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Abstract—Magnetic flux distributions are calculated in 
magnetostatic and magnetodynamic problems via a subproblem
finite element method based on a perturbation technique. An
approximate finite element problem considering ideal flux tubes
or ideal materials is first solved. It gives the source for finite
element perturbation problems considering the flux tubes with
their exterior regions, accounting thus for leakage fluxes, as well
as for changes of material properties and shapes. The proposed
technique aims to accurately quantify the gain given by each
model refinement on both local fields and global quantities and to 
justify the usefulness of this refinement. It is also well adapted to 
parameterized analyses on geometrical and material data.

Index Terms — Finite element method, magnetostatic,
magnetodynamic, perturbation method. 

I. INTRODUCTION

The perturbation of finite element (FE) solutions provides
clear advantages in repetitive analyses [1]-[5] and helps
improving the solution accuracy [6]-[9]. This technique allows 
to benefit from previous computations instead of starting a 
new complete FE solution for any variation of geometrical or 
physical data. It also allows different problem-adapted meshes
and increases computational efficiency thanks to the reduced 
size of each subproblem.

A perturbation FE method is herein developed for 
accurately calculating the magnetic flux distribution and all 
the ensuing quantities in magnetostatic and magnetodynamic
problems starting from approximate solutions. An
approximate problem is first solved via a simplified FE
analysis, considering simplified models, e.g. ideal flux tubes,
ideal materials or simplified geometries. Perturbation
problems consider then some modifications towards real
materials and field supports, which result in changes in flux
distributions, e.g. allowing leakage flux or field penetration.
From the so calculated field corrections, the associate 
corrections of global quantities, i.e. fluxes and magnetomotive
forces (MMFs), voltage and currents, are also evaluated to 
determine reluctances [10] and impedances [11]. The method
also allows to build accurate reluctance networks, possibly
starting from preliminary approximations [12]. Each problem
is defined in its own domain with an adapted and distinct
mesh refinement. The developments are performed for the
magnetic vector potential FE magnetostatic and 
magnetodynamic formulations, paying special attention to the
proper discretization of the source constraints. The method is
applied to several problems to point out its main
characteristics and advantages. 
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II. FORMULATION OF A CANONICAL PROBLEM

A. Canonical problem with volume and surface sources 
A canonical magnetodynamic problem p is defined in a 

domain p, with boundary p = p = h,p b,p (possibly at
infinity). The eddy current conducting part of p is denoted

c,p and the non-conducting one c,pC, with
p = c,p c,pC. Massive inductors belong to c,p, whereas 

stranded inductors belong to c,pC. Subscript p refers to the
associated problem p. The equations, material relations,
boundary conditions (BCs) and interface conditions (ICs) of 
problem p are 

 curl hp = jp ,     curl ep = – t bp ,     div bp = 0 , (1a-b-c)

bp = p hp + bs,p , jp = p ep + js,p , (1d-e)

n hp h,p
= 0 , n ep e,p b,p

= 0 , n bp b,p
= 0 , (1f-g-h)

 [n hp]
p
= jsu,p,  [n ep]

p
= ksu,p,  [n bp]

p
= bsu,p, (1i-j-k) 

where hp is the magnetic field, bp is the magnetic flux density,
ep is the electric field, jp is the electric current density 
(including source and eddy currents), p is the magnetic
permeability, p is the electric conductivity and n is the unit
normal exterior to p. Note that (1b) is only defined in c,p
(as ep), whereas it is reduced to the form (1c) in c,pC. It is 
thus absent from the magnetostatic version of problem (1a-k). 
Further (1g) is more restrictive than (1h). 

The fields bs,p and js,p are volume sources. The source bs,p
is usually used for fixing a remnant induction in magnetic
materials. The source js,p usually fixes the current density in
stranded inductors. These sources are further generalized to
account for other constraints.

The notation [ ] = + – – expresses the discontinuity of a 
quantity through any interface  (with sides + and –) in p
(the region in between is considered to be exterior to p). The 
associated surface fields jsu,p, ksu,p and bsu,p are generally 
zero, defining classical ICs for the physical fields, i.e. the 
continuities of the tangential component of hp and ep and of 
the normal component of bp. If nonzero, they define possible
surface sources that account for particular phenomena
occurring in the idealized thin region between + and –.

Each problem p is to be constrained via the so-defined
volume and surface sources from parts of the solution of other 
problems. This is a key of the developed method.
B. b-conform magnetic vector potential weak formulation 

The canonical problem p (1a-k) is defined in p with the
magnetic vector potential formulation [11], expressing the
magnetic flux density bp in p as the curl of a magnetic vector 
potential ap, and the electric field ep in c,p as ep = – t ap. The 
related a-formulation is obtained from the weak form of the
Ampère equation (1a), i.e. [11],
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where Fp1( p) is a gauged curl-conform function space
defined on p and containing the basis functions for a as well 
as for the test function a' (at the discrete level, this space is 
defined by edge FEs); ( · , · )  and < · , · >  respectively denote 
a volume integral in  and a surface integral on  of the
product of their vector field arguments. A major consequence 
of the b-conform formulation used is that ICs (1i) and (1k) are
defined respectively in strong and weak senses (essential and 
natural ICs), i.e. in Fp1( p) and via a surface integral term.
The surface integral term on h,p accounts for natural BCs of 
type (1f), usually with n hs,p h,p

= 0. The unknown term on
the surface b,p with essential BCs on n bp is usually omitted
because it does not locally contribute to (2). It will be shown
to be the key for the post-processing of a solution p, a part of 
which, n hp b,p

, is used as a source in further problems.
C. Projections of solutions between meshes 

Some parts of a previous solution aq are intended to serve
as sources in a subdomain s,p p of the current problem p.
At the discrete level, this means that this source quantity aq
has to be expressed in the mesh of problem p, while initially
given in the mesh of problem q. This can be done via a
projection method [13] of its curl limited to s,p, i.e.

, ,
-
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where Fp1( s,p) is a gauged curl-conform function space for
the p-projected source  (the projection of a-p proj

qa q on mesh
p) and the test function a'. Directly projecting aq (not its curl) 
would result in numerical inaccuracies when evaluating its
curl.

III. A SERIES OF PERTURBATION SUBPROBLEMS

A. Sequence of perturbation subproblems
The solution u of a complete problem is expressed as the

sum of subproblem solutions up. It is generally worth defining
an appropriate series of subproblems via successive model
refinements of an initially simplified model. Physical
considerations help in building such a series. For the
associated ordered set P of subproblems, the complete
solution is then

(4), with , , , , ...p sup Pu u u h b j b

Each subproblem is defined in its own domain, possibly
distinct from the complete domain. Constraints and relations
are thus not necessarily shared with the complete problem. At
the discrete level, this decreases the problem complexity and
allows distinct meshes with suitable refinements.

As a consequence, each subproblem is generally perturbed 
by all the others and each solution up has to be calculated as a 
series of corrections or perturbations up,i, i.e. 

 (5) , ,1 ,2 ...p p i p piu u u u

The calculation of the correction up,i in a subproblem p,i
(problem p with particular constraints at iteration i) is kept on 
till convergence up to a desired accuracy. For well posed 
problems, the corrections tend to zero with the iterations. Each
correction must account for the influence of all the previous
corrections up,j of the other subproblems, with j the last 
iteration index for which a correction is known. This way,
once some corrections have acted as sources for solutions up,i,
they are skipped in the next subproblems p,k, with k>i. Initial
solutions up,0 are set to zero. The iterative process is required 
when a correction becomes a significant source for any of its 
source problems, which is inherent to large perturbation
problems. In addition to the iterations between subproblems,
classical inter-problem iterations are needed in nonlinear 
analyses. The global quantities linearly related to each
correction, i.e. the fluxes and MMFs [10], or the voltages and 
currents [11], are added to obtain their complete values.
Obviously, the more accurate model ensures a gain in
precision.
B. Possible approximations in subproblems

A subproblem p can disregard some materials initially
present in previous subproblems q, while these exist in the
complete problem. At the discrete level, this generally allows
to reduce the meshing efforts and the computational cost of
the solution p. In particular, any intersection of the non-
material regions of p with the material regions of q is 
allowed [2], [5]. The defined iterative process between all 
problems will correct their interactions.

IV. PERTURBATIONS VIA VOLUME SOURCES

A. Change of material properties

A change of a material property in a volume region, due to
either the change of properties of existing materials or the
addition/suppression of materials (connected or not to already
existing ones), generates a volume source (or a region-type
source) in the associated material relation. For a change of 
permeability, from q for problem q to p for problem p, the 
volume source in the b-h relation (1d) is of the form

bs,p = ( p – q) hq . (6)
Summing both subproblem relations bq= qhq (with e.g.
bs,q=0) and bp= php+bs,p gives the relation that is valid for
the superposition of solutions q and p, i.e. 
bq+bp= qhq+ php+( p– q)hq= p (hq+hp). Analogously,
the h-b relation would be 

hp= p–1bp+hs,p ,   with hs,p=( p–1– q–1)bq . (7a-b)
Also, for a change of conductivity, from q for problem q

to p for problem p, the volume source in the j-e relation (1e)
is of the form

js,p = ( p – q) eq . (8)
The generalization of (6) and (8) to an arbitrary number of

source subproblems gives

, ,( )s p p q r P r pb hr , (9)

, ,( )s p p q r P r p rj e , (10) 

with q the last solved problem.
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B. Possible approximations
As already introduced approximations, the sources bs,p or 

js,p can be neglected in some regions, although p and q, or 
p and q, may differ. This amounts to disregard these regions

and avoid their meshing. The b-h material relation for the 
complete fields in these regions is thus

bq + bp = q hq + p hp , (11)
that can be transformed, with (4), as 

b = q h + ( p – q) hp . (12)
When the material properties differ too much between states q
and p, and the perturbation fields are too large compared to
the source fields, the last term in (12) is not negligible and the
error is clearly highlighted. The correct relation, b = p h, is 
only rigorously fulfilled in the regions where does not vary
( p = q). An analogous approximation applies for the j-e
relation.
C. Volume source in weak formulation

A change of material properties from problem q to p is 
taken into account via volume integrals in the weak
formulation (2). A change from q to p is defined via the
integral ,( ,curl ')

ps ph a . The volume source hs,p is given by
(7b), i.e. hs,p=( p–1– q–1)bq, with bq=curlaq. At the discrete
level, the source primal quantity aq in mesh q is projected in 
mesh p via (3), with s,p limited to the modified regions. A 
change of current density in either added or modified
inductors is defined in (2) via the source integral ,( , ')

ps pj a
with the associated volume source js,p. In particular, volume
inductors can be defined in place of preliminary surface 
idealized inductors of ideal flux tubes. The source integral
occurs also with a change of conductivity from q to p, with
the source js,p given by (8). 

As a first illustration, a sequence of problems considers a
solution 1 with preliminary dimensions of an I-core, followed
by the correction for its elongation (addition of a material
region) (Figs. 1 and 2) [9]. Because the correction is only 
significant in the vicinity of the added region, the domain and 
mesh required for its calculation can be reduced (with
appropriate BC, n h2 h,2

= 0, on the core sections included in
h,2). The I-core end effect of solution 1 is properly corrected,

i.e. shifted and reduced at the new end. The initial inductor 
flux linkage is 1 = 144.3 mWb and its correction is

2 = 3.5 mWb (relative correction 2.4 %).
Another sequence of problems starts with the preliminary

system and corrects it for a change of permeability of the I-
core ( r,I-core,1 = 500, r,I-core,2 = 100) (Fig. 3) [9]. An accurate 
correction is also obtained. The initial inductor flux linkage is 

1 = 144.3 mWb and its correction is 2 = –19.3 mWb
(relative correction 13.4 %).

An inductor core system (Fig. 4) is then considered (core 
with surrounding coil, frequency 50 Hz, relative permeability

r, core = 100) [2]. A perturbing conductive region c,2 is a
rectangular plate, defining a change from 1 = 0 to 2 0.
Eddy currents in the plate, as well as the impedance change of 
the coil, can be efficiently calculated for various positions of
the plate without remeshing the exterior air region. This
strongly simplifies the treatment of moving systems (Fig. 5)
[5]. Other perturbation problems, with changes from 1 0 to

2 = 0, can be used in non-destructive eddy current testing for
crack detection [1], [3], [4]. 

(b) (b1) (b2)
Fig. 1. Field lines of the complete solution (b), sum of the initial I-core
solution (b1) and perturbation elongated I-core solution (b2) [9].
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Fig. 2. Magnetic flux density along the top surface of the I-core entering the 
air gap for the initial I-core (b1) and its elongation perturbation (b2) [9].
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Fig. 3. Magnetic flux density along the top surface of the I-core entering the 
air gap for the initial I-core (b1) and for the permeability change (b2) [9].

2
c,2

Fig. 4. Problems 1 (left: mesh of 1 and distribution of b1) and 2 (top right: b1
to be projected in c,2 for the volume source; middle right: adapted mesh of

2; bottom right: j2 in c,2) [2].

Fig. 5. Source electric field e1 (left) and perturbation current density j2 in c,2
(right);  for different positions of the moving piece [5].
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V. PERTURBATIONS VIA SURFACE SOURCES

A. Changes of ICs – general considerations
For a first problem p = 1, ICs through an interface 1 can be 

first defined to limit the support of the field solution on one
side of 1, i.e. in the domain 1+ bordered by 1+. This allows
a preliminary reduction of the studied domain and applies e.g. 
to ideal flux tubes and perfect conductive or magnetic
materials, as detailed hereafter. The traces of the fields on 1+

can be either known or unknown, while there are zeroed on 
1– to account for zero fields in the bordered domain 1–, i.e. 

n b1 1
+ = bsu,1 , n b1 1

– = 0 , (13a-b)
n h1 1

+ = jsu,1 , n h1 1
– = 0 , (14a-b)

or, for the discontinuities or ICs through 1,
 [n b1]

1
= bsu,1 ,     [n h1]

1
= jsu,1 . (15a-b)

Problem 2 must correct the solution 1 via appropriate ICs (1
i) and (1k). On the one hand, 
 [n b2]

2
= bsu,2 = [n b]

2
– bsu,1 = – n b1 1

+ , (16)
due to the actual continuity of n b in the complete solution (4)
and with the trace bsu,1 given by (13a). On the other hand, 
 [n h2]

2
= jsu,2 = [n h]

2
– jsu,1 = – n h1 1

+ , (17)
due to the actual continuity of n h in the complete solution (4
) and relation (14a). Problem 2 not only extends the solution
in the domain bordered by 2–, but also corrects it in the 
domain bordered by 2+. Note that 1 and 2 are equivalent.
They only differ at the discrete level due to their different
meshes.

ICs of types (16) and (17) are surface sources (or interface-
type sources) fixing the trace discontinuities of hp and bp in
terms of other solutions q. The forced discontinuities
introduced in a problem can thus be corrected by another one. 
The constraints of each problem, when defined in the b-
conform formulation (2), are of essential or natural character.
1) Essential BCs and ICs

With the magnetic vector potential formulation, BC (13a)
when homogeneous, i.e. n b1 1

+ = 0, leads to an essential BC
on the primary unknown a1 that can be expressed in general
(in 3-D) via the definition of a surface scalar potential u1 [10],
i.e.,

1 1
1 1curl 0 grad un a n a n

1
1 . (18)

This potential is multi-valued if a net magnetic flux flows in
the domain 1+ bordered by 1+. Its discontinuity through cut
lines, making the boundary 1 simply connected, is directly 
related to the net flux. In 2-D, this BC amounts to define a
floating magnetic vector potential a1 (with a constant
perpendicular component) on each non-connected part of 1.

For problem 2, IC (16), when homogeneous, is simply
treated with a continuous a2 through 2. When non-
homogeneous, it can be expressed with a known
discontinuous component bd,2 of b2 acting only in 2+, with
b2 = bc,2+bd,2, i.e. 
 [n b2]

2
= n bd,2 2

+ = – n b1 1
+ , (19)

or with an associated known discontinuous component ad,2 of 
a2, with a2 = ac,2+ad,2, also acting only in 2+, i.e. 
 ad,2 2

+ = – a1 1
+. (20)

2) Natural BCs and ICs
With the magnetic vector potential formulation, an

homogeneous BC (14a) is simply defined by zeroing the
surface integral term related to 1+ h,1 in (2), i.e. 
<n h1, a'>

1 1
For problem 2, IC (17), when homogeneous, is treated

similarly. When non-homogeneous, it has to act in a weak
sense via the surface integral term related to 

+ = <0, a'> + = 0.

2 in (2). Indeed, 
the involved surface source n h1 is only known in a weak 
sense on 2. One has, with (17) and (2) for p = 1,

2 2 2
2 1[ ] , ' , 'n h a n h a

1 1

1
1 1 1, ' ( curl ,curl ')

2
n h a a a  . (21)

in case no part of c,1 \ 1+ is in contact with 1+ (otherwise 
the third term of (2) has to be considered as well). This way, 
the surface integral source term on 2 in (2) is calculated from
a volume integral coming from the previous problem 1. Its
consideration via a volume integral, limited at the discrete
level to one single layer of FEs touching the boundary, is the
natural way to average it as a weak quantity. Any other
evaluation would not be consistent with the FE formulation
used.

At the discrete level, the source quantity a1 in (21), given in
mesh 1, has to be projected in mesh 2 via (3), with s,p
limited to the layer of FEs touching 2+. The test function a' in
(21) is associated only with the edges of 2; the support of the
function curl a' is indeed limited to this layer. This reduced
support decreases the computational effort of the projection
process.
B. Change from ideal to real flux tubes

A change of ICs is first applied to flux tubes. In a first
problem p = 1, the magnetic flux is forced to flow only in a 
subregion with perfect flux walls, i.e. a set of flux tubes

1 = ft,1 of the complete domain . A second problem p = 2
considers then the flux walls become permeable. This allows
leakage flux in the exterior region \ 1 and leads to a 
change of the flux distribution in 1. A solution refinement is
thus achieved.

In problem 1, the ideal flux tubes are considered with a zero 
normal magnetic flux density BC on their boundaries

ft,1 = 1, called flux walls. The trace of the magnetic field is 
unknown on ft,1. Once determined from the solution in 1, it 
can be used as a BC to calculate the solution in \ 1, with all 
the precise characteristics of this exterior region (e.g., 
inductors and other surrounding regions). This task is
however avoided, preferring the magnetic field to be simply
zero in \ 1. With that purpose, problem 1 gathers all the
inductor parts of the exterior region inside the double layer
defined by ft,1+ and ft,1–, the inner and outer sides of ft,1
with regard to 1 (Fig. 6, left). This defines idealized
inductors and allows the magnetic field to be zero in \ 1.
Each problem p > 1 must then correct the already obtained 
solutions, in particular solution 1, via particular corrections of 
ICs (Fig. 6, right).

These constraints can be expressed in problem 1 via (13)-
(15) with 1 = ft,1, bsu,1 = 0 and jsu,1 unknown. Then, ICs (16)-
(17) of problem 2 become
 [n b2]

ft,2
= 0 ,     [n h2]

ft,2
= – n h1 ft,1

+ . (22a-b)
Formulation p = 1 is obtained from (2) with bs,1 = 0, js,1 = 0,
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n hs,1 h,1
= 0, 1 = ft,1 b,1. The surface integral term

<n h1, a'>
ft,1

 is non-zero only for the test function a' = grad u'
(from (18)), the value of which is then the MMF F1 associated 
with a flux tube (for demonstration, see the general procedure 
developed in [10]). It is zero for all the other local test
functions (at the discrete level, for any edge not belonging to

ft,1). Therefore, the magnetic circuit relation can be
expressed for each flux tube ft,1, to relate fluxes and MMFs. 

The correction formulation p = 2 is then obtained from (2) 
with bs,2 = 0, n hs,2 h,2

= 0 and 2 = ft,2. The volume source 
current density js,2 is now defined in the inductor portions
added to the studied domain 2, in place of the firstly 
idealized inductors. IC (22a) is strongly expressed via the
tangential continuity of the vector potential a2 through ft,2.
IC (22b) is weakly expressed via (21). 

1 2

ft,1
+

ft,2
+

n n

ft,1 ft,2

ft,1
–

ft,2
–

, 11 , 22

Fig. 6. Domains for the ideal (p=1, left) and real (p=2, right) flux tube 
problems.

A 2-D model of an electromagnet is considered as
illustration. It consists of a U-shape core surrounded by a 
stranded inductor and separated from an I-shape core via two
air gaps (Fig. 7) [9]. Both cores are 20 mm wide and deep. 
Their relative permeability is r,U-core = r,I-core = 500. Each 
gap is 2 mm. An approximate solution p = 1 is first calculated
in an idealized flux tube (Fig. 8, b1), with a fixed MMF as 
excitation and a coarse mesh of the tube (Fig. 7, middle). This 
solution serves then as a source for a perturbation problem
p = 2 allowing leakage flux in the inner region of the core (Fig.
8, b2), followed by another problem p = 3 allowing leakage 
flux in the outer region (Fig. 8, b3). Each problem calculates 
the actual flux distribution in the related inductor portion (the
inner portion for problem 2 and the outer portion for problem
3) and in the vicinity of the gaps, with its own adapted mesh.
They also correct the flux density in the cores. The magnetic
flux density along the top surface of the I-core (entering the 
air gap) and through core portions is shown for the sequence 
of problems in Fig. 9. The corrections local to the gap region
properly influence the inductor flux linkage, as pointed out in
Fig. 9 (bottom). The approximate inductor flux linkage is

1 = 108.8 mWb and its corrections given by solutions 2 and 3 
are 2 = 33.8 mWb and 3 = 1.7 mWb, i.e. 31 % and 1.6 % of 
the initial flux 1 respectively. 

The procedure could be extended to allow a 3-D 
distribution of the solution. The 2-D solution is first
considered as limited to a certain thickness in the third
dimension, with a zero field outside. Changes of ICs on each 
side of this portion should then allow the calculation of 3-D 
end effects. Considering the nonlinear behavior of the
magnetic materials can define another perturbation problem.

Y

XZ

Y

XZ

Fig. 7. Meshes (half portions) of the complete domain (left) and the ideal flux
tube (middle); refined mesh in the vicinity of the air gap for a perturbation
problem (right).

Y

XZ
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Y

XZ

Y

XZ

(b) (b1) (b2) (b3)
Fig. 8. Field lines of the complete solution (b), in the ideal flux tube (b1) and 
in the perturbation problems with the inner (b2) and outer (b3) leakage fluxes
(from left to right; the perturbation flux between two consecutive field lines is 
4 times lower than for the source flux). 
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Fig. 9. Magnetic flux density along the top surface of the I-core (entering the 
air gap; top) and through the horizontal legs of the electromagnet (bottom) for
the ideal flux tube (b1) and the inner (b2) and outer (b3) leakage fluxes; their 
addition gives the complete solution (b).

C. Change from perfect to real conductive materials
A first problem considers perfect conductors, with 1

(Fig. 10, left). These are denoted cpe,1 c,1 1, and their
boundary cpe,1 = cpe,1. The resulting surface currents are
considered to flow between the outer and inner sides of cpe,1
with regard to cpe,1, i.e. cpe,1+ and cpe,1–. The perfect 
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conductors cpe,1 are extracted from 1 in (1) and treated via 
a BC of zero normal magnetic flux density on their boundaries

cpe,1+. The same BC occurs on cpe,1–.
These constraints can be expressed in problem 1 via (13)-

(15) with 1 = cpe,1, bsu,1 = 0 and jsu,1 unknown. ICs (16)-(17) 
of problem 2 become
 [n b2]

cpe,2
= 0 ,     [n h2]

cpe,2
= – n h1 cpe,1

+ . (23a-b)
Formulation p = 1 is obtained from (2) with the perfect

conductors extracted from 1 and c,1, and only involved
through their boundaries 1 = cpe,1 with the homogeneous BC
(13a). This latter condition is strongly defined in F11( 1). The 
boundary cpe,1 is thus added to b,1.

The surface integral term <n h1, a'>
cpe,1

 is non-zero only
for the function grad u' (from (18)), the value of which is then 
the total surface current I1 flowing in cpe,1 [10]. It is zero for 
all the other local test functions (at the discrete level, for any
edge not belonging to cpe,1). This way, the circuit relation
can be expressed for each conductor cpe,1 and the coupling
with electrical circuits is possible. 

For the correction formulation p = 2 (2), IC (23a) is strongly
expressed via the tangential continuity of the vector potential
a2 through cpe,2. IC (23b) is weakly expressed via (21). 

cp ,1 cp ,2

cp ,1
+

cp ,2
+1

2

n ncp ,2
–

cp ,2
, 22

cp ,1
–

cp ,1
, 11

Fig. 10. Domains for the reference (left) and perturbation (right) problems,
starting from perfectly electric (cp cpe) or magnetic conductors (cp cpm).

As illustration, a core-inductor system is considered 
(Fig. 11; five copper stranded inductors connected in series,
aluminium core, 2-D model with vertical symmetry axis,
frequency domain analysis at 5 kHz (skin depth

= Al = 1.37 mm), core half-width of 12.5 mm (9.1 ) and 
height of 50 mm (36.5 )). Holes are considered in the core in 
order to point out the effect of corners. They are non-
uniformly distributed to allow for different lengths of plane
portions between them.

The magnetic flux lines are depicted in Fig. 11 for the
different calculations performed, i.e. the conventional FE
approach, the reference problem and the perturbation problem.
Fig. 12 shows the eddy current and Joule power density
distributions in the core, as well as the relative error on these
quantities committed when using the impedance boundary
condition (IBC) technique versus the subdomain FE approach
(small lengths of plane portions penalize the IBC technique,
which is based on analytical solutions valid far from any
geometrical discontinuities, e.g. edges and corners). The
results are checked to be very similar to those of the
conventional FE approach. The error significantly increases in
the vicinity of the conductor corners: it reaches 50% for the 
Joule power density and 30% for the current density in the
smallest plane portions. This affects the total losses accuracy 
when the size of the conductor portions decreases. The error 
with the IBC is shown to be significant up to a distance of 
about 3 from each corner. A good accuracy is only obtained 
beyond this distance. The IBC error increases with  with

respect to the structure dimensions, whereas the developed
approach successfully and accurately adapts its solution to any 
. The IBC solution could be also used to feed the ICs (16) 

and (17), both being thus non-homogeneous, of a perturbation
problem.

(b) (b1) (b2)
Fig. 11. Magnetic flux lines for the conventional FE solution b, the reference
solution b1 and the perturbation solution b2; system with a conductive non-
magnetic core (aluminium) [8].
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Fig. 12. Eddy current density along the core surface for the conventional FE 
solution, the perturbation technique and the IBC technique (top); relative 
difference between solutions of the last two techniques (bottom); system with 
a conductive non-magnetic core (aluminium) [8].

D. Change from perfect to real magnetic materials
Another reference problem considers conductors

cpm,1 c,1 1, of boundary cpm,1 = cpm,1, as perfect 
magnetic materials, i.e. with 1  (Fig. 10, left). The 
domain cpm,1 can thus be extracted from 1 in (1) and 
treated via a BC fixing a zero tangential magnetic field on its
boundary cpm,1+. Because only zero fields exist in cpm,1,
the same BC appear on cpm,1–.

These constraints can be expressed in problem 1 via (13)-
(15) with 1 = cpm,1, bsu,1 unknown and jsu,1 = 0. Then, ICs
(16)-(17) of problem 2 become
 [n b2]

cpm,2
= – n b1 cpm,1

+ ,     [n h2]
cpm,2

= 0 . (24a-b)
Formulation p = 1 is obtained from (2) with the perfect

magnetic materials extracted from 1 and c,1 and only
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