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Abstract⎯ Model refinements of magnetic circuits are performed 
via a subproblem finite element method based on a perturbation 
technique. An approximate problem considering ideal flux tubes 
and simplified air-gap models is first solved. It gives the sources 
for a finite element perturbation problem considering the actual 
air gaps and flux tubes geometries with the exterior regions. The 
procedure simplifies both meshing and solving processes, and al-
lows to quantify the gain given by each model refinement. 

I. INTRODUCTION 
The perturbation of finite element (FE) solutions provides 

clear advantages in repetitive analyses [1] and helps improv-
ing the solution accuracy [2]. It allows to benefit from previ-
ous computations instead of starting a new complete FE solu-
tion for any variation of geometrical or physical data. It also 
allows different problem-adapted meshes and computational 
efficiency due to the reduced size of each subproblem. 

A perturbation FE method is herein developed for refining 
the magnetic flux distribution in magnetic circuits starting 
from simplified FE models. These are based on both ideal flux 
tubes [3] and thin-shell air-gap models [4]. The developments 
are performed for the magnetic vector potential FE magne-
tostatic formulation, paying special attention to the proper dis-
cretization of the source constraints involved in the perturba-
tion subproblems. The method is validated on a test problem. 

II. APPROXIMATE AND PERTURBATION PROBLEMS 
A canonical magnetostatic problem p is defined in a domain 

Ωp. Some related quantities are the magnetic field hp, the 
magnetic flux density bp and the magnetic permeability µp. 
The objective is solving a sequence of such subproblems, each 
one defining a perturbation of others, and the superposition of 
which giving the solution u = Σp up of a complete problem 
(with possible inter-problem iterations for nonlinear analyses). 
Each problem is defined in its own domain and mesh, which 
decreases the problem complexity and allows distinct mesh 
refinements.  

Both volume and surface sources can be involved in each 
subproblem [2]. On the one hand, a change of the permeabil-
ity µ in a volume region, e.g. from µ1 to µ2, is defined via a 
volume source hs,2 = (µ2–1 – µ1–1) b1 in the h-b material rela-
tion h2 = µ2–1 b2 + hs,2. On the other hand, a change of bound-
ary or interface conditions is defined via surface sources fix-
ing the possible trace discontinuities of h2 and b2. 

In an approximate problem p = 1, the magnetic flux is 
forced to flow only in a subregion Ω1 with perfect flux wall, 
i.e. a set of flux tubes of the whole domain Ω. Moreover, the 
possible air gaps in the tubes are approximated by surface 
(thin shell) FEs [4]. The perturbation problem p = 2 considers 
then the actual extension of the air gaps with volume FEs, and 
also that the flux walls become permeable. This allows leak-
age flux in Ω \ Ω1 and leads to a change of the flux distribu-
tion in Ω1. A solution refinement is thus obtained. 

All the constraints involved in the subproblems have to be 
carefully defined in the resulting FE formulations, respecting 

their inherent strong and weak natures. They will be detailed, 
justified and validated in the extended paper. As a significant 
result, an efficient and accurate computation of local fields 
and global quantities (e.g., flux, magnetomotive force, reluc-
tance) can be performed. 
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III. APPLICATION EXAMPLE 
A magnetic circuit with an air gap is considered as a test 

problem (Fig. 1). An approximate solution is first calculated 
in an idealized flux tube comprising the thin-shell air gap 
(Fig. 1, left), with a fixed magnetomotive force as excitation 
and a coarse mesh of the tube. This solution then serves as a 
source for a perturbation problem defined in the vicinity of the 
actual volume air gap (Fig. 1, middle) with a locally refined 
mesh, giving the proper correction. The importance of this 
correction versus the gap thickness is shown in Fig. 2. The 
corrected solution has been checked to be in perfect accor-
dance with the one-step complete FE solution. A significant 
gain will be shown to be given for both meshing and solving 
processes of complex geometries. The method naturally al-
lows additional refinements towards eddy current or 3-D ef-
fects. It allows to quantify the gain given by each model re-
finement to justify its usefulness. 
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Fig. 1. Flux tube portion with air gap: approximate solution (field lines) in an 
idealized tube and surface air gap (left), perturbation solution with a volume 
air gap and leakage flux (middle), complete (corrected) solution (right). 
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Fig. 2. Importance of the perturbation flux versus the air-gap thickness. 
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