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Abstract—We present Barra, a simulator of Graphics Process-
ing Units (GPU) tuned for general purpose processing (GPGPU).
It is based on the UNISIM framework and it simulates the native
instruction set of the Tesla architecture at the functional level.
The inputs are CUDA executables produced by NVIDIA tools.
No alterations are needed to perform simulations. As it uses
parallelism, Barra generates detailed statistics on executions in
about the time needed by CUDA to operate in emulation mode.
We use it to explore the micro-architecture design spaces of
GPUs.

I. INTRODUCTION

We are witnessing a tremendous growth in the use of
Graphics Processing Units (GPU) for the acceleration of non-
graphics tasks (GPGPU). This is due to the huge comput-
ing power delivered by GPUs and the recent availability of
CUDA, a high-level and flexible development environment.
Meanwhile, commodity graphics hardware is rapidly evolv-
ing, adding new features with each successive generation
to accelerate execution of graphics routines as well as high
performance computing software.

Functional and cycle-level simulations have long been used
by CPU architects to study the effects of changes in architec-
tural and micro-architectural designs. New hardware features
are proposed and validated by explorations of design spaces
based on simulation. This methodology helps executives es-
timate costs and performances of proposals. In hierarchical
design, functional simulators are used for uppermost blocks
and timed simulators, such as cycle-level or transaction-level
simulators, are used for inner blocks, when necessary.

Complex architectures of modern GPUs carry many sig-
nificant challenges for researchers interested in exploring
architectural innovations and modeling precisely the effects of
changes, similarly to what is done for CPUs. Yet, architectures
of modern GPUs are largely secret as vendors are reluctant to
release architectural details and few GPU simulators are freely
available because of the tremendous manpower required in
development and validation.

We present a modular and parallel simulator based on
the UNISIM framework to perform functional simulations of
GPUs targeting GPGPU applications. It is named Barra. We
chose the NVIDIA architecture due to the wide acceptance
of CUDA! environment in GPGPU. Our framework integrates
two broad functions:

e A simulator of the hardware structures and functional
units of the GPU;

Thttp://www.nvidia.com/cuda.

o A simulator of the driver which loads the input programs,
performs management tasks and emulates the graphics-
GPGPU driver.

Barra monitors the activity of computational units, commu-
nication links, registers and memories. As it is integrated in
an open structural simulation framework, we may later build
timed simulators of GPU modules for the exploration of some
specific design spaces.

An overview of simulation and the CUDA framework is
given in Section II. A general view of the proposed framework
and features of our simulator and driver are presented in
Section III. Section IV presents our approach to the paral-
lelization of Barra. Validation and performance comparison
are respectively given in Sections V and VI

II. CONTEXT
A. Simulation

The availability of CPU simulators for superscalar architec-
tures in the 1990s was the starting point of various academic
and industrial researches in computer architecture. Simulation
can be performed at various levels, depending on the accuracy
required. Cycle-level simulators use cycle accurate models
characterized by a high accuracy on performance evaluation
with respect to real hardware. Transaction-level simulators are
mostly based on functional models and focus on timing com-
munications. The fastest simulations operate at functional-level
and mimic the processor behavior in a simulated environment.

The SimpleScalar cycle-level simulator [4] was at the origin
of various works accompanying the success of superscalar
processors in the late 1990s. However this simulator was
known to be unorganized and difficult to modify. Alternatives
to SimpleScalar were proposed for multicore simulation [16]
or full-system simulation [6], [15], [25]. Concerning GPUs,
simulation frameworks targeting the graphics pipeline were
introduced such as the Attila cycle-level simulator [17] or
the Qsilver transaction-level simulator [28]. However, the
architectural issues were different than those of many-core
parallel coprocessors such as modern GPUs.

GPU simulators putting an emphasis on parallel computing
have been proposed following the release of CUDA. The
Ocelot framework is a compiler infrastructure built around the
NVIDIA PTX intermediate language. It includes an emulator
to run CUDA programs [11]. As a virtual machine, it is not
bound to a specific architecture and its design goal is to deliver
the most simple software implementation. GPGPUSim [5] is
a cycle-level many-core simulator based on SimpleScalar. It
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simulates an original GPU-like architecture which uses the
abstract PTX language as its ISA.

B. Using UNISIM modular simulation framework

Modular simulation frameworks [2], [3], [24] have been
developed during the last decade to assist with software de-
velopment of new simulators. The common appealing feature
of such environments is the ability to build simulators from
software components mapped to hardware blocks. Modular
frameworks can be compared based on criteria of modularity,
tools and performances.

All environments suggest that modules share some archi-
tecture interfaces to provide modularity by allowing module
sharing and reuse. Some of them strongly enforce modularity
by adding some communication protocols to distribute hard-
ware control logic into modules as proposed by LSE [3],
MicroLib [24] and UNISIM [2].

The UNISIM environment includes GenISSLib, a code
generator that builds an instruction decoder from any high-
level description of the instruction set. The generated decoder
is based on a cache containing pre-decoded instructions. On
their first encounter, binary instructions are decoded and added
to the cache. Subsequent executions of the same instruction
perform look-ups of the decoded instruction in the cache. The
description language allows users to add some functionalities.

Simulation speed is becoming a main issue of modular
frameworks as architecture and software complexity increases.
Two solutions have been proposed to tackle this issue. Both
make trade-offs between accuracy and simulation speed. The
first solution uses sampling techniques [30] and is suitable
for single-thread simulation. The second solution is better
suited for multicore and system simulation. It suggests to
model the architecture at a higher level of abstraction with less
details than cycle-level modeling: transaction-level modeling
(TLM) [27]. To our knowledge, today, UNISIM is the only
modular environment offering both cycle-level and transaction-
level modeling based on the SystemC standard?.

Recent techniques [23] have been proposed to improve
cycle-level simulation of multicore architectures.

C. CUDA environment

The Compute Unified Device Architecture (CUDA) is a
vector-oriented computing environment developed by NVIDIA
[19]. It relies on a stack composed of an architecture, a
language, a compiler, a driver and various tools and libraries.

A CUDA program runs on an architecture composed of a
host processor CPU, a host memory and a graphics card with
an NVIDIA GPU that supports CUDA. CUDA-enabled GPUs
are made of an array of multiprocessors. GPUs execute thou-
sands of threads in parallel thanks to the combined use of chip
multiprocessing (CMP), simultaneous multithreading (SMT)
and SIMD processing [14]. Figure 1 describes the hardware
organization of these processors. Each multiprocessor contains
the logic required to fetch, decode and execute instructions.

2The Open SystemC Initiative, http://www.systemc.org/.

The hardware organization is tightly coupled with the paral-
lel programming model of CUDA. The programming language
used in CUDA is based on the C language with extensions to
indicate that a function is executed on the CPU or the GPU.
Functions executed on the GPU are called kernels and follow
the single-program multiple-data (SPMD) model. CUDA lets
programmers define which variables reside in the GPU address
space and specify the kernel execution domain across different
granularities of parallelism: grids, blocks and threads.

Several memory spaces are used on the GPU to match
this organization. Each thread has its own local memory
space, each block has a distinct shared memory space, and
all threads in a grid can access a single global memory space
and a read-only constant memory space. A synchronization
barrier instruction can synchronize all threads inside a block to
prevent some race conditions. It does not synchronize different
blocks. Therefore, direct communications are possible inside
blocks but not across blocks, as the scheduling order of blocks
is not defined.

This logical organization is mapped to the physical ar-
chitecture. Threads are grouped together in so-called warps.
Each warp contains 32 threads in the Tesla architecture. It
follows a specific instruction flow, with all its threads running
in lockstep, in an SIMD fashion. Blocks are scheduled on
multiprocessors, taking advantage of CMP-type parallelism.
Each multiprocessor handles one or more blocks at a given
time depending on the availability of hardware resources
(register file and shared memory). Wrap instructions are inter-
leaved in the execution pipeline by hardware multithreading.
For instance, the GT200 implementation processes up to 32
warps simultaneously. This technique helps hide the latency
of streaming transfers, and allows the memory subsystem to
be optimized for throughput rather than latency.

Likewise, the logical memory spaces are mapped to physical
memories. Both local and global memories are mapped to
uncached off-chip DRAM, while shared memory is stored on
a scratchpad zone inside each multiprocessor, and constant
memory is accessed through a cache present inside each
multiprocessor.

Several tools are provided to assist applications development
in the CUDA environment. First, a built-in emulation mode
runs user-level threads on the CPU on behalf of GPU threads,
thanks to a specific compiler back-end. However, this mode
differs in many ways with the execution on a GPU: the be-
havior of floating-point and integer operations, the scheduling
policies and memory organization are different. NVIDIA also
provides a debugger starting with CUDA 2.0 [20]. Finally,
CUDA Visual Profiler provides some performance evaluation
of kernels using hardware counters on the GPU.

III. BARRA FUNCTIONAL SIMULATOR

Barra contains two sets of tools. The first one replaces the
CUDA software stack, while the second one simulates the
actual GPU.
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A. CUDA driver emulator

The Barra framework is designed so that the simulator can
replace the GPU with minimal modifications in the develop-
ment or execution process of a CUDA program. The Barra
driver is placed inside a shared library that has the same
name and exports the same symbols as NVIDIA’s proprietary
one libcuda.so, so that function calls posted for the GPU are
captured dynamically and rerouted to the simulator. By setting
an environment variable, the user switches between executing
an unmodified CUDA program on the GPU and simulating it
on Barra.

The proposed Barra driver includes all major functions
of the Driver API so that CUDA programs can be loaded,
decoded and executed on the simulator. It performs roughly
the same tasks as the operating system and loader do in a CPU
simulator.

All types of memories are mapped at different addresses
in a single physical address space in Barra though the CUDA
model describes logically separated memories (constant, local,
global, shared) and the Tesla hardware contains physically
separated memories (DRAM and shared memories). The vir-
tual address space is currently mapped directly to the physical
space. We will provide virtual address translation in the future,
allowing stricter address checking, multiple CUDA contexts
and performance modeling of TLBs.

B. Barra and Tesla ISA decoding

The Tesla instruction set was introduced with the Tesla
architecture in 2005. Since that time NVIDIA has developped,
debugged and optimized a toolset containing a compiler, a
debugger, an emulator and many libraries. Though the ISA of
the Fermi architecture [21] is not binary-compatible with the
Tesla one, independent analysis® has shown that it keeps most
of the traits of the Tesla ISA.

Table I in Section V shows the number of static PTX
instructions and the number of static Tesla instructions for
some benchmarks and kernels. It is difficult to correlate

3http://0x04.net/cgit/index.cgi/nv50dis.
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these numbers as PTX to Tesla ISA compilation is a com-
plex process. Most compiler optimizations occur during this
step, including optimizations that can affect the semantics
of programs such as fusions of additions and multiplications
into either truncated of fused multiply-and-adds. Simulation
at the PTX instruction set level may lead to low accuracy.
Therefore, we simulate directly Tesla ISA to remain as close
as possible from what really occurs in GPUs. We recovered
the specifications of Tesla 1.0 ISA as NVIDIA, unlike AMD
[1], does not document its ISA. This was done by completing
the harnessing work started in the decuda project [29].

This instruction set is designed to run compute-intensive
floating-point programs. It is a four-operand instruction set
centered on single-precision floating-point operations. It in-
cludes a truncated multiply-and-add instruction and transcen-
dental instructions for the reciprocal, square root reciprocal,
base-2 exponential and logarithm, sine and cosine accurate to
23 bits. Transparent execution of thread-based control flow
in SIMD is possible thanks to specific branch instructions
containing reconvergence information.

Most instructions are 64-bit wide, but some instructions
have an alternate 32-bit encoding. Another encoding allows
embedding of a 32-bit immediate constant inside a 64-bit
instruction word.

An example of the instruction format of floating-point
multiplication-additions in single precision (MAD) is given
in Figure 2. These instructions can address up to 3 source
operands (indicated by Srcl, Src2 and Src3) in General
Purpose Registers (GPR), shared memory (sh mem), constant
memory (const mem) or as immediate constants (imm). The
destination operand is indicated by Dest. Extra fields such as
predication control and instruction format are defined. Each
piece of information is mostly orthogonal to the other pieces
and can be decoded independently.

Taking advantage of this orthogonality, we use the
GenISSLib library to generate six separate decoders work-
ing on the whole instruction word (opcode, destination and
predicate control, srcl, src2, src3, various flags), each being
responsible for a part of the instruction, while ignoring the
other fields.
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31 24 16 8 0
L1 1 | I T | I T | I B |
Word 0
[ Jop J t Long instruction
Adress reg[0-1] Flow control U
Adress Imm/reg L Dest [ ]
Src3 from const mem Srcl D
Src2 from const mem Src2 []
31 24 16 8 0
L1 | L 1 | | | 1 | |
Word 1
SubOP J L Marker
Src3 neg L Adress reg[2]
Srcl neg Dest is output reg
Src2 imm L Setpredreg
Rounding mode L Setpred
Srcl from sh mem Pred cond
D Src3 Pred reg
Fig. 2. Opcode fields of a MAD instruction.

C. Instruction execution

Instructions are executed in Barra according to the model
described in Figure 3:

o A scheduler selects the next warp for execution with the
corresponding program counter (PC).

The instruction is loaded and decoded as described in
Section III-B.

Operands are read from the register file or from on-chip
memories (shared) or caches (constant). As the memory
space is unified, a generic gather mechanism is used.
The instruction is executed and the result is written back
to the register file.

Integer and floating-point instructions can optionally up-
date a flag register containing zero, negative, carry and
overflow flags.

Evaluation of transcendental functions in the Tesla archi-
tecture is a two step process: a range reduction based on
a conversion to fixed point arithmetic is followed by a call
to a dedicated approximation unit. This unit is described in
[22]. It contains some dedicated operators using tabulated
values. An exact simulation of this unit will require some
exhaustive tests on every possible value in single precision.
Barra’s current implementation of transcendental functions is
based on a similar range reduction followed with a call to the
standard math library of the host.

Single-precision floating-point arithmetic operations flush

all input and output NaNs to zero as specified by the archi-
tecture.

D. Simulation of fine-grained parallelism

Tesla differs in several aspects from conventional multi-core
processors as it is a throughput-oriented architecture.

1) Register management: GPRs are dynamically split be-
tween threads during kernel launch, allowing to trade some
reduced parallelism against a larger number of registers per
thread. Barra maintains a separate state for each active warp
in the multiprocessor. The state includes a program counter,
address and predicate registers, a hardware stack for control-
flow execution, a window to the assigned register set, and a
window to the shared memory.

Multiprocessors of Tesla-based GPUs have a multi-bank
register file partitioned between warps using sophisticated
schemes [13]. This allows a space-efficient packing that mini-
mizes bank conflicts. However, the specific register allocation
policy bears no impact on functional behavior, apart from
deciding how many warps can have their registers fit in the
register file. Therefore, we opted for a plain sequential block
allocation inside a single unified register file.

2) Warp scheduling: Each warp has a state flag indicating
whether it is ready for execution. At the beginning, each
running warp has its flag set to Active while other warps have
their flag set to Inactive. At each step of the simulation, an
Active warp is selected to have one instruction executed using
a round-robin policy.

The current warp is marked as Waiting when a synchroniza-
tion barrier instruction is encountered. If all warps are either
Waiting or Inactive, the barrier has been reached by all warps,
so Waiting warps are put back in the Active state.

A specific marker embedded in the instruction word signals
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Fig. 3. Functional overview of a multiprocessor execution pipeline during the execution of a MAD instruction.

the end of the kernel. When encountered, the current warp
is flagged as Inactive so that it is ignored by the scheduler
in subsequent scheduling rounds. A new set of blocks is
scheduled to the multiprocessor as soon as all warps of running
blocks have reached the Inactive state.

3) Branch handling: Tesla architecture allows divergent
branches across individual threads in a warp to be executed
transparently thanks to some dedicated hardware [10]. This
is performed using a hardware-managed stack of tokens con-
taining an address, an ID and a 32-bit mask. The ID allows
forward branches, backward branches and function calls to
share a single stack (see Figure 4).

IV. SIMULATOR PARALLELIZATION

Data-parallel programs such as kernels developed in CUDA
expose a significant amount of explicit parallelism. This fact
can be exploited to accelerate functional simulation. Both
multithreading and SIMD enable GPU simulation to run
efficiently and accurately on current multi-core processors.

A. Simulating many-core with multi-core

CUDA programming model is designed to reduce as much
as possible coupling across multiprocessors. The scheduling

order of blocks is not specified, global synchronization is not
allowed, communications between blocks are restricted and
relaxed requirements on memory consistency enable efficient
and scalable hardware implementations. We use these features
to simulate each multiprocessor in a different thread of the
host.

Our tests suggest that the block scheduler of CUDA
dispatches blocks across multiprocessors in a round-robin
fashion, and performs a global synchronization barrier be-
tween each scheduling round. We followed a slightly different
approach to block scheduling in Barra by distributing the
scheduling decisions across worker threads. Our approach
complies with the static scheduling of CUDA and it removes
the need to perform a global synchronization after each
scheduling round. At warp level, the fine-grained multithread-
ing is simulated as described in Section III-D.

Simulators of general-purpose processors need to handle
dynamic memory allocation and self-modifying code in simu-
lated programs. This requires using cache-like data structures
that can grow as needed to store data and instructions. Shar-
ing such structures in a multithreaded environment requires
locking techniques. This can be challenging to implement
and validate and can impact performance. Fortunately, CUDA



C code Tesla asm code PC

if(p) 1:sync endif

{ 2:Q@!p br else 1

... 3:...

} 4:br endif 2

else else: 5
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} endif: 6
6:nop.join 3
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push(6,SYNC,mask)
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Fig. 4. Example of SIMD forward branch.

programming model prevents this kind of irregular behavior in
the simulated code. It follows Harvard architecture model and
it requires the user to explicitly allocate all the memory that
will be accessed inside a GPU kernel before the execution be-
gins. Accordingly, we can pre-allocate all data and instruction
memories of the simulator in lock-free data structures.

The strong isolation rules enforced between blocks of
CUDA programming model benefits hardware implementa-
tions as well as simulation on multi-core CPUs.

B. Simulating SIMD with SIMD

The Tesla architecture uses 32-way SIMD instructions to
execute regular code efficiently. It helps amortize the cost of
instruction fetching, decoding and scheduling. It also helps
simulation as the part of time dedicated to the actual execution
of instructions increases with the complexity of the architec-
ture.

To further benefit from the regularity introduced by
the SIMD model, we implement the basic single-precision
floating-point instructions (add, mul, mad, reciprocal, recipro-
cal square root) with SSE SIMD instructions using C intrinsics
when they are available. The Denormals-Are-Zero and Flush-
To-Zero SSE flags are enabled to reflect the behavior of
the GPU operators and to prevent denormals from slowing
down the simulation. The implementation of floating-point
instructions, including min and max functions, complies with
the behavior of GPUs concerning NaN propagation as long as
all input NaNs are encoded as canonical QNaNs.

V. VALIDATION

We used examples from the NVIDIA CUDA SDK to
compare the execution on our simulator with real executions
on Tesla GPUs. These examples are currently the most stan-
dardized test suite of CUDA applications even though they

were not initially meant to be used as benchmarks. They reflect
the best practices in CUDA programming as code examples.

Most of these examples use a data-set reduced for size when
run in emulation mode. We made sure they always run the
complete data-set. We inserted synchronization barriers where
it was missing to get correct timings.

Executions of the examples from Table I give on Barra the
same results than executions on GPUs, except for the ones
that use transcendentals instructions, as it was expected given
the difference in implementation. CUDA emulation mode is
less accurate. For instance, results returned by the dwtHaar1D
example from the CUDA SDK differ by 0.5 units in the last
place (ulps) on average and by 1681 ulps in the worst case
between CUDA emulation and execution on a GPU.

During functional simulation, we collected statistics about
instruction type, operands, branch divergence, memory access
type on a per-static-instruction basis. We did not observe any
variation in the statistics generated between single-threaded
and parallel functional simulation.

We compared these statistics with the hardware counters
during a run on a GPU by using the CUDA Profiler, which pro-
vides statistics on a per-kernel-execution basis. GPU hardware
counters are currently usable on one texture processing cluster
(TPC*) only. Therefore an extrapolation is needed to estimate
the performance of the whole kernel. The precise meaning,
unit and scale used for each counter is not documented. As
the profiler documentation reports, “users should not expect
the counter values to match the numbers one would get by
inspecting kernel code.” However, we were able to match the
value of most of these counters with statistics obtained from
simulation. We report the relative differences observed for

4A texture processing cluster is a hardware structure containing two to three
multiprocessors sharing memory access units.



Program Kernel St. PTX | St. ASM Dyn. ASM
binomialOptions binomialOptionsKernel 153 114 401,131,008
BlackScholes BlackScholesGPU 134 99 | 5,201,694,720
convolutionSeparable | convolutionRowGPU 67 52 38,486,016
convolutionColGPU 99 100 38,338,560
dwtHaar1D dwtHaar1D 92 87 10,204
fastWalshTransform fwtBatch1Kernel 110 107 57,606,144
fwtBatch2Kernel 47 46 54,263,808
modulateKernel 26 24 2,635,776
matrixMul matrixMul 83 114 66,880
MersenneTwister RandomGPU 159 223 31,526,528
BoxMuller 86 68 16,879,360
MonteCarlo MonteCarloOneBlock. . . 122 132 27,427,328
reduction reduce5_sm10 62 40 4,000
reduce6_sm10 75 59 20,781,760
scanLargeArray prescan<false,false> 107 94 14,544
prescan<true,false> 114 102 423,560,064
prescan<true,true> 122 108 257,651
uniformAdd 28 27 42,696,639
transpose transpose_naive 29 28 1,835,008
transpose 52 42 2,752,512

TABLE I
BENCHMARKS AND KERNELS WE CONSIDER ALONG WITH THEIR STATIC PTX INSTRUCTION COUNT (ST. PTX), AND STATIC AND DYNAMIC ASSEMBLY
INSTRUCTION COUNTS (ST. ASM AND DYN. ASM RESPECTIVELY).

instruction, branch, branch divergence and memory transaction
count in Figure 5.

The instruction counts are consistent, except in the scan-
LargeArray benchmark. A closer analysis of the performance
counters reveals that the kernel prescan<true, false> is
launched many times on one single block. The profiler seems
to select a different TPC to instrument at each kernel call in
the round-robin to mitigate the effect of such load imbalance.
However, the load imbalance effect remains and affects the
counters as the number of calls (202) is not multiple of the
number of TPCs (8).

We were not able to find out the exact meaning of the
branch instruction counter. We found it to be consistently
equal or higher than the number of all control flow instructions
encountered in Barra.

The transpose application and the matrixMul one, to a
lesser extent, show discrepancies in the number of memory
instructions reported. The transpose benchmark is known to
be affected by a phenomenon dubbed as partition camping,
which occurs when most memory accesses over a period of
time are directed to a narrow subset of all DRAM banks, caus-
ing conflicts [26]. We simulated and profiled the transpose-
New example, which implements the same algorithm while
avoiding partition camping and obtained consistent results,
which confirms that the observed discrepancy is caused by
this phenomenon. We are currently investigating whether the
difference in memory transaction count is due to sampling
artifacts or actually reflects some hardware mechanism.

As it was discussed in Section III-B, the Tesla ISA is
undocumented and some instructions that we have not yet
encountered will not be correctly handled by Barra. We use
both synthetic test cases such as those provided with decuda
and real-world programs such as the CUDA SDK examples
to check and extend the instruction coverage.

VI. SIMULATION SPEED RESULTS

We compared and reported in Figure 6 the execution time
of the benchmarks in CUDA emulation mode, in a single-
threaded functional simulation with Barra, inside the CUDA-
gdb debugger with a native execution on a GPU. Reported time
is normalized to the native execution time for each program.
The test platform is a 3.0 GHz Intel Core 2 Duo E8400
with a NVIDIA GeForce 9800 GX2 graphics board on an
Intel X48 chipset, running Ubuntu Linux 8.10 x64 with gcc
4.3 and CUDA 2.2. The -O3 option was passed to gcc. The
debugger from CUDA 2.3 Beta was used as it is the first
version compatible with our architecture. When run within
the CUDA debugger, the MonteCarlo and binomialOptions
benchmarks did not complete within 24 hours, so we could not
report their performance. We did not include these benchmarks
when computing the average of CUDA-gdb timings.

We observe that even when run on one core, Barra is
competitive with the CUDA emulation mode in terms of speed
though it is more accurate. This is likely because simulating
fine-grained intra-block multithreading using user-managed
threads as the emulation mode does causes thread creation
and synchronization overhead to dominate the execution time.

The CUDA debugger usually suffer from an even greater
overhead, likely caused by synchronizations across the whole
system and data transfers to and from the CPU after the
execution of each instruction.

To quantify the benefits of simulator parallelization, we
simulated the same benchmarks on a quad core Intel Xeon
E5410-based workstation running Red Hat 5 and gcc 4.1 with
a number of threads ranging from 1 to 4. The average speedup
is 1.90 when going from 1 to 2 cores and 3.53 when going
from 1 to 4 cores. This is thanks to the CUDA programming
model that reduces dependencies and synchronizations needed
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Fig. 5. Relative difference between Barra statistics and GPU hardware counters.

Program Instruction count | Branches | Divergence | Load, store

Prec 0 0 0 0

matrixMul -0.83 -7.69 0 -20

reduction -0.77 -3.99 -22.99 2.7

transpose -1.44 -16.67 0 81.58

transposeNew 0 4.93 0 45.59

MonteCarlo 0.01 -0.57 0 -0.68

MersenneTwister -0.77 -16.67 0 -0.19

fastWalshTransform -0.24 -2.71 0 0

scanLargeArray -6.63 -20.93 -0.02 -0.19

binomialOptions -0.33 -1.85 0 -3.55

convolutionSeparable 0.66 -9.43 0 -2.56

BlackScholes -0.05 -0.04 0 0.02

TABLE II
NUMERICAL VALUES FROM FIGURE 5
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Fig. 6. Compared execution time of native execution, source-level emulation by the CUDA emulation mode, run inside the CUDA debugger and functional

simulation with Barra, normalized by native execution time.

between cores. On the other hand, the CUDA emulation mode
runs programs using user-managed threads and does not take
advantage of multiple cores, which would require kernel-
managed threads.

We observe that the simulation time using Barra is similar
to the emulation time using CUDA emulation even though
Barra is more accurate, provides more flexibility and generates
statistics for each static instruction. Thanks to the SIMD nature
of Barra, we perform more work per instruction that amortize
instruction decoding and execution control as in a SIMD
processor. Moreover, integration into the UNISIM simulation

environment enable faster simulation. For example, the cache
of predecoded instructions used by GenISSLib as described in
Section II-B amortizes the instruction decoding cost. Its speed
benefit is especially significant for GPU simulation, where
the dynamic-to-static instruction ratio is particularly high, as
evidenced by Table I.

VII. CONCLUSION AND FUTURE WORK

We described the Barra driver and simulator, and showed
that it is possible to simulate the execution of CUDA programs
at the functional level despite the unavailability of the descrip-
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Fig. 7.

tion of the ISA used by NVIDIA GPUs. The development
of Barra inside the UNISIM environment allows users to
customize the simulator, reuse module libraries and features
proposed in the UNISIM repository. Thanks to this work it is
possible to test the scalability of programs without the need
to physically test them on various configurations. Our work
also enables a deeper understanding of GPU and many-core
architecture through extensive analysis of the state-of-the-art
NVIDIA Tesla architecture [7], [8], [9].

Barra is distributed under BSD license, available for down-
load® and is part of the UNISIM framework. The low-
level placement of the Barra driver makes it programming
language-agnostic and will allow a seamless integration into
the NVIDIA OpenCL [18] software stack as it becomes
publicly available.

Future work will focus on building performance models
around the functional simulator, such as a modular transaction-
level model. Our success in parallelizing functional simula-
tion suggests that the relaxed memory consistency model of
CUDA could also be exploited to accelerate transaction-level
simulation through temporal decoupling [27] and simulation
parallelization techniques such as parallel discrete event sim-
ulation [12]. The availability of a more accurate timing model
opens doors for the integration of other models such as power
consumption [8].
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