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The antenna-positioning problem concerns finding a set of sites for antennas from a set of pre-defined candidate sites, and for each se\ected site, to dctermine the number and types of antennas, as well as the associated values for each of the antenna parameters. Ail these choiccs must satisfy a set of imperative constraints and optîmize a set of objectives. This paper presents a hcuristic approach for tackling this complex and highly combinatorial problem. The proposed approach is cornposed of three phases: a constraint-based pre-processing phase to fil ter out bad configurations, an optimization phase using tabu search, and a post-optimization phase to improve solutions given by tabu search. To validate the approach, computational results arè prcsented using large and realistîc data sets.

Introdnction

The planning process of mobile radio networks may be roughly divided into two different problems: the Antenna Positioning Problem (APP) and the Frequency Assignment Problem (FAP). The basic APP is concerned with a series of decisions, such as the site locations for the antennas, the number and types of antennas for each site, and the associated values for the antenna parameters. The FAP has to do with the assignment of a set of available frequencies to the antennas of the network. Both problems involve a great deal of constraints, and they are closely related, because a good (bad) antenna positioning may make frequency assignment easier (harder).

Until now, many studies have been carried out for the FAP and highly effective optirnization algorithms have been developed; see for instance, [START_REF] Box | A Heuristic Technique for Assigning Frequency to Mobile Radio Nets[END_REF][START_REF] Crampton | A Para!lel Genetie Algorithm for Frequency Assignment Problems[END_REF][START_REF] Duque-Anton | Channel Assignment for Cellular Radio Using Sîmulated Annealing[END_REF]Funabiki and Takefuji, 199 2 ;Hao and Dorne, 1995;Hao, Dorne and Galinier, 1998;[START_REF] Hurley | A Comparison of Local Search Algorithms for Radio Link Fre quency Assignment Problems[END_REF]Lai and Coghill, Jaumard et al., 2000). Many network operators now routinely use frequency-planning tools integrating such algorithms.

On the contrary, studies on optimization algorithms for the antenna-positioning problem seem much more limited. Indeed, most existing studies are oriented towards small-scale micro-cellular or indoor systems involving only several antennas [START_REF] Fortune | WISE De sign of Indoor Wireless Systems: Practical Computation and Optimization[END_REF][START_REF] Mcgeehan | Optîmizing Microcell Base Station Locations Using Simulated Annealing Techniques[END_REF][START_REF] Sherali | Optimal Location ofTransmitters for Micro-Cellular Radio Communication System Design[END_REF]. Other studies fo cus on optimizing some antenna parameters or some specific objective such as the coverage of a (relatively small) area [START_REF] Calégari | Radio Network Planning with Combinatorial Optimisation Algorithms[END_REF][START_REF] Molina | The Automatîc Location of Base-Stations for Optimised Ce!lularCoverage: A newCombinatorial Approach[END_REF]. No real optimization algorithm is available yet for antenna positioning and optimization of large-scale radio networks. Tasks related to antenna positioning are essentially carried out with the help of engineering tools integrating some simulation functions, which leads to largely sub-optimal solutions.

With the continuous and rapid growth of communication traffic, large scale planning becomes more and more diffi cult and cannot be realized in an optimal or near optimal manner. Automatic or interactive optimization algorithms and tools would be very useful and helpful. Advances in this area will certainly lead to important improvements concerning the service quality in tenus of coverage and interference and allowing the decrease of the installation cost. The APP thus constitutes a signifi cant stage in the process of cellular network planning.

The general antenna-positioning problem can be informally described as follows. Given a list of candidate sites for antennas, several types of antennas, and a discretized geographical working area characterized by a set of points with information related to traffi c estimation and the radio threshold, the aim is to select some sites among the candidate sites, and for each selected site determine the nurnber and types of antennas, as well as the associated values for each of the antenna parameters. All these decisions must satisfy a set of irnperative constraints ( cover, handover, one connected-component cell) and optimize a set of objectives (number of sites used, amount of traffic that can be handled, level of potential interference, efficiency of transmitters). It is easy to see that the problem is highly combinatorial. The number of possible combinations is enormous for realistic networks, leading to search spaces as large as 2 4•000,000.

The heuristic approach we develop is composed of three sequential phases: a constraint based pre-processing phase to eliminate a large number of "bad" combinations, an opti mization phase by tabu search working in a reduced search space, and a post optimization phase by fine tuning of antenna parameters.

This approach is applied to two large and realistic test data sets corresponding respectively to an urban network and a highway network in a GSM system. Experimentation shows that the proposed approach is highly effective, robust, and fl exible.

2, Problem description

In this section, we give the basic elements necessary for the general understanding of the antenna-positioning problem. A more detailed presentation of the APP can be found in Reininger (1997) and Reininger and Caminada ( 1998a). A cellular network is composed of three entities: a discretized geographical working area, where signals and traffic are measured, mobile ( cellular) stations (MS), which defi ne the services, and antennas, which can be placed on some pre-defi ned sites within the geographical area.

Working area

The geographical working area on which a network is deployed is discretized into a fi nite number of points called reception test points (RTP). For each RTP, a radio signal is tested.

From the set of RTP, two other sets are defined:

• the set of service test points (STP), where the radio signal must be higher than a threshold Sq to allow the establishment of communications (Section 2.2), • the set of traffic test points (TTP), for each of which the traffic of communication measured in Erlang is estimated.

The traffic implies the communication, a TTP is thus necessarily a STP and the following relation is always verified:

{TTP} C {STP} c {RTP}
The working area is also described by a list of pre-defi ned candidate sites on which antennas may be placed. Table 1 and fi gure 1 summarize ail these concepts. This example corresponds to an urban area of 49.6 km x 45.8 km.

The mesh step for the discretization is 200 meters. We thus have 248 x 229 = 56792 RTP.

Mobile station (MS)

A network provides a service for a category of mobile stations. A quality threshold, noted Sq hereafter, defines this service. A network may provide different services, thus different quality threshold. If the radio signal al a given point of the working area is higher than the required Sq, then the cellular phones that are al this point can communicate. The value of the threshold Sq is dependent on the MS considered and expressed in decibel ( dBm) (Table 2). STP : points where radio signais must be;, Sq TTP : points where traffic is estimated An MS has another specific characteristic that must be considered: the reception sensitiv ity of the MS, or mobile sensitivity (Sm). Sm has an average value of -99 dBm, however, a signal ofthis value is not sufficient for an MS to establish communication with an antenna, but it does scramble an already-established communication. This point wiH be re-examined later when we evoke the noise level of a network.

RTP : points where radio signals is computed

Candidate sites

Antennas

In general, there are several types of antennas available in a network, characterized primarily by their transmission gain (Gs) and their propagation diagrams (fi gure 2). In this work, we consider 3 types of antennas: omnidirectional (OMNI), large directional (LD), and small directional (SD).

The principal parameters of these antennas are:

• the power, PS, which can vary frorn 26 to 55 dBm,

• the azimuth (for a directional antenna) between 0 ° and 360 °,

• the tilt (for a directional antenna) between -15 ° and O', . Gs=ll.15dBm

• the number of transmitters (TRX) assigned to the antenna for a given traffic. In a GSM system, a conversion table determines this number according to the material used. Table 3 shows such an example where an antenna may require I to 7 TRX (thus I to 7 channels).

Note that the number of TRX is directly determined by the traffic and does not need to be tuned by the optimization algorithm.

These antennas can be placed on pre-defined candidate sites in the working area. In our case, a site can host either one OMNI antenna or one to three LD or SD antennas.

Base station and cell

A base station, BS b, is defined by a quintuplet b = (site, antenna, tilt, azimuth, power). It corresponds thus to the choice of a site, an antenna on this site and the parameter values of the antenna. For example, for the above network, the BS b = (356, LD, 0, 30, 38) corresponds to the placement of a LD antenna on the site numbered 356. This antenna has a tilt of 0', an azimuth of 30 °, and a power of 38 dBm.

Other components are also involved in the definition of a BS, such as BS transmitter loss and BS receiver sensibility (Reininger, 1997;Reininger and Caminada, 1998a), and the same applies to the MS (Section 2.2). Since these values are constant for a given situation, they will not be further discussed in this paper.

In order to assess the signal quality at each point, a radio wave propagation model is needed. Such a mode! is able to predict the propagation loss of an electromagnetic fi eld between a site and each RTP of the working area. To compute the prediction, the mode! takes into account the site coordinates, its height, the RTP coordinates, the set of obstacles between the site and the RTP (buildings, mountains ... ), and the angle of incidence between the site and the RTP. We evoked above only downlink signais emitted by base stations towards cellular phones. Infact, il is also necessary to take into account signais from MS towards BS (uplink signais). It is, however, shown in Reininger and Caminada (1998a) that if the downlink signal, coming from a BS, is higher than the quality threshold Sq and the uplink signal is stronger than the downlink signal (which is indeed the case in GSM systems), then it is not necessary to be concerned with uplink signais.

Thus, starting from the data of a BS in a network we will be able to calculate, for each point of the geographical area, a radio signal, noted hereafter as Cd. The cell of a BS corresponds thus to the set of STP covered by the BS, i.e. for which the signal received from this BS is the best one and higher than the quality threshold Sq. Figure 3 illustrates the link between an isolated BS and its cell.

Since radio wave propagation is never homogeneous and isotropie, the cell of a BS is always irregularly bounded, depending on the topography and the transmitting power. Moreover, the cell of a BS is dependant on other BS emitting from overlapping areas. 1

Constraints

Each STP must be served by at least one BS. Therefore, the union of the cells in a given network must be equal to the set of all the STP located in the working area. This necessity constitutes the global coverage constraint for a network.

When an MS moves from one cell to another, the network must be able to guaran tee the continuity of the communication. To accomplish this, it is essential that each cell has a nonempty intersection (handover area) with ils neighboring cells. This require ment constitutes the handover constraint, which must be respected by all the cells of the network.

The STP contained in a cell may constitute several connected components. Connected components play a signifi cant (and negative) role in the quality of a network (Reininger and Caminada, 1998b): the more connected components there are for a cell, the more in terference there may be, Also, cells having more connected components make it difficult to manager the handover. Therefore, one of the constraints of the APP is that each cell of the network constitutes only one connected component. This local constraint is called one connected component (OCC) constraint, for which in this paper, on1y components containing more than 8 STP are taken into account (see Section 3.3). For example, the cell in figure 3 satisfi es the OCC constraint, even if, in addition to the main connected cornponent, the cell has one component of 2 STP and six other components of lSTP.

Objectives

The installation of a new site is usually very expensive for the network operator. For this reason, a major objective of APP is to minimize the number of sites used.

A cornplete network is made up of a certain number of ce lis (typically one hundred forthe networks we studied). Each STP receives signals coming from several BS. These overlap ping signals are necessary for the purpose of handover, but at the same time generate interfer ing noise. Therefore, a second important objective is to minimize the level of noise within the network.

A cell covers a certain number of traffic test point TTP. However, given that the total traffic served by a cell cannot exceed 43 Erlang (see Ta ble 3), it is possible that the traffic of some TTP within a cell may not be totally served. Therefore, a third objective is to maximize the total traffic supported by the network.

One notices from Table 3 that the closer the traffic of a cell is to the maximum accepted by a given number of TRX, the better the output of these TRX will be. This leads to a fourth objective, which is to maximize the traffic yield of the BS transmitters in the network.

The preceding classifi cation of constraints and objectives corresponds to a particular scenario that was used within the framework of this study. Of course a network operator can interpret ail these concepts differently and exchange some constraints and objectives. Moreover, other constraints and objectives may be introduced.

The above constraints and objectives are rather interdependent of each other, and often have conft icting natures. First, the coverage constraint is opposed to the objective of min imizing the number of sites used. Second, the handover constraint implies the existence of several signals at one same point, and can increase the level of noise which one wants to minimize. Third, in order to maximize the amount of traffic the network can handle, one needs to limit the size of each cell. Now in order to guarantee coverage, one need to increase the size or the number of cells. In both cases, the increase îs accompanied by an increase in the level of noise, as well as an increase in difficulty of managing the OCC constraint. Finally, one notices also that it is not easy to jointly satisfy the OCC constraint and the coverage constraint. This last observation is important, since it irnplies the difficulty of producing feasible solutions for the APP.

In the previous discussion, we have presented in the most general way the concepts that highlight the antenna-positioning problem. The problem thus consists in choosing, among all the possible BS, a set ofBS which satisfies the coverage, handover, and OCC constraints, while minimizing the number of sites used, maximizing the ensured traffic and yield of the transmitters, and minimizing the noise level. Now, if one considers cells rather than BS, the APP can also be seen as a cover age problem of a plane surface: one wishes to cover the surface (working area) with various forms of cells with multiple constraints between these forms, while optimizing the objectives.

Formulation of problem

ln this part, the mathematical mode! for the APP used in this work is presented. The details of this mode! can be found in Reininger ( 1997), [START_REF] Reininger | Mode] for GSM Radio Network Optimisation[END_REF]Caminada ( 1998a, 1998b ). The model shown here reflects only a pmticular scenario. Other models are surely possible. However, the basic idea of the heuristic approach presented in this paper may be applied to other scenarios.

3./. Basic notations

• ST • Sq • Sm • TT • Ps • BS • BS/ • Cdb,p
•L set of ail the service test points STP in the working area, service threshold defi ned by a power value for a given station (Table 2), cellular phone station receiver sensitivity defined by a power value, set of the traffic test points TTP of the working area: TT c ST, antenna power, quintuplet (site, antenna, tilt, azimuth, Ps), set of selected BS that correspond to a network design, field strength received al a STT p E STP from a BS b E B S l, set of the candidate sites for a given network, The positioning of an antenna corresponds to the choice of a finite number of BS, denoted by B S 1, chosen among ail possible ones.

For each b belonging to BS1 we define ils cell Cell(b) as follows:

Cell(b) = {p E ST/Cdb,p 2: Sq and 1/b' E BSI b' cfabCd b .p > Cd b ,,p)
The second part of this de finition is important. lt indicates that the cell of a BS de pends not only on this BS but also on the other BS in the network.

Coverage constraint

Ali the STP of the working area must be covered by an antenna. This constraint is formally expressed by the following formula: In this work, we do not take into account cornponents containing fewer than MINC STP.

ST= U Ce/l(b) bEBSl

One connected compfment (OCC) constraint

MINC is an integer parameter to be fixed. In this study, MINC = 9 is used. 2 Figure 4 illustrates this principle.

One notices that the OCC constraint would be difficult to satisfy if the coverage constraint is taken into account at the same time. Indeed, when one adds a BS or increases the size of a cell to get a larger cover, one may "eut" a one CC cell into two cells or create a cell of multiple components.

Handover constraint

The handover area of a cell is defined by the set of STP p covered by the BS b, such that there is at least one other BS b', from which the field strength Cd b :p on pis greater than the threshold Sq, and at most 7 dBm above or below the fi eld strength Cd b ,p received from the BS b, or, handCell(b) = (p E Cell(b)/3 b' E BSJ and Cdb:p è" Sq and ICdb,,-Cdb:pl s 7dBm}

The handover constraint, which requires a non-empty handover area for each cell, is expressed by the following formula,

\lb E BSJ handCell(b) ')', 0 (3) 
One notices that the model does not take into account the location and the number of handover points (Reininger and Caminada, 1998a). This definition corresponds in fact to a weak form of the handover requirement (number of minimal handover point= 1 per cell) and may be easily extended to include more than one minimal handover points. Computational simulations show that this weak form of handover is sufficient to ensure good handover in a network when the coverage constraint is satisfied. This observation may be interpreted as an indicator that the coverage constraint implies somewhat handover. We observe also that the handover constraint defined by ( 3) is satisfied as soon as there are a sufficient number of cells in the network.

Minimize the number of sites used

This objective is defined by:

min Le; x Yi, iEL { 1 , Y; = O,
if site i is selected otherwise ci is the cost of site i. In this paper, we suppose all the sites have a unit cost:

3 Vi E L, c; = 1 (4)
This restriction corresponds to networks in construction. There are, however, networks in extension for which the cost of a site depends on the operation that one carries out: creation of a new site, rnodific8.tion or suppression of an existing site in the initial network. We will discuss this point in the conclusion section and show that the resolution approach presented in the paper remains valid in this situation.

Minimize the noise level

Noise level estimation is not straightforward. If there is too rmicL overlap between cells, noise level will be very high, We have defined a cell as the set of ST? wîth the best signal corning from the same BS b. So Cdb,p is the best signal reccived st a given point p of the cell Cell(b). Ideally, each STP ofCell(b) should not reoeive more than h signais lower than Cd b .p and greater than the required sensitivity threshotcl Srn (.Section 2.2.). These h signais are used for handover. In our work, h value is fixed at :1, , bt!t lt i;; a pararneter that can be varied according to the model used. Signais after the hth �tnd greater than Sm are considered as noise. For each point p of Cell(b ), consider rhe sorted hst of signais greater than Sm:

Cdb.p :,: Cdhl.p :,:

• • • Cdbh.p :,: • • • Cdbk.p > Sm
Hence the noise level at point pis given by:

Y (p) = L Cdbj, P -Sm (k is dependent on p) h<j�k
The objective of minimizing the total amount of noise is expressed as follows:

min L ,(p) pEST

Maximize the amount oftraffic of the network

The total traffic a BS b can handle is given by the following formula:

traffic_BS (b) = trafficpoint(p) pETTnCell(h) (5)
According to this value, one will assign a number of transmitters TRX to this station by using the conversion Table 3. If the total traffic required by the TTP of a BS exceeds 43 Erlang, then the exceeding traffic may be lost It is for this reason that we introduce the concept of the traffic hold of a cell: This section presents the main characteristics of the APP, allowing us to have an idea about the difficulty of the problem. These characteristics are: a very high number of search combinations, a high complexity of computation, and a high requirement of memory.

Large number ofcombinations

The values of the parameters of antennas were discretîzed as follows:

• Ps E [26 .

. 55] and oPs = 2 dBm -+ IPsl = 15, • azimuth E [0 . .359] and oazimuth = 10' -+ jazimuthl = 36,

• tilt E [-15 .. 0] and otilt = 3 ° -+ ltiltl = 6.

These values were considered to be sufficient for the precision of cakulations and the resolution of the problems. This quantification is a first step towards reducing the number of search combinations.

Thus, an omnidirectional antenna has IPsl = 15 possible settings, and a directional one has IPsl x lazimuthl x ltiltl = 3240 possible settings. Thus, to put a BS at a site, we have 15 + 3240 + 3240 = 6495 possible choices (denoted by IBS,;,el). If ILI represents the number of candidate sites of a network number of candidate sites, we get Ill x IBS site l possible choices for a BS in the network.

To build a network is to find a combination of base stations, among the possible ILI x IBS s itel ones, which satisfies all the constraints and optimizes the objectives. We thus have 2ILI x IBSsitel potential cboices of confi gurations, even if a large number of them are not feasible.

For example, the network of figure l bas 568 candidate sites, and thus a search space of 2 s6s x 6 495 = iL689. 160 combinations.

Computational complexity

For the purpose of clarity and conciseness, we did not evoke all the computation rules for calculating electromagnetic fi elds. These rules, given in Reininger ( 1997), are primarily trigonometrical formulas of angles between STP and sites. A priori, an optimization process has to check at each stage that ail the constraints involved are satisfied, and to count those that are violated. For the OCC and handover constraints, the computing complexity gener ated by this task is about IBSll x ISTI, where IBSll represents the number of BS selected at a given stage of the optimization process.

Cell management, which is essential for the representation of most of the constraints and certain objectives, is very expensive to compute. Indeed, on the one hand, it is necessary to calculate the signais emitted by al! the selected BS on all the STP, and to sort these values for each STP, in order to determine the cells associated with the best fields, and, on the other band, to calculate the noise level and indicate the other fields higher than Sm.

For an average of 100 selected BS, the network of figure I requires about 100 x 17393 non-trivial calculations (arctang, real divisions, sorting of Cd, calculation of connected com ponents) to evaluate a configuration. This requires more than one million non-elementary operations. Computing the signals dynamically using a radio propagation modcl is very time consuming, and, therefore, cannot be used during an optimization process. Propagation loss data are thus pre-computed and stored in a propagation loss matrix where propagation loss has been prcdicted from each site to each RTP. Associated to these values we have an incidence matrix that gives the incidence angle for each couple (site, RTP). For each type of antenna, we also have the horizontal and vertical diagrams. Using this data, one can compute the fi eld strength Cd b .p by using the f ormulas detailed in Reininger (1997). Table 4 gives an idea about the quantity of data necessary for the problems that we solved.

Memory consumption

Typically, the data concerning the radio signal, the values of traftic, the coordinates of the sites, and the points of a network require more than 200 MB of memory.

General heuristic approach for the APP

The APPis thus highly combinatorial and very difficult to resolve. This remains true even for fi nding feasible solutions satisfying all the constraints. In particular, it is not at ail obvious how the OCC and coverage constraints can be satisfi ed simultaneously.

To tackle the APP, we have developed a heuristic approach, which is composed of three sequential phases: a pre-processing phase based on a fi.ltering principle, an optimization phase based on tabu search, and a post-optimization phase by fi ne tuning antenna para meters.

The pre-processing phase uses some .filtering criteria to eliminate or filter out many undesirable base stations (or cells) that cannot contribute to a good solution. We calculate, site by site and antenna by antenna, all the possible cells generated by each BS (site, antenna, power, tilt, azimuth). According to the filtering criteria, we decide for each cell whether the cell is kept or rejected. For example, if the filtering criterion used is the OCC constraint, then any cell violating this constraint will be definitively eliminated. Sirnilarly, if we want to limit the size of the cells, we may use this criterion to filter out the cells exceeding the desired size. Therefore, this pre-processing step allows us to greatly reduce the number of combinations of the search space. For network such as the one we used, this step retains typically 200,000 to 400,000 BS, from some 4,000,000 possible ones. Let us notice another important point: Computations of field strengths for each point in the working area are carried out at this phase and are no longer necessary during the optimization phase which is carried out by tabu search.

From the set of BS produced by the pre-processing phase, the optimization phase by tabu search will construct solutions by choosing a subset of BS that satisfy ail the constraints of the problem and optimize the objectives. To do this, the tabu algorithm, starting with an empty solution, tries to extend at each iteration its current solution by adding a BS and dropping some existing BS, if necessary, (for instance, to continue satisfying the OCC con straint). The choice of which BS is added at each iteration takes into account the objectives, and checks that the coverage constraint is satisfied.

Finally, the post-optimization phase is applied to improve the solution produced by the tabu algorithm. This phase can be used to optimize objectives or repair the rare con straints that remain unsatisfied. Post-optimization is realized by the fine-tuning of antenna parameters.

Pre-processing

Constraint based pre-processing

As previously mentioned, one of the main difficulties of the APP concerns the management of the OCC and coverage constraints. One well-known technique for constraint handling in general is the penalty-based approach. In this approach, constraints are considered as objectives and integrated into a weighted evaluation function:

i=m i=n f' = Lf; + LPj x cJ)(ci)
where:

i=l j= l

• f represents one initial objective,

• p; is a penalty to be defined for constraint c j ,

• cJ)(cj) equals l if ci is satisfied, equals 0 otherwise.

An advantage of this approach lies its flexibility, while its main drawback is the difficulty in fine tuning the penalties. Indeed, if some constraints are incompatible and bard to satisfy, these constraints may never be satisfied. This is precisely the case for the OCC and coverage constraints.

To cope with this difficulty, we introduce a special technique for handling the OCC con straint (the global coverage constraint is handled with the penalty approach, see Section 7.2). The basic idea is to use the OCC constraint in an active way to filter out "bad" BS which violate this constraint, and which consequently cannot contribute to a good solution. Only "good" BS are retained.

Recall that a candidate site can hast one omnidirectional (OMNI) antenna or one to three directional (LD or SD) antennas, which results in 6495 potential base stations. For a given site, all its BS confi gurations are not of equal interest. ln particular, a BS whose cell has many connected components can in no way be useful for a final solution due to the OCC constraint. Therefore, it would be beneticial to eliminate such ES from the search space from the beginning. Thal is what we do during the pre-processing phase. For every possible BS b = (site, antenna, power, tilt, azimuth) of every candidate site, we carry out all the necessary computations of field strengths to calculate the corresponding cell of the BS, and then count the number of its connected components having more than 9 STP (see Section 3.3). If the number of connected components is greater than one, i.e. the OCC constraint is violated, then the cell is not counted. Otherwise, the cell is recorded in a data structure together with all related information. Therefore, the left cell in figure 4 (Section 3.3) is kept, while the right one is rejected.

To calculate the connected components, we use the "scan line blob coloring algorithm", which is well known in the field of computer vision [START_REF] Ballard | Computer Vision[END_REF]. This algorithm scans the working area from top left to bottom right and labels STP belonging to the same cell with the same color. To accomplish this, it considers four points around the cun-ent one: the three neighboring points on top and the left neighboring point in an 8-neighborhood. For a single BS, this algorithm has a time complexity of O (1 Cell(b) 1).

This OCC constraint-based pre-processing phase allows one to significantly reduce the size of the search space, especially in the situations where many irregular obstacles are present in the terrain. Indeed forthe network of figure l, this filtering step retains only 294000 BS. The combinations in our search space are thus reduced from 2 3689160 (intractable) to 2 294000 (tractable).

The idea behind the pre-processing is very general and other criteria, like the noise level and the traffic, can be easily used separately or conjointly for this pre-processing phase. Such pre-processing techniques were implemented and experirnented upon in our study. However, we are unable to describe them further within the framework of this paper.

Therefore, the pre-processing phase offers great flexibility, allowing us to generate many different search spaces with different characteristics, which can then be used by the opti mization phase to produce various solutions. This flexibility represents a nice feature for multi-objective optirnization problems such as the APP.

Connectivity con.'itraint transformation

After this filtering stage, we have cells which satisfy the OCC constraint individually, and which have additional proprieties when other filterîng criteria are applied. Since the OCC is difficult to handle, this constraint must remain satisfied during the tabu optirnization phase, which consists in adding and dropping BS. For this purpose, we divide each cell into two parts, called the "kernel" and "border," and introduce a new constraint called the "kernel constraint."

Let 8Sq be a dBm value greater than 0: 8Sq > 0 dB m. For each cell, one considers the 2 following sets: Border:

kernel(b) = {p E Cell(b)/Sq + 8Sq S Cd1,.p) border(b) = {p E Cell(b)/Sq S Cd1,.p < Sq + 8Sq)

Cd�Sq

Then the kernel constraint states that the kernels of two different cells do not overlap:

V(b, b') E BSJ x BSI, b ,é b' ⇒ kernel(b) n kernel(h') = Z
Notice that the partition of a cell into kernel and border may be adjusted by the value given to ôSq. By varying the value of OSq, we can make the kernel constraint stronger or weaker. Now, during the tabu optimization phase, this kernel constraint is used so that the OCC constraint will remain satisfied. Therefore, the management of the OCC is replaced by handling this simpler kernel constraint.

The kernel constraint does not forbid the overlapping of the border zone of one cell with that of another celL Such an overlapping zone is typically used to ensure the handover constraint.

Let us now consider a more detailed example. Table 5 shows a partial solution involvîng 4 BS. Figure 6 gives the cells of these BS (left) togetherwith their kernel and borders (right).

In this example, ôSq = 4 dBm is used to defined the border areas. One notices that the overlap of the two adjacent cells concerns only their borders.

In summary, the pre-processing step generates, from the raw data of the problem, a reduced set of BS, as well as their representation in terms of kernel and border. The next step consists in constructing a solution from these BS. cell ➔ border u kernel A solution will be designed by putting together some BS in such way that all the STP of the working area are covered, the kemel constraint is respected, each cell shares a han dover area with some other cells, and the objectives are optimized. In practice, the handover constraint is automatically satisfied if a sufficiently large number of BS is present in a solution and if all STP are covered. The remaining task is essentially to satisfy the caver age constraint while optimizing the objectives, which is accomplished with a tabu search algorithm.

Optimization by tabu search

We now present the main ingredients of our optimization algorithm based on tabu search. For a cornplcte presentation of TS, the reader is invited to consult the comprehensive book by [START_REF] Glover | Tabu Search[END_REF].

1. Configuration

Let S be the set of BS selected by the pre-processing step. We define a first search space S to be the set of all possible binary vectors with IBI component:

Lets = (b 1 , ••• , b 1 g 1 )
be such a vector of S. Each component bi identifies a particular BS in B. If b i equals 1 then the corresponding BS is retained in the partial solution, otherwise, the BS is re_jected. The space S thus represents all the possible networks that can be built starting from B.

However, one notices that many configurations of S are not of interest, since they do not even verify the rule of antenna placement on a site ( one OMNI or 1 to 3 LD or SD per site, see Section 2.3). To translate this irnplicit constraint of the model we associate with each type of antenna a weight p: We now define the subspace Tc S verifying the rule of antenna placement on a site:

I p(OMNI) = 3, p : p(LD) = 1, p(SD) = L
T = {s ES/VIEL As(s,l) :C: 3)
It is clear that this reduced search space is of greater interest than the initial space S.

From T we now define a last search space X c T that respects the kernel constraint (Section 6,2): X= ((b,, ,,,,h 1 B1) ET/V;, V j ,i #} and b; = 1 and b j = 1 =; kernel(b,) nkernel(b j ) =0}

Therefore, the search space X includes al! the confi gurations that satisfy both the rule of an tenna positioning on a site and the kernel constraint. Since many non feasible configurations are excluded from X compared with the initial search space, we have IXI « ISI,

Configuration evaluation

In order to guide the tabu algorithm to visit the search space, one needs a function for evaluating the configurations. Since the APP involves multiple objectives and multiple constraints, the evaluation is somewhat complicated. In this work, we took a hierarchical approach to evaluate the configurations. Formally, for a given configuration s of X, it is evaluated by the fol!owing vector function. l; ( s ) = ( c 0( s) , f, (s ), fz(s), fs(s), f4(s)) where:

• co(s) = coverage(s) = number of STP covered by the cells of s,

• f 1 (s) = trafficHold(s) = sum of traffic held by ail the cel!s of s,

• f 2 (s) = noise(s) = sum of noise generated by each selected BS of s,

• f 3 (s) = number of sites where BS are installed,

• f4(s) = traffic Yield(s),

The first component c 0 of this evaluation function corresponds to the coverage constraint. This component takes priority over the other components (f 1 , f2, f 3 and f 4 ) that are related to the different objectives of the problem. A higher priority for the component c 0 helps to guide the search to find first feasible solutions. Another possibility would consider the component c 0 at the same level as the other objectives at the risk of never finding a feasible solution.

For the components f t, f2 , (1 and f4, any priority order may be used according to the im portance we give to each objective. For our presentation, we chose arbitrarily the following priority order P:

Given two configurations s1 and s2, si is said to be betterthan s2, denoted by ç(s 1) > ç(s2), if the following condition is verified: l'-ç(s1,s2) = (t.c0 (sl,s2), M 1 (sl,s2), M2(sl,s2), M3(sl,s2), M4(sl,s2)) denotes the vector variation of�.

We also use another fonction of evaluation: ç' (s) = (cS(s), f, (s), f,(s), f 3 (s), f4(s)) where: cS(s) = L w(p) where w(p) is a weight value greater than 0, and

pcovered n s ) {} ç(s) if w(p) = 1 V p EST.
We will see the usefulness of this evaluation fonction in Section 7 .5.

Neighborhood and move

We now introduce the neighborhood function Nover the search space X. More precisely, this fonction N : X ➔ 2 x is defined as follows.

Let s= (b 1 , b2, ... , b 1 8 1 ) E X and s' = (b;, b\, b 1 1l 1 ) E X then s' is a neighbor of s, i.e.

s' E N(s), if and only if the following conditions are met:

1) 3 1 i such that b, = 0 and b, = 1 (1 :" i :" IBI) 2) for the above i, V j #i E { 1 ... IBI} kernel (b,) n kernel (b j ) # 0 =;. b 5 = 0 Thus, a neighbor of s can be obtained by adding a BS (flipping a variable b, from O to l) in the current configuration and then dropping some other BS (flipping some b j from 1 to 0) to repair the kernel constraint violation. Consequently, a move mv to obtain a neighbor s' from where bi 1 ••• bin are variables linked to b i by the kernel constraint. That means that there is at least one same element (i.e. STP) in bath kernel (b;) and kernel(b j ) for j E J, = {i 1 .. ..• i,}. Such a moved is denoted by mv(i) = (b; : Ü➔ 1, b j 1 .. . b;,: 1 ➔Ü). Use s' = s + mv(i) to denote the neighbor of s obtained by applying mv(i) to s.

lt should be clear that from a configuration s = (b1, b 2 , ... , b 1 11 1 ), there are as many possible moves as the nurnber of variables in s having a value of O.

L et l s l = Lusllll b,, thens bas exactly IBI -lsl neighboringconfigurations (i.e. IN(s)j = lfl l-1 s 1 ).

Tahu List management and aspiration criteria

The main role of a tabu list is to prevent the search from shmi-term cycling (b j : I ----+ 0 ➔ l ➔ 0 ... ). Given the considerable quantity of calculations to be carried out for a move, we avoid imrnediately dropping a BS that has just been selected. To do this, a simple frequency-based mechanism is used:

Let Freq(i) be the frequency ofa move mv(i) (i.e. the number of times the BS b; is selected in the partial solution), then the number of iterations during which an element b i should not be resct to Ois equal to Freq(i). The number is called tabu tenure of the move mv(i).

In order to implernent the tabu list, a vector Tabu of IBI elements is used. As suggested in Glover and Lugana (! 997), each element Tabu(i), i.e. the tabu tenure of mv(i) ( 1 S i S IBI) records Freq(i) + t where t is the number of iterations when mv(i) is carried out. In this way, it is quite easy to know, at a later iteration t', if a mv(i) is allowed or not: if there exists j E J, = {i1 ... i,} such that TabuU) > t' then mv(i) is a forbidden move, otherwise, mv(i) is a possible move.

The tabu status of a move mv(i), such that s 1 = s + mv(i), is canceled if s' bas a bet ter quality than s, i.e. ç(s') > ç(s). This condition corresponds to a simple, yet important technique called "aspiration criteria."

Divers(fication

During the normal search process, the tabu algorithm chooses, at each iteration, one best move among all possible moves. This process is stopped and a diversification phase is triggered if no improved configuration is found during a fixed number of iterations. To do this, we re-calculate the weight of each STP in the following way:

If the STP is already covered by a BS, its weight equals 1, otherwise, the weight equals 1 + ISTj. One then replaces the evaluation fonction� by ç' (Section 7.2.). The evaluation fonction is changed in order to focus the search on the uncovered STP. This mechanism al\ows the search process to escape from a local optimum.

The number of iterations that trigger a diversification is relatively small, because one does not want to carry out too many non-improving moves, which require many calculations. This number is determined automatically using a simple idea. When our algorithm arrived at a local optimum, it selected ls'I BS, ls'"I being the number of elements with 1 in s'", We consider that if it carries out, from this point, ls"'I moves without improvement then it is ncccssary to diversify the search.

Let us notice that during diversification, the value of c; i (s) does not represent the real coverage ensured by the configurations. The real coverage c 0 (s) is kept up to date during the diversification.

General aff{orithm

The TS algorithm is composed of two iterative phases: search by exploitation and diversi fication. The algorithm's skeleton is shown below: The tabu algorithm stops when a diversification is not able to improve the solution with which the diversification starts. The algorithm returns the best solution s* found during the search. This TS algorithm requires no parameter to tune. Note that, ifwe are only interested in satisfying constraints, a stop condition may be added when the value of the!; component Co (i.e. coverage) is equal to 1sn.

Post optimization

Generally speaking, the post-optimization phase can be used to optimize any objective (the noise level, the total traffic supported ... ) or to enhance constraint satisfaction in case of constraint violation. The basic idea of the post-optimization phase is to improve a solution by fine tuning some antenna parameters.

As discussed in this paper, it is very difficult to satisfy the coverage and OCC constraints simultaneously. The proposed approach satisfies the OCC first and tries to satisfy the cov erage constraint during tabu optimization. Typically, tabu optimization alone can result in coverage greater than 99%. If a l 00% coverage is not reached, we use the following post optimization technique to cover the remaining 1 % of STP.

The principle of this post optimization process is simple: if one slightly increases the power of some BS selected in such a solution s*-to almost the feasibility level-we should be able to obtain the total coverage of the STP, without violating the other constraints. For this purpose, we seek the closest BS bmin of the uncovered STP (in terms of signal power): 8Cdb.p = Sq -Cd 6 _,(p is not covered so 8Cd > 0) bmin = b E B S 1 / 8Cd is minimum If the power (Ps) of bmin verifies the relation. Ps + 8Cd :s 55 dBm, then one can increase the power of this BS and repeat the operation. This simple process allows us to satisfy the coverage constraint in most cases.

Let us notice that for the post optimization phase, one may use other antenna parameters instead of power. Moreover, this kind of tuning may be easily applied to improve an existing network.

We have developed other techniques for improving objectives, such as traffic hold and noise level. For the purpose of simplification, these techniques are not presented here.

Experimentation and numerical results

Datasets

Computational experiments are carried out on two large and realistic data sets corresponding to two different types of networks: an urban network and a highway network. These test sets were generated by the CNET. which is France Telecom•s research laboratory. by using a very The main characteristics of these data are given in Table 6. We notice that the urban network bas fewer STP and more candidate sites than the highway network. In addition, the urban network bas a more homogeneous distribution of traffic, A priori this first problem would be thus less difficult than the highway network in terms of satisfying the coverage constraints and optimizing the ability to handle traffic. Of course this analysis does not take into account the propagation loss matrix, which is determining for resolving the APP, however, it does give a first classification of these problems,

Computational results

To salve these two problems, we followed the previously presented resolution proce dure, First, the pre-processing algorithm is run ta obtain the set B of BS satisfying the OCC constraints, This phase gives us typically 200,000 to 400,000 BS and takes about 4 hours on an ULTRA SPARC 30 with 512 MB of RAM, Then, the tabu optimization algorithm is executed to find feasible solutions satisfying the handover and coverage con straints. This phase is the most time consuming and takes about 24 to 48 hours to carry out 2,000 to 4,000 iterations, Finally, a post optimization algorithm is used ta further improve the solution found in the second phase or to enhance the coverage constraint if needed. This last step takes about 10 minutes, and thus is very fast compared with the fi r st two steps, There are several ways to obtain different solutions for a network. For example, one may run the tabu algorithm several times with the same B set . One may also use the pre-processing algorithm ta produce different B sets by varying the filtering criteria used, Table 7 shows three feasible, non-dominate solutions for each network, which are obtained with different .B sets.

Table 7 shows the values of the four objectives, Columns 3 ta 6 represent the number of omni-directional, large directional, and small directional antennas, and the number of base stations.

Appendixes 1 and 2 offer graphie representations of two solutions in Table 7, with each color representing a cell of a BS. These figures allow us to have a rough idea about the topology of the solutions found. For example, we observe that the cells are quite homogeneous, which is considered to be a desirable property of a network. Ap pendixes 3 and 4 give the two corresponding solutions in detail. From these detailed ta bles, we observe that the values of the "power" of antennas are rather close to the high value part. The repartitioning of lhe "tilt" values is almost homogencous. We also ob serve that there are very few omnidirectional antennas. This may be explained by the fact that there is neither constraint nor objective on the nurnber of BS, and several directional antenas can ensure the coverage of an omnidirectional antenna, with much better tuning possibilities.

In a similar way, for each network Table 8 presents two unfeasible solutions, where the OCC constraint is relaxed (number of OCC indicated in the second column), The main purpose of these results is to show the flexibility of the proposed approach, By comparing the results of Tables 7 and8, we observe that the violation of the OCC constraint increases the noise level. This observation constitutes an empirical justification of the importance of the OCC constraint

Comment.\' and discussions

Let us now make some cornments about these results and the proposed approach. The first comment concerns the feasibility of solutions for these networks. Given the high complexity of the data used and the way the data has been generated, it was unknown whether any feasible solution existed satisfying all the constraints of the model defi ned in section 3. It should be noted that among the three constraints, the OCC proved to be particularly difficult to manage. lndeed, we failed to satisfy this constraint with penalty-based approaches. The technique presented in section 6 for handling the OCC constraint proved to be much more powerful.

The second comment concerns the diversity of the solutions found. It is well known that for a multi-objective optimization problem, it is important to have a large number of diversifying or different non-dominate solutions. The experimentation shows that the proposed approach can produce many non-dominate solutions, thanks toits different solving phases.

The third comment concerns the quahty of the solutions found. This is a difficult issue, because there is no reference available concerning this matter. However, we know that radio engineers even with the help of the above-mentioned engineering tool, Parcell, found no feasible solution. Compared with such solutions, even without taking into account the factor of feasibility, the results produced by the approach presented in this paper are much better in tenns of service quality. Indeed, the noise level is much lower than in band-made solutions.

Finally, we would like to insist upon the flexibility of the proposed approach. The pro posed approach can be used naturally in an interactive environment, which is often nec essary for network design. In addition, it can be easily adapted to other models of the APP. Indeed, the mode( used in this work corresponds to a particular scenario; the con straints and objectives may be exchanged in other models. For example, the coverage constraint may be considered instead as an objective to be maximized. Similarly, the OCC constraint can also be bracketed in order to minimize the extra-connected com ponents. It is easy to see that the proposed approach can be applied directly in these situations.

Conclnsion

The heuristic aproach we propose in this paper constitutes one of the first studies dealing with antenna positioning and optimization of large and real size networks.

The proposed approach is composed of three sequential phases: a pre-processing phase based on a filtering principle, an optimization phase using tabu search, and a post optimiza tion phase based on fi. ne tuning. The pre-processing phase is parameterized allowing us to generate a variety of reduced sets of BS, of interest for devising an ultimate solution. The tabu algorithm is based on a binary representation of the search space, and integrates tech niques such as frequency-based tabu list management, and penalty-based diversification. Various techniques are available for post optimization, either to improve the objectives or to enhance constraint satisfaction.

This approach was applied to two large and realistic test data sets, corresponding to an urban network and a highway network. Results obtained on these data sets show that the proposed approach is very promising for antenna positioning and optimization of large networks. This approach proves to be flexible, robust and effective.

This work deals with the construction of networks from the ground up. Another very important and closely related problem concerns the optimization of networks already in place. The simplest from of optimization concerns only fi ne-tuning of antenna parameters: powers, tilt, and azimuth ... In addition to such tunings, one may also need to add new BS or new sites, deleting existing BS or sites. Bach ofthese operations has a possibly different cost.

A mode] of this evolution version of the APP is proposed in Reininger ( 1997). Adaptations of the approach presented in this paper to this model have been carried out and evaluated on large data sets. Once again, computational results show the effectiveness of the approach for dealing with this kind of network.

From this study, we may conclude that although the general APP is a highly combina torial and complex application, the problem can be resolved using a heuristic approach. Consequently, it must surely be possible to integrate such optimization approaches into engineering tools for radio network planning. We expect such industrial tools to be built and used by network operators in the near future.
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 3 Figure 3. Cell corresponding to b = (356, LD, 0, 30, 38).
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 4 Figure 4. Connected components of a single ce!!.

  (b) :o 43), otherwise. The objective of maximizing the arnount of traffic hold of a network is expressed by: max L trafficHold(b) bEBSJ 3.8. Maximize trqffic yield (6) Given the traffic hold of a BS b and the traffic capacity of b (see Section 2.3 and Table 3), we define the traffic yield for a cell by: trafficHold(b) trafficYield(b) = -----trafficCapacity(b) Hence, the objective of maximizing the traffic yield is expressed by the following formula: max L traffic Yield(b)

FigureFigure 5 .

 5 Figure 5 illustrates this partition.
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 6 Figure 6. Four ccl!s (left) and thcir kerne\-bordcr representation.

  For a BS b we use p(b) to denote the value p (b antenna type) and define the following fonction: As: S x L r+ {0, 1, ,,,} As(s,l) = b=l andhon site l p(b)

a

  configuration s= (b1, b2, b:; ... b 1 r. i1) is characterized by a series of flipping operations: b; frorn O to 1 b,, from I to 0 bin from l to 0

Table 1 .

 1 Characteristics of a real network data set.

		Area width Area length	RTP	STP	TTP	Sum of traffic	Candidate sites
	Urban network	46.5 km	45.8 km	56792	17393 6652 2988,08 Erlangs	568

Table 2 .

 2 Examplcs of thresholds per service.

	Mobile station	Sq in dBm
	2 Watt incar	-78
	2 Watt outdoor	-8 4
	8 Watt outdoor	

-90 Fiiure l. A real network working arca and its candidate sites.

Table 3 .

 3 Number of transmitters and traffic capacities.

Table 4 .

 4 Data for the APP.

	Set of candidate sites: L
	Set of RTP: R
	Sc! or STP
	Set of TTP
	Propagation !oss matrix
	Angle of incidence matrix

Table 5 .

 5 A partial configuration for the urban network.

	Site	Antcnna	Tilt	Azimut	Ps
	13!	LD	()	90	46
	356	LD	()	30	38
	397	LD	-6	300	46
	493	SD	-6	90	

Table 6 .

 6 Characteristics of the 2 data sets. ParcelL Each data set is described by a file containing the coordinates of the candidate sites, a huge propagation Joss matrix calculated using a radio propagation model, and other relevant information concerning the working area, antennas, etc. The data sets are quite large, since each one requires more than 200 MB of memory.

				Area		
					Mech		Trafic
		Service	width	length	size	RTP	STP TTP (Erlang) sites
	Unban Network	8 watt outdoor 46,5 km 45,8 km 200m 56792 17393 6652 2988,20 568
	Highway Network 8 watt outdoor 39 km	168,8 km 200m 164580 29954 4967 32l0,94 250
	powerful engineering tool called			

Table 7 .

 7 Fcasiblc solutions for an urban nctwork and a highway network.

		Sites	OMNJ	LD	SD	BS	Noise	Traf1ic hold	Trafl-ic ycild
	Urban network	60	0	29	41	70 215135,10 2239,96	750{	62%.
		63	0	41	44	85	274504,5	2339,14	78%	86%
		94	0	0	154	154 216460,3	2988, 12	100%•	789i.
	Highway nctwork	58		35	67	103	331227,7	2251,50	70%	72o/r.
		78	0	28	128	156 385918,8	2889,55	90%	727,;
		86	0	39	78	117	278481,4	2797,75	87%	79<; {

Table 8 .

 8 Unfeasiblc configurations for an urban network and a hîghway network.occ Sites OMNI LD SD BS

	Noise	Traffic hold	Traffic yci!d

35.5
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Notes

l. The formai definition of the notion of cell is given later in Section 3. t. 2. The choice, done in Reininger (1997) and Reininger and Camînada ( 1998a), is based on the fact that each point STP bas 8 neighboring STP. 3. Notice that non-uniformed costs have no incidence for the heuristic approach presented in this paper.