets by varying the filtering criteria used, Table 7 shows 
three feasible, non-dominate solutions for each network, which are obtained with different 

.B sets. 
Table 7 shows the values of the four objectives, Columns 3 ta 6 represent the number of 

omni-directional, large directional, and small directional antennas, and the number of base 
stations. 

Appendixes 1 and 2 offer graphie representations of two solutions in Table 7, with 
each color representing a cell of a BS. These figures allow us to have a rough idea 



Table 7. Fcasiblc solutions for an urban nctwork and a highway network. 

Sites OMNJ LD SD BS Noise Traf1ic hold Trafl-ic ycild 

Urban network 60 0 29 41 70 215135,10 2239,96 750{ 62%. 

63 0 41 44 85 274504,5 2339,14 78% 86% 

94 0 0 154 154 216460,3 2988, 12 100%· 789i. 

Highway nctwork 58 35 67 103 331227,7 2251,50 70% 72o/r. 

78 0 28 128 156 385918,8 2889,55 90% 727,; 

86 0 39 78 117 278481,4 2797,75 87% 79<;{ 

Table 8. Unfeasiblc configurations for an urban network and a hîghway network. 

occ Sites OMNI LD SD BS Noise Traffic hold Traffic yci!d 

Urban nelwork 2 63 0 0 135 135 344874,45 2940,41 98% 73% 

2 89 0 134 0 134 362020,80 2953.00 99% 80% 

Highway network 9 79 0 0 118 118 316644,29 3171,19 99% 80% 

10 l lü 0 164 0 164 358675,00 3210,91 1009c 789( 

about the topology of the solutions found. For example, we observe that the cells are 

quite homogeneous, which is considered to be a desirable property of a network. Ap

pendixes 3 and 4 give the two corresponding solutions in detail. From these detailed ta

bles, we observe that the values of the "power" of antennas are rather close to the high 

value part. The repartitioning of lhe "tilt" values is almost homogencous. We also ob

serve that there are very few omnidirectional antennas. This may be explained by the fact 

that there is neither constraint nor objective on the nurnber of BS, and several directional 
antenas can ensure the coverage of an omnidirectional antenna, with much better tuning 

possibilities. 
In a similar way, for each network Table 8 presents two unfeasible solutions, where the 

OCC constraint is relaxed (number of OCC indicated in the second column), The main 

purpose of these results is to show the flexibility of the proposed approach, By comparing 

the results of Tables 7 and 8, we observe that the violation of the OCC constraint increases 
the noise level. This observation constitutes an empirical justification of the importance 

of the OCC constraint 

9.3. Comment.\' and discussions 

Let us now make some cornments about these results and the proposed approach. The first 

comment concerns the feasibility of solutions for these networks. Given the high complexity 

of the data used and the way the data has been generated, it was unknown whether any 



feasible solution existed satisfying all the constraints of the model defined in section 3. It 
should be noted that among the three constraints, the OCC proved to be particularly difficult 
to manage. lndeed, we failed to satisfy this constraint with penalty-based approaches. The 
technique presented in section 6 for handling the OCC constraint proved to be much more 
powerful. 

The second comment concerns the diversity of the solutions found. It is well known 
that for a multi-objective optimization problem, it is important to have a large number 
of diversifying or different non-dominate solutions. The experimentation shows that the 
proposed approach can produce many non-dominate solutions, thanks toits different solving 
phases. 

The third comment concerns the quahty of the solutions found. This is a difficult issue, 
because there is no reference available concerning this matter. However, we know that 
radio engineers even with the help of the above-mentioned engineering tool, Parcell, found 

no feasible solution. Compared with such solutions, even without taking into account the 
factor of feasibility, the results produced by the approach presented in this paper are much 
better in tenns of service quality. Indeed, the noise level is much lower than in band-made 
solutions. 

Finally, we would like to insist upon the flexibility of the proposed approach. The pro
posed approach can be used naturally in an interactive environment, which is often nec
essary for network design. In addition, it can be easily adapted to other models of the 
APP. Indeed, the mode( used in this work corresponds to a particular scenario; the con
straints and objectives may be exchanged in other models. For example, the coverage 
constraint may be considered instead as an objective to be maximized. Similarly, the 
OCC constraint can also be bracketed in order to minimize the extra-connected com
ponents. It is easy to see that the proposed approach can be applied directly in these 
situations. 

10. Conclnsion

The heuristic aproach we propose in this paper constitutes one of the first studies dealing 

with antenna positioning and optimization of large and real size networks. 
The proposed approach is composed of three sequential phases: a pre-processing phase 

based on a filtering principle, an optimization phase using tabu search, and a post optimiza
tion phase based on fi.ne tuning. The pre-processing phase is parameterized allowing us to 
generate a variety of reduced sets of BS, of interest for devising an ultimate solution. The 
tabu algorithm is based on a binary representation of the search space, and integrates tech
niques such as frequency-based tabu list management, and penalty-based diversification. 
Various techniques are available for post optimization, either to improve the objectives or 
to enhance constraint satisfaction. 

This approach was applied to two large and realistic test data sets, corresponding to an 
urban network and a highway network. Results obtained on these data sets show that the 
proposed approach is very promising for antenna positioning and optimization of large 
networks. This approach proves to be flexible, robust and effective. 



This work deals with the construction of networks from the ground up. Another very 

important and closely related problem concerns the optimization of networks already in 
place. The simplest from of optimization concerns only fine-tuning of antenna parameters: 
powers, tilt, and azimuth ... In addition to such tunings, one may also need to add new BS or 
new sites, deleting existing BS or sites. Bach ofthese operations has a possibly different cost. 

A mode] of this evolution version of the APP is proposed in Reininger ( 1997). Adaptations 
of the approach presented in this paper to this model have been carried out and evaluated on 
large data sets. Once again, computational results show the effectiveness of the approach 
for dealing with this kind of network. 

From this study, we may conclude that although the general APP is a highly combina
torial and complex application, the problem can be resolved using a heuristic approach. 
Consequently, it must surely be possible to integrate such optimization approaches into 
engineering tools for radio network planning. We expect such industrial tools to be built 
and used by network operators in the near future. 
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Appendix 1: Urban network cells 



Appendix 2: Highway network cells 



Appendix 3: TS output for urban network = 70 BS 

Site Antenna Tilt Azimut Ps Site Antenna Tilt Azimut Ps Site Antenna Tilt Azimut Ps 

9 LD -9 340 28 189 SD 0 30 38 393 SD -15 60 34 

17 LD -9 150 44 194 SD -6 60 40 393 SD -12 280 48 

39 LD -6 130 40 211 SD -3 80 30 396 LD -6 200 38 

40 SD -12 80 50 235 LD -3 340 40 404 LD -15 170 46 

40 SD 0 220 54 253 LD -9 0 44 406 LD -15 90 48 

56 LD -9 300 54 266 SD -9 250 50 408 SD -15 60 50 

59 LD -9 260 34 277 SD -6 90 44 413 SD 0 300 36 

59 LD 0 40 34 309 LD -6 140 38 414 SD -12 60 42 

66 SD -9 0 50 313 LD -6 290 38 415 SD 15 60 50 

78 SD 0 300 46 315 LD -9 240 42 426 SD -6 110 38 

78 LD -12 170 48 316 SD -9 280 50 426 SD Il 330 38 

79 SD -9 0 54 330 LD -15 120 44 447 SD -12 350 46 

89 LD 0 180 44 338 SD -9 20 48 449 SD -6 230 36 

92 SD -12 300 54 344 SD 0 10 34 464 SD -12 200 52 

100 SD -6 340 42 356 SD -15 310 48 473 LD -15 170 40 

100 LD 0 80 36 356 LD -6 180 36 489 SD -6 60 46 

107 SD -15 300 42 359 SD -3 60 30 497 LD -6 50 38 

108 SD -6 80 36 360 LD -9 50 32 499 LD -9 300 46 

111 SD -3 160 46 371 LD -15 160 52 515 SD -9 260 50 

112 SD -6 0 42 372 SD -9 150 54 515 SD -3 120 48 

115 SD -6 110 32 378 SD -9 30 42 536 LD -9 350 30 

115 LD -6 0 44 378 SD -6 190 40 561 SD -6 180 38 

125 LD -9 280 46 379 LD -9 90 46 564 SD -12 240 54 

147 LD -9 10 34 

Appendix4: TS output for highway network with 99% coverage (a) and modified BS by 
post optimization with 100% coverage (b) 

Site Antenna Tilt Azimut Ps Site Antenna Tilt Azimut Ps Site Antcnna Till Azimut Ps 

9 SD -12 160 46 74 SD -6 210 28 144 LD -9 10 34 

9 SD -6 40 36 74 SD -3 350 42 144 LD -3 150 30 

13 SD 0 220 30 78 LD -6 300 28 145 LD -9 330 40 

14 SD -15 160 36 79 SD -6 110 54 148 SD -15 290 42 

14 SD -9 20 44 83 SD -3 230 42 148 LD -6 90 42 

17 SD -9 190 34 87 LD -9 320 44 149 SD -6 60 54 

17 SD -9 0 42 88 SD -6 290 26 154 LD -6 260 46 

18 LD 0 10 34 89 SD -3 290 50 156 SD 0 40 46 

20 SD -9 20 30 92 SD -12 250 54 165 LD -6 230 34 

20 SD 0 320 26 93 LD -9 310 44 172 LD 0 290 42 

(Continued on nexl püge.) 



(Continued). 

Sile Antcnna Tilt Azimut P.s Site Antenna Tilt Azimut Ps Site Antenna Tilt Azimut Ps 

21 SD -12 40 48 94 SD -9 50 44 174 SD -9 260 36 

21 LD -15 350 46 95 SD -12 90 52 175 SD -15 290 48 

22 SD -15 120 40 95 LD -9 300 40 175 SD 0 100 30 

22 SD -12 240 52 99 SD -9 100 38 176 SD -15 220 46 

24 SD -3 150 26 99 LD -9 210 50 178 SD -9 130 32 

30 SD -9 110 48 103 LD -9 110 32 179 SD 0 310 54 

30 LD -9 320 40 104 SD -6 50 54 179 LD -9 50 50 

35 SD -12 140 55 105 SD -9 310 52 180 LD -9 110 34 

35 SD -6 220 50 105 LD -9 190 44 185 SD -9 170 42 

38 LD -6 120 52 109 SD -9 70 28 186 SD -15 80 34 

42 SD -6 250 54 109 LD -9 270 34 188 LD -15 230 48 

42 SD 0 350 42 110 SD -9 90 46 193 SD -6 60 46 

42 SD 0 90 44 112 SD -9 70 36 199 SD -6 60 42 

44 SD -6 280 48 113 LD -9 170 28 202 LD -6 40 30 

44 SD -6 230 46 114 LD -9 10 26 207 LD -3 130 36 

44 SD -6 110 44 119 SD -15 10 40 208 LD -6 240 44 

50 SD -12 310 44 119 SD -9 300 36 209 LD -6 340 36 

50 LD -9 100 44 121 SD 0 210 28 213 SD -15 220 44 

51 SD -3 30 38 123 SD -6 250 32 214 SD -6 270 26 

53 SD -9 300 34 127 LD -9 170 32 214 SD -6 100 42 

60 LD -9 220 32 128 SD -9 200 44 216 SD -12 290 48 

62 SD -6 290 42 128 SD -3 330 34 216 LD -6 100 34 

62 SD -6 50 34 128 LD -15 40 36 221 SD -9 250 46 

63 SD -6 70 54 137 SD -9 0 44 222 LD -9 90 40 

64 SD -6 300 52 139 SD -15 140 52 230 LD -9 230 26 

64 LD -9 100 32 140 SD -6 20 40 231 SD -3 280 34 

70 SD -9 260 54 142 LD -9 80 42 241 SD -15 120 32 

70 SD -6 140 44 143 LD -15 40 40 243 SD -15 241.J 42 

72 SD -9 190 46 143 LD -9 250 30 247 SD -15 30 40 

(a) 

Site Antenna Tilt Azimut Ps 

17 SD -9 190 35 

20 SD 0 320 27 

42 SD 0 350 52 

44 SD -6 230 55 

142 LD -9 80 43 

143 LD -15 40 44 

230 LD -9 230 28 

231 SD -3 280 36 

(b) 



Notes 

l. The formai definition of the notion of cell is given later in Section 3. t.
2. The choice, done in Reininger (1997) and Reininger and Camînada ( 1998a), is based on the fact that each point

STP bas 8 neighboring STP.

3. Notice that non-uniformed costs have no incidence for the heuristic approach presented in this paper.
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