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Compilation of extended recursion
in call-by-value functional languages

Tom Hirschowitz - Xavier Leroy - J. B. Wells

Abstract This paper formalizes and proves correct a compilation mehéor mutually-
recursive definitions in call-by-value functional langeagThis scheme supports a wider
range of recursive definitions than previous methods. Wadtize our technique as a trans-
lation scheme to a lambda-calculus featuring in-place tgpdamemory blocks, and prove
the translation to be correct.

Keywords Compilation- Recursion Semantics Functional languages

1 Introduction
1.1 The need for extended recursion

Functional languages usually feature mutually recursafsition of values, for example via
the letrec construct in Schem@et rec in Caml,val rec andfun in Standard ML, or
recursive equations in Haskell. Beyond syntax, functiterajuages differ also in the kind of
expressions they support as right-hand sides of mutuatlyrséve definitions. For instance,
Haskell [25] allows arbitrary expressions as right-hartksiof recursive definitions, while
Standard ML [22] only allows syntactig-abstractions, and OCaml [21] allows both
abstractions and limited forms of constructor application

The range of allowed right-hand sides crucially depend$ertaluation strategy of the
language. Call-by-name or lazy languages such as Haskethtlg implement arbitrary re-
cursive definitions: the on-demand unwinding of the reeerdiefinition performed by lazy
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evaluation correctly reaches the fixed point when it existgliverges when the recursive
definition is ill-founded, as ix = x+ 1. For call-by-value languages, ill-founded definitions
are more problematic: during the evaluationxafx+ 1, the right-hand sid&+ 1 must be
evaluated while the value dfis still unknown. There is no strict call-by-value stratebgt
allows this. Thus, such ill-founded definitions must bectgd, statically or dynamically.

The simplest way to rule out ill-founded definitions and emscall-by-value evalua-
bility is to syntactically restrict the right-hand sidesretursive definitions to be function
abstractions, as ML does. Such a restriction also enalfieeat compilation of the recur-
sive definitions, for instance using the compilation schelescribed by Appel [1]. While
generally acceptable for direct programming in ML, thigrie§on can be problematic when
we wish to encode higher-level constructs such as objelasses, recursive modules and
mixin modules. For instance, Boudol [3] uses definitionshef $hapex = ¢ x (wherec is a
variable) in his recursive record semantics of objects.l8ity, Hirschowitz and Leroy [14]
use mutually-dependent sets of such definitions for reptege mixin modules. Putting
these works into practice requires the definition of an effiti call-by-value intermediate
language supporting such non-standard recursive defigitibhis definition is the topic of
the present article.

1.2 From backpatching to immediate in-place update

Backpatching of reference cella famous example of a call-by-value language that does
not statically restrict the right-hand sides of recursiedirtions is Scheme [17]. The op-
erational semantics of thieetrec construct of Scheme is known as thackpatchingse-
mantic$. It is illustrated in Figure 1. Consider two mutually-dedent definitionsx; = e;
andx; = e,. First, a reference cell is assigned to each recursiveblariand initialized to
some dummy valuendefined (represented by in Figure 1). Then, the right-hand sides are
evaluated, building data structures that possibly inclindereference cells, to obtain some
valuesv, andvy. Until this point, any attempt to dereference the cells isi@time error.
Finally, the reference cells are updated wittandv,, and the definitions can be considered
fully evaluated.

The backpatching scheme leaves some flexibility as to wherefierence cells bound to
recursively-defined variables are dereferenced. In Schewegy occurrence of these vari-
ables that is evaluated in the lexical scope ofiteerec binding causes an immediate deref-
erence. Boudol and Zimmer [4] propose a compilation scheme ¢all-by-value\ -calculus
with unrestricted mutually recursive definitions where tegeferencing is further delayed
because arguments to functions are passed by referenee ttah by value. The difference
is best illustrated on the definition= (Ay.Az.if z=0 then 1 else Y (z— 1)) x. In Scheme,
it compiles down to the following intermediate code (writie@ ML-style notation)

let X=ref undefined in
X :=(AY.Azif z=0 then 1 else Y (z—1)) !X

and therefore fails at run-time because the refereniseaccessed at a time when it still
containsindefined. In Boudol and Zimmer’s compilation scheme, thgarameter is passed

1 Theimmediate in-place upda@ompilation scheme studied in this paper also uses a kindakgatch-
ing, but we only use “backpatching” to refer to the schemescideed in this section, i.e., to abbreviate
“backpatching of reference cells”.
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by reference, resulting in the following compiled code:

2. Computation:

3. Reference update:

Fig. 1 The backpatching scheme

let X=ref undefined in
X :=(Ay.Azif z=0 then 1 else !y (z—1)) X

Here,x is passed as a function argument without being dereferettoerfore ensuring that
the recursive definition evaluates correctly. The downgdeat the recursive call tp has
now to be preceded by a dereferencing.of

In summary, the backpatching semantics featured in Scheai#eas a wider range of re-
cursive definitions to be evaluated under a call-by-valgéme than the syntactic restriction
of ML. This range is even wider in Boudol and Zimmer’s varig4it In both cases, a draw-
back of this approach is that, in general, recursive calla tecursively-defined function
must go through one additional indirection. For well-foadddefinitions, this indirection
seems superfluous, since no further update of the referesliseiz needed. Scheme com-
pilers optimize this indirection away in some cases, typicghen the right-hand sides are
syntactic functions; but removing it in all cases requirkerpative approaches, which we
now describe.

In-place updateThein-place updatescheme [6] is a variant of the backpatching implemen-
tation of recursive definitions that avoids the additiomdiiection just mentioned. It is used
in the OCaml compilers [21].
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Fig. 2 The in-place update scheme

The in-place update scheme implements mutually recursfi@itions that satisfy the
following two conditions. For a mutually recursive definitix; = e1,...,%, = €y, first, the
value of each definition should be represented at run-tima bgap allocated block of
statically predictable size; second, for eaclthe computation o& should not need the
value of any of the definitions;, but only their names;. As an example of the second
condition, the recursive definitioh= Ax.(...f...) is accepted, since the computation of the
right-hand side does not need the valud diVe say that itveaklydepends orf. In contrast,
the recursive definitiorfi = (f 0) is rejected. We say that the right-hand sittenglydepends
on f. Several techniques to check this condition have been peapf3, 14,12, 8].

The evaluation of a set of mutually recursive definitiongwiit-place update consists of
three steps. First, for each definition, allocate an umiliigd block of the expected size, and
bind it to the recursively-defined identifier. Those blocks ealleddummyblocks, and this
step is called thpre-allocationstep. Second, compute the right-hand sides of the defigition
Recursively-defined identifiers thus refer to the corredpundummy blocks. Owing to the
second condition, no attempt is made to access the contethis dummy blocks. This step
leads, for each definition, to a block of the expected sizedT bpdate the dummy blocks in
place with the contents of the computed blocks. (Altermdyivthe second step could store
directly its results in the dummy blocks. However, this wbugquire a special evaluation
scheme for right-hand sides of recursive definitions wherkare, they are evaluated just
like any other expression.)

For example, consider a mutually recursive definitier: €1, xo = 2, where it is stati-
cally predictable that the values of the expressienande, will be represented at runtime
by heap-allocated blocks of sizes 2 and 1, respectivelye kiewhat the compiled code
does, as depicted in Figure 2. First, it allocates two uialiied heap blocks, at addresges
and/,, of respective sizes 2 and 1. Then, it compggsvherex; andx, are bound td/y
and/,, respectively. The result is a heap block of size 2, possibhtaining references tq



and/,. The same process is carried on €y resulting in a heap block of size 1. The third
and final step copies the contents of the two obtained blacksand/,, respectively, then
garbage-collects the useless blocks. The result is thathénitially dummy blocks now
contain the proper cyclic data structures, without thergation inherent in the backpatching
semantics.

Immediate in-place updatdhe scheme described above computes all definitions in se-
quence, and only then updates the dummy blocks in place. Enenexample above, it
seems quite clear that in-place update for a definition cbaldone as soon as its value is
available. Such an improvement has been proposed for ttkpaabing semantics [31], and
we merely adapt it to our setting here. We call this methodnimaediate in-place update
scheme and concentrate on it in the remainder of this paper.

As long as definitions weakly depend on each other, as happigmsunctions for in-
stance, both schemes behave identically. Nevertheletse tase where, strongly depends
onxy, for example ife; = £st(x1) + 1, the original scheme can go wrong. Indeed, the con-
tents of¢; are still undefined whee is computed. Instead, with immediate in-place update,
the valuev; is already available when computieg. This trivial modification to the scheme
thus increases the expressive power of mutually recursifieitions. It allows definitions to
de-structure the values of previous definitions. Furtheemiv allows some of the mutually-
recursive definitions to have statically unknown sizes hasve by the following example.

An example of execution is presented in Figure 3. The defmix; = €1,X2 = €2,X3 =
e3, wheree; andes are expected to evaluate to blocks of sizes 2 and 1, resphgtbut
where the representation for the valueegiis not statically predictable. The pre-allocation
step allocates dummy blocks fey andxsz only. The valuev; of e; is then computed. It can
referencex; andxs, which correspond to pointers to the dummy blocks, butxaptvhich
would not make any sense here. This value is copied to thesmwnding dummy block.
Then, the value, of e, is computed. The computation can refer to both dummy blcakd,
can also strongly depend om, but not onx,. Finally, the valuevs of e3 is computed and
copied to the corresponding dummy block.

The immediate in-place update scheme implements moretigfimithan the original in-
place update scheme. In fact, it implements arbitrary manmsive definitions, thus allowing
to merge the traditionally distinct construaist andlet rec.

Restrictions imposed on the source languaihat are the restrictions put on recursive defi-
nitions in the source language if we are to compile them vhighinmediate in-place update
scheme? We adopt the following sufficient conditions. Fits¢ values of forward refer-
enced definitions must be represented by heap-allocateddshl8econd, the sizes of these
blocks must be known statically. Third, the contents of ¢hielecks should not be accessed
before they have been updated with proper values. Thesetiests are highly dependent
on the data representation strategy implemented by theitemihe second restriction also
depends on how expected sizes are computed at compilesinie entails a static anal-
ysis that is necessarily conservative. For instance, Howitz [12] derives the sizes from
the static types of the right-hand sides of recursive daimst while the OCaml compiler
proceeds by syntactic inspection of the shapes of the hight sides. More sophisticated
static analyses, such as 0-CFA [29] or enriched type systeondd also be used.

In this article, we abstract over these compiler-dependesuies as follows. We define
a source language where each recursive definition is amaobgt the expected size of the
representation of the right-hand side, if known. These tatioms reflect the result of a prior
size analysis of the kind mentioned earlier. Both our soarw target languages feature a
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2. Computation oy :
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3. Update ofx; with vi:

X1 X3

4. Computation o€, and binding of its value tey:

X1

5. Computation and update ef:

Fig. 3 The immediate in-place update scheme

notion of size, which we only assume to be preserved by tinsltion (Hypothesis 17) and
satisfy a few natural requirements (Hypotheses 1 and 10).

1.3 Summary of contributions

The contributions of this article are threefold. First, meroduce and formalize a call-by-
value functional language called, featuring an extended recursion construct that is not
restricted toA -abstractions as right-hand sides of recursive definitibns also supports
recursive definitions of data structures=(cons 1 x) and of fixed points of certain higher-



order functionsX= f X). This recursion construct subsumes both the standardsieewand
non-recursive value binding construatst andlet rec, and is compilable by immediate
in-place update.

Second, we provide the first formalization of the in-placedatp implementation
scheme. Itis formalized as a translation frapto a target languagk, that does not feature
recursive definitions, but instead explicitly manipulatedeap via allocation and update
operations. This language is designed to closely matchdhieda intermediate languages
used by the OCaml compiler [21], attesting that it can be @am@nted efficiently.

Third, we prove that the evaluation of aiy expression is correctly simulated by its
translation. This is the first formal correctness proof fa in-place update scheme.

The remainder of this paper is organized as follows. In $ac#i, we formalize the
source language@,. Section 3 defines the target language We define the compilation
scheme from\, to A, in Section 4, and prove its correctness in Section 5. Finakydiscuss
related work in Section 6 and conclusions and future workeoti®n 7.

2 The source language\,
2.1 Notations

Given two setdA andB, A# B means thaf andB are disjoint,%?(A) denotes the set of all
subsets of\, and|A| denotes the cardinal &f.

For all setsA andB and functionsf : A — B, dom(f) denotes thelomain Aof f, and
cod(f) denotes itcodomain B Moreover, f,c denotesf restricted toA\ C. We also write
f(a— b) for the unique functiorf’ : (AU {a}) — (BU{b}) such thatf’(a) = b and for all
a e A\{a}, f'(a&) = f(&). Moreover, for all functionsf; : A — By and f, : Ay — By, if
A1 # A, thenfy + f, denotes the union df and f, as graphs.

For any syntactic entity ranged over by a meta variaqleith variables ranged over by
X, the notatior|x; — X, ..., X, — Xq] (for n > 1) denotes aubstitutiorfunction o that maps
X to X; for 1 <i < n, and maps all other variables to themselves. The identhgtgution
is writtenid. The application of a substitution to a syntactic entityhwbindings must use
standard techniques to avoid variable capture. The donfiftinsasubstitution is the set of all
variables, and itsupportsupp(0) is {x | X # 0 (X) }. Substitutions are required to have finite
support. Accordingly, theosupportis defined bycosupp(o) = {0 (X) | X € supp(0)}. For
all substitutionsr1 andoy, if supp(01) #supp(02), we define their disjoint unioay + 02 by
(014 02)(x) = 01(x) for all x € supp(01), (01 + 02)(X) = 02(x) for all x € supp(02), and
(01+ 02)(x) = x for all x ¢ (supp(01) Wsupp(02)). (This overloads the previous notation
f1+ f2 for functions with disjoint domains.) For all substitutmoy ando,, we write oy (02)
for the unique substitution of suppaitpp(02) such that for alk € supp(02), 01(02)(X) =
o1(02(x)). It is in general different from the compositian o 0, since ifx € supp(01) \
supp(02), (01 0 02)(X) = 01(X), whereag 01(02)) (X) = X.

2.2 Syntax

The syntax ofA, is defined in Figure 4. The meta-variabdsandx range over names and

variables, respectively. Variables are used in binderasaal. Names are used for labeling
record fields. The metavariables for other syntactic estigire in lowercase, in order to ease
the distinction with the metavariables for syntactic eéesibf the target language (Section 3),



Variable: X € vars
Name: X € names
Expression: ecexpr = X|Ax.e| e e A-calculus
| {r}|eX Record operations
| recbine  Recursive definitions
Record row: ri=g|X=xr
Binding: = ¢g|xoeb
Size indication: o U= =lEp (n a natural number)
Fig. 4 Syntax ofA,
FV(x) ={x} FV(Ax.e) =FV(e)\ {x}
FV(er &) =FV(e1) UFV(e) FV({r}) =FV(r)
FV(eX) =FV(e FV(recbine) = (FV(b)UFV(e))\dom(b)
FV(b) = {X}UFV(e) FV(r) ={r(X) | X edom(r)}

Fig. 5 Free variables ii,

which will be in upper case. The syntax includes thealculus: variablex, abstraction
Ax.e, and applicatiore; e;. The language also features records, record seleetlorand

a binding construct writteec. By convention, thecec construct has lowest precedence,
so that for instanceec bin e; & meansrec bin(e; €). In arec b in e expressiong is
called thebody. To simplify the formalization and without loss of expressiess, records
are restricted to contain only variables, i.e., be of thggeHX; = X1, ..., Xy = Xa}. Bindings

b have the shape ¢1 e, ..., %, on €1, Where arbitrary expressions are syntactically allowed
as the right-hand sides of definitions, and every definitscaminotated with aize indication

©. A size indication can be either the unknown size indicaﬁ'@mor a known size indication
=, wheren s a natural number. We writefor the empty binding.

Implicit syntactic constraintdn what follows, we implicitly restrict ourselves to record
rows, bindings and expressions satisfying the followingditions:

1. Record rows do not define the same name twice;

2. Bindings do not define the same variable twice;

3. Bindings do not contaiforward reference$o definitions of unknown size, in the sense
made precise next.

Thefree variablesFV(e) of expressions, bindings, and record rows are defined induc-
tively by the rules in Figure 5. Ingec bindingb = (X1 ¢1 €1,...,%n on €n), We say that there
is aforward referenceof x; to x; if i < j andx; € FV(g). Condition 3 requires that for all
bindingsb and forward reference af to x; in b, the size indicatior; is = for somen. This
is consistent with the immediate in-place update schemerawho blocks are pre-allocated
for definitions of unknown size, so previous definitions nmustrefer to them.

Finally, taking advantage of conditions 1 and 2 above, wdiaitly view record rows
as finite functions from names to variables and bindings & fianctions from variables
to expressions, and use standard notations for domainn@do application, etc. Also,
we writerq,r, for the concatenation af; andr,, and similarly for bindings. Finally, we
implicitly view records and bindings as sets of pais x) (resp. of triples(x,¢,e)), for
example to writgX = x) € r (resp.(X< €) € b).



Value: vevalues = x|Axe|{r}
Answer: ac answers ;= V|rech, inv
Size-respecting binding: b, =€
| x=pvby
| X=[nj v, by wheresize(v) =n

Fig. 6 Values and answers ik,

Structural equivalencéNe consider expressions equivalent upataonversiog, i.e., re-
naming of bound variables, in functions anec expressions. In the following, to avoid
ambiguity, we calfaw expressions not considered upaeconversion. Let= denote equal-
ity of raw expressions aret denote equality modula conversion.

2.3 Dynamic semantics

We now define the dynamic semanticsXaf Figure 6 defines\, values to be variables,
functions, and records.

2.3.1 Overview: sizes and recursive definitions

We have seen thatc-bound definitions can be annotated with natural numberssepting
their sizes. The role of these size indications is to dedlaezlvance the expected sizes of
the memory blocks representing the values of definitionshiieally, they will be required
to match the size of allocated blocks in the sense of our taajeulus. For definitions that
are not forward-referenced from previous definitions,&tismo need for annotations.

In A,, during the evaluation of a binding, if the currently evaddefinition is expected
to have sizen, then it must evaluate to a non-variable value whose sizalequOtherwise,
evaluation gets stuck.

Hypothesis 1 (Size ih,) We assume given a partial functiseiae from A, values to natural
numbers, defined exactly aalues\ vars.

An evaluated definition not matching its size indication ésidered an error, in the
sense that it prevents further reductions. Thus, si#g-respectingindingsb,, as defined
in Figure 6, are considered fully evaluated.

Note that size-respecting bindings define only values. mhétion is that, given a def-
inition (x = €), this forces the topmost block of the valueefo be determined by pre-
vious definitions. For instance, suppose tkia¢({X = x}) = n. Then, the bindingy =,
{X =x},z=[ y) is not fully evaluated, but we will see below that it evalsat®rrectly to
(Y = X =x},z=y {X =x}). On the contrary, the bindingz =y Y,y = {X =x}) is in-
valid: y can not be replaced with its value, according to the redocttation defined below.
(Such a reduction step could not be implemented by immedigiace update as depicted
in Figure 3.)

Besides the non-standard notion of size, the dynamic séesaoftA, is unusual in its
handling of mutually recursive definitions, which is adapteom the equational theory of

2 The notion of structural equivalence could include redrdeof record fields, but we do not need it, so
we just considen-equivalence.
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Ariola and Blom [2]. There is no rule for eliminatingsc: evaluated bindings remain at top-
level in the expression and also in evaluatisrswersas defined in Figure 6. This top-level
binding serves as a kind of heap or recursive evaluatiom@mvient. An answeatis defined
to be a value, possibly surrounded by an evaluated, sipeecting binding. It thus may have
the shapeec b, inv.

The dynamic semantics afec relies on five fundamental equations, which resemble
the rules used by Wright and Felleisen [32]. We start withrdarimal presentation of these
equations usingontextsC, i.e., terms with a hol&. Context applicatiorC[€] is textual,
possibly capturing replacement af with e in C. The rules rely on additional conditions
defined later to (1) avoid variable captures and (2) enfoneeréduction strategy of the
language, but are roughly as follows.

1. The first equation ibfting. It lifts a rec node up one level in an expression. An expres-
sion of the shape; (rec b in &) is equated witlrec bin (e &).

2. The second equationiigternal merging In a binding, when one of the definitions starts
with another binding, then this binding can be merged withehclosing one. An ex-
pression of the shapsec by, x = (rec by in €;),bz in & is equated withrec by, by, x =
e,bs in e.

3. The third equation igxternal mergingwhich merges two consecutive bindings. An
expression of the shapec by in rec b, in eis equated withrec by, by ine.

4. The fourth equationexternal substitutionreplaces variables defined in an enclos-
ing binding with their definitions. Given a contett, an expression of the shape
rec bin C[X] is equated witlrecbinC[e], if X = e appears irb.

5. The last equationinternal substitution replaces variables defined in the same bind-
ing with their definitions. Given a contest, an expression of the shapec by,y =
C[x, b2 in €1 is equated withrec b,y = C[ey], by iney if x= e appears iy, y= C[x], by.
The issue is how to arrange these operations to make theatiesdeterministic and to

ensure that it reaches the answer when it exists. Our chait®e summarized as follows.

First, bindings that are not at top-level in the expressiostbe lifted before their evaluation

can begin. Thus, only the top-level binding can be evalu@&edoon as one of its definitions
gets evaluated, evaluation can proceed with the next onejtbrthe body if there is no
definition left. If evaluation encounters a binding insidle tonsidered expression, then this
binding is lifted up to the top level of the expression, ot josfore the top-level binding if
there is one. In this case, it is merged with the latter, ivdlly or externally, according to the
context. External substitution is used to replace a vagiatdlereferencingposition (likexin

x.X orx v, see the precise definition of dereferencing contexts hehoth its value, fetched
from the top-level binding. Internal substitution is uséhikarly, but inside the top-level
binding, and only from left to right (i.e., when the copiedidition comes from the left of
the current evaluation point).

Remark 2 (Policy on substitution and call-by-valdé)e substitution rules only replace one
occurrence of a variable at a time, which has to be in destaugiosition. This strategy
w.r.t. substitution, calledliestruct-timeby Sewell et al [28], does not contradict the fact
thatA, is call-by-value. Indeed, only values are copied, and apyession reached by the
evaluation is immediately evaluated. The fact that evaldidefinitions are not immediately
substituted with their values in the rest of the expresssomther a matter of presentation.
Notably, this presentation allows to properly represent recursive data structures, as shown
in Section 2.4 and Figure 14.

To implement our strategy, we remark that evaluation shooldbe the same at top-
level and inside an evaluation context. For example, cenge: ((rec X =7 € in X Y) 2),
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Lift context:
L:=eO|0Ov|0X

Nested lift context:
F:=0|eF|Fv|FX

Binding context:

B, ::= b,,xo0O,b

Nested dereferencing context:
A =0v|OX

Evaluation context: | eA]Av|AX
E:=F Dereferencing context:
| rech, inF D= A
| rechy,xoF,bine | rech,inA
| rechy,,xoAbine
|

recB=  ine
n]

Fig. 7 Evaluation contexts of,

Alpha equivalence:

e=¢ v=V b, =b,’
eF=€TF Fv=FV rech, inF=rech,/inF
b,=b,/ b=b e=¢ F=F e=¢€

(recb,,xoF,bine) = (recb,/,xoF,b in€) E[F] = E[F (by,x o €bp) = (by,x0 €,by)
Free variables:  FV(DO) =0

FV(eF) = FV(e) UFV(F)

FV(F v) =FV(F)UFV(v)

FV(F.X) — FV(F)

FV(rec b, inF) =FV(b,)UFV(F)

FV(recb,,xoF,bine) ={x}UFV(b,,b)UFV(F)UFV(e)

Captured variablesCapty (rec b, in ) =dom(by)
Captg (rec by, xo F,bine) = {x} Udom(by,b)
Captg (F) =0

Fig. 8 Structural equivalence o, evaluation contexts

wheregy reduces t@;. According to the informal specification above, before thed@ation

of ey can start, the binding should first be lifted to the top levebbtain€ = (rec x =

€y in(Xy 2)). So, our reduction relation should not respect the usualsaying that for any
ep andey, if &g — ey, thenE[eg] — E[ey] for any evaluation context. This leads us to
define two relations: theubreduction relation~, handling reductions inside expressions,
and thereduction relation—, handling top-level reductions. We write ™ (resp.~~*) for
the transitive (resp. transitive reflexive) closure of takation~-, and similarly for—.

2.3.2 The subreduction relation

First, we define subreduction in Figure 9, using notions eeffin Figures 7 and 8. It is first
defined on raw expressions, then liftedoteequivalence classes of expressions by the usual
rule

&f~6& &=

€1~ &

er=¢

Record projection selects the appropriate field in the cb¢arde PRROJECT,). The ap-
plication of a functionAx.e to a valuev reduces to the body of the function where the
argument has beerec-bound tox (rule BETA,). Rule LIFT, describes how bindings are
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Subreduction rules-¢)
xé¢ FV(v)

{r}.X ~r(X) (PROJECT) (Ax8) v rec x=;; vine (BETA,)
Llrec Eolr: E:]))j EZC(HE;)in g (LFT)
Reduction rules{—)
e~¢d
Eg S Ed] (CONTEXT,)
dom(by) # ({X} UFV (by,b,) UFV(€)) (M)

(recby,Xo (rec by in€),bp in€) — (rechy,,b;,xoe by in€)

dom(b) #FV(b,)

(recbyinrecbine) — rech,,bine

(EM,) D[x] — D[D(x)] (SuBST,)

Fig. 9 Dynamic semantics of,

lifted up to the top of the ternLift contextdL are defined in Figure 7. RulelkT, states that
an expression of the shafgrec b in €] subreduces toec b in L[€], provided no variable
capture occurs. Alpha-equivalence is defined over contexfsllows: all variables may be
a-renamed, except those that havén their scope. More formallyy-equivalence for eval-
uation contexts is the smallest equivalence relation ovaluation contexts respecting the
rules in Figure 8. In the same figure, we definedhpturedvariablesCapt (E) of an evalu-
ation contexit, and the free variables of an evaluation context. We l@aye (E) C FV(E)
for all E.

Remark 3 (Evaluation orderffunction applications are evaluated from right to left.sThi
nonstandard choice is explained in Remark 11, in light ofséemantics of the target lan-
guageA,. The results of the paper can be adapted to a left-to-righitiation setting with
some additional work.

2.3.3 The reduction relation

The reduction relation is defined in Figure 9. Itis first defiloa raw expressions, then lifted
to a-equivalence classes of expressions by the usual rule

e1=¢ g —6 e&zezl
€ — &

Rule CONTEXT, extends the subreduction relation (as a relation over rgsessions)
to any evaluation context. As defined in Figure 7, we cakbsted lift contexF a series of lift
contexts. Moreover, we calllsinding contexi,, of size a binding(b,,x ¢ O, b) where the
context holed corresponds to the next definition to be evaluated, and #figition is an-
notated by. An evaluation contexE is a nested lift context, possibly appearing as the next
definition to evaluate in the top-level binding, or enclogeside a fully evaluated top-level
binding. Our unusual, staged formulation of evaluationterts enforces the determinism
of the reduction relation w.r.t. bindings: evaluation netakes place inside or after a bind-
ing, except the top-level one. Other bindings inside theesgion first have to be lifted to
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the top by rule LFT,, then be merged with the top-level binding, if any, by ruléd Fand
IM, (respectively for external and internal merging). If thp-tevel binding is of the shape
by,x¢ (rec by in €), by, rule IM, allows to mergéd; with it, obtainingb,,b;,x< e bp. When
an inner binding has been lifted to the top level, if therelisay a top-level binding, then
the two bindings are merged together by rule EWhis implements the strategy informally
described above.

Finally, rule SuBST, describe how the variables defined by the top-level bindirey a
replaced with their values when needed, i.e., when theyappadereferencing contexas
defined in Figure 7. Dereferencing contexts may take two $oiffirst, they can be binding
contexts of known sizeec b, x=[, 0,b in €. In the immediate in-place update compilation
scheme, any definition of known size yields an allocation dienmy block, which has to
be updated. This is reflected here by requiring that in dedimtof the shapéx=|; y), y be
eventually replaced with a non-variable value of siz®ereferencing contexts can also be
nested dereferencing context®., function applicationsl v or record field selection. X,
wrapped by an evaluation context, as defined in Figure 7.€fbes, inA,, the value of a
variable is copied only when needed for function applicatorecord selection (or in-place
update, implicitly). The value of a variableis found in the current evaluation context, as
formalized by the following notion of access in evaluatiamiexts.

Definition 4 Define Binding(IF) £
Binding(rec b, inTF) by
Binding(rec b,,xoF,bine) = b,

The valueE(x) of xin E is (Binding(EE))(X), when the latter is defined.

Lemma5 (Determinism of evaluation)The— relation is deterministic.

Proof We prove the result for raw expressions first, and then exietal a-equivalence
classes. First, subreduction is obviously deterministicraw expressions as well as an
equivalence classes. Furthermore, both on raw expresaimh®na-equivalence classes,
the reduction rules do not overlap, so we only have to proaeghch rule is deterministic.

First consider the case of raw expressions. For all evaluaibntextst,, E, and subre-
duction redexes; andey, if E1[e1] = Ex[e], we show thai, = E,. This is shown in three
steps: for lift contexts (by case analysis), nested lifttegts (by induction), and evaluation
contexts (by case analysis). Hence, ruleNG EXT, is deterministic. Similarly, rule 88sT,
is deterministic.

Consider now the case @f-equivalence classes. Letranamingp be a substitution
function (as defined in Section 2.1) from variables to vdespband lep(e) denote capture-
avoiding substitution in the usual sense. For all evalmatontextsE1,E, and sub re-
duction redexe®; and ey, if Ei[e1] = Ep[ey], then there exists a renamimg such that
supp(p) C Capty (E1) andp(E1) = E, andp(e1) = e. This entails that rule GNTEXT, is
deterministic. We proceed similarly for ruleu8sTs,. ad

Definition 6 (FaultyA, expression faulty A, expression is an expression whose reduction
gets stuck on an expression that is not an answer. By detisrmia non-faulty expression
is an expression whose evaluation either does not termimagches an answer.

We now characterize faulty expressions, using the follgwiation ofdecompositiormf
an expressioe: adecompositiorof an expressioris a pair(E,€) such thae = E[€]. (We
consider pairgE, e) modulo renaming of the captured variableohence decomposition
is well-defined onx-equivalence classes of expressions.)
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Let us now define an ordering over decompositions. DecortipnsiE, €) induce oc-
currences in the abstract syntax tree of expressiongpaths from its root to the designated
occurrence of. This assignment is injective, i.e., these paths chaiiaetdecompositions.
However, it is not onto since some paths do not correspondyt@ealuation context. Given
two decompositiongE, e) and (E', €) of some giverey, corresponding to paths and p/,
consider their maximal common prefik. We say thap C p’ when either:

- p'=por

— p/, after p’, turns left in an application, i.e.p” corresponds to a decomposition
(E”,(F[e] v)) andE' = E"[F v] (the other decomposition thus hEis= E[F[€] O]), or

— p/, afterp”’, goes further in the top-level binding thani.e.,E = (rec b,,x¢ 0,bin &),
e is a value (of the expected size if needed), &ichas shapeecb,,x o v,b,/,y o
F,b/ ine; orrecby,b,’ inF.

This relationC defines a total ordering on the set of decompositions of apyessione,
which furthermore has a maximal element — the decompoditioring left in applications
when possible, and going as far as possible in the top-lémdirny. Using this notion, we
prove the following characterization.

Proposition 7 For all e, the following are equivalent:

1. eis faulty;
2. ereduces to an expressififv] in normal form, such that i) = rec B=,, in e for some
n,B= o and e, thenize(V), if defined, is not n;
3. e reofuces to an expressiofich that:
— ey = D[x], withID(x) undefined,
— € =rec by, X =y V,bin € with size(v) # n and v¢ vars,

— e =E[{r}v],
— ep = E[{r}.X] with X ¢ dom(r),
— e =E[(Ax.€).X].

Moreover, for all x andD, D(x) is undefined if and only if

— either x¢ Captg (D),
— orD=rech,,X oF,bin¢, withxe {X}Udom(b).

Proof First, observe that all cases(@) are faulty, hencé3) implies(1). We now show that
(1) implies(3).

Consider an expression with a normal foerwhich is not an answer. Consider its maxi-
mal decompositiofiE, €) w.r.t. the ordering=. The expressioris an answer exactly when
€ is a value andt is either empty or of the shapec b, in O. We proceed by case analysis
on the other cases.

If € is not a value, then by maximality, it has the shape b’ in € for somely ande”,
andE is not empty. But then one of rules WEM,, and LFT, applies, contradicting the
fact thateis in normal form.

If € is a valuev, thenE must have shapeec b, in F or rec by, x¢ F,bin €.

If F is not empty, therE has the shap&'[L]. Now, if L = (e O), the decomposition
(E,€) cannot be maximal, since the decomposit{@i[D v],e) is greater. Otherwise, if
L = (O V), then we havé’[v V] in normal form, hence eitheris a variable undefined in
E’, oris a record. Otherwis&, = (0.X), hence eithev is a variable undefined i/, or is a
function, or is a record without ax field. All these cases are covered (8).

If otherwiseF is empty, therE must have the shapec b,,x ¢ O,b in €. But then, for
the decompositiofiE, €) to be maximal, we must have= = for somen, and either
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— vis avariable undefined i& (first case of(3)), or
— size(v) is defined and different from (second case).

Finally, to show the equivalence witR), all the cases of3) are covered by2), so(3)
implies (2), and the only possibility for an expressifiv] in normal form to be an answer
is thatD has the shapgec B= | in e with size(v) = n, so(2) implies(1). O

Remark 8In A,, we restrict record values to contain only variables. Aliyuave could
permit other kinds of values in record expressions, butmcgdord values, because it would
break the properties df, w.r.t. sharing. In particular, as we also mention in Secfigh the
sharing properties of, make it directly extensible with mutable values. If we alé&mhnon-
variable values in record values, then this would no longethle case.

To see this, assume that is extended with such record values and a ternary op-
eratore.X « € for mutation of record fields. Then, consider= (rec x =9 X =AY =
V}} in x.X.Y « V). The evaluation ok is as follows: first, the record is copied, then its
X field is projected, which givesec X =/ {X ={Y =V}} in {Y =V}LY « V/, which is impos-
sible to rewrite to the expected result.

In addition to this undesirable behavior, enrichihgwith non-variable values in record
values would force us to considerably enrich the equatitredry of our target language
Aa. Indeed,A, gives a rather fine-grained account of sharing, and we woale o add
equations to reason modulo sharing.

2.4 Examples

In this section, we show examples A&f reduction and give intuitions on important appli-
cations ofA,, namely mixin modules and recursive modules. These exanggmonstrate
the expressive power &, compared to the recursion constructs of both ML and Scheme,
and also compared to the conference version of this papgrQiber possible applications
include encodings of objects following Boudol [3]. Howev&r would have to be (straight-
forwardly) extended with mutable records to support thisoeling.

2.4.1 Basic examples

We start with small examples to give some intuition on theamsins. First, as noted in Re-
mark 2, substitution occurs at destruct-timeAy following the terminology of [28]. This
means that substitution of an occurrence of a variable ig paiformed when this occur-
rence has to be replaced with a non-variable value in ordethéoevaluation to continue.
This is illustrated in Figure 10, which shows an example dfssitution at function applica-
tion time. The first expression is partitioned ifito= rec X =5 Ay.y in O X andx.

Figure 11 illustrates the left-to-right evaluation of himgks in A, and the semantics of
size indications. In particular, it emphasizes the fact tha size indication turns out to be
wrong, then the reduction is stuck. With respect to comipifatthis models the fact that in
the in-place update method, pre-allocated blocks shoultb@apdated with larger blocks,
otherwise execution might go wrong. In the second examplégfre 11, whose evaluation
is correct, the first expression is partitioned ifite= rec X = AY.y,Z= O X in zandx.

Figure 12 shows a subtle point of the semantics. Namely,ziedredications change the
degree of sharing of definitions, in case they are just veggall-rom Figure 7, we remark
that a binding context of the shape-; O is dereferencing. Therefore, if it is filled with a
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Expression

Comments

Tec X=[y AY.yinX X

!

Tec X=py AYy in(Ayy) X

!

Tec X=[ AYY in
recy=yy Xiny

rec X=p AY.Y,Y =g Xiny

Not a valid answer becausg, x is not a

value, and the only possible reduction is by

rule UBST,.

Only the first occurrence ofis substituted.
We then apply rule BTA,.

Not yet a valid answer. We apply rule EM

The binding is now size-respecting, because

of the=[?].

Fig. 10 Substitution and function application

Expression Comments
rec Z=[3 XX The forward reference is syntactically cor-
X=[n AYY rect (even ifn # size(Ay.y)), but the value
in z of x cannot be copied, because it would be
ye from right to left. This is consistent with
the in-place update compilation scheme
sketched in Section 1.2.
rec X=|5 AV, The value of can be copied, but only if the
Z=}5 XX size indication is correct, otherwise the first
in z definition is not considered valid. Note that
the size indication is in fact not necessary
l here becauseis not forward referenced.
rec X=|5 AV,
z=3 (Ayy) X
in z

Fig. 11 Forward references

Expression Comments

rec Y= {X={}1}, The definitionz =5 y respects sizes, so the
Z=3y whole expression is an answer.

in z

rec Y= {X={}1},

The definitionz= y does not respect sizes,
so the expression reduces by ruleesT,.

We eventually reach an answer.

Fig. 12 Size indications and dereferencing contexts
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Expression Comments
rec even=y Ax. (x=0) or The forward reference todd is syn-
(odd (x—1)), tactically correct, ancddd evaluates
odd=(; AX. (x> 0) and correctly if n is the right size. We ap-
(even(x—1)) ply rule SUBST, to replaceevenwith
in even56 its definition.
1
rec even=( ..., We apply rule BTA,, followed by
odd=p; ... rule EM,.
in (AXx.(x=0)or(odd(x—1))) 56
n
rec even=jy ..., We then perform the boolean test un-
odd=p; ..., successfully, obtainingdd (x; — 1),
X1 =7 56 where we then replacey with its
in (x1=0) or (odd (x;— 1)) value and obtaimdd 55. We can then
replaceodd with its value and apply
L+ rule BETA, again, and so on.
rec even=[?] N
Odd=[n] ey
X1 =12 56

in odd55

Fig. 13 Mutual recursion

Expression Comments

rec X = {Head= 0, Tail = x} This is a valid answer, representing an
in X infinite (cyclic) list of zeroes.

Fig. 14 Recursive data structure

variable, this variable has to be substituted with its vatuerder for evaluation to continue.
Figure 12 provides two examples differing only by one sia#idation. In the first case, the
expression is a valid answer. In the second case, at thedéweimpiled code, a block is
pre-allocated for, which will eventually represent its value, so we must updathe value
of yis copied to this block. At the source language level, thig/om enabled, to correctly
reflect sharing in the compiled code, and therefore makesdty for extension with mutable
values.

Figure 13 shows an example of mutually recursive functiasspyming thad, has been
extended with standard operations on booleans and intdgjeedly, one may wonder why
we do not perform substitution immediately after evaluatias usual, but use destruct-time
substitution instead. The reason is that it better reptestie semantics of the construct
we want to define. First, as previously mentioned, sharipgapertly modeled. Second, as
shown in Figure 14, it allows to represent recursive dat&ctires such as infinite lists.

2.4.2 Mixin modules

We now consider a more elaborate example, namely an encofliagimple language of
mixin modules, following the approach of [14]. The desigmukin modules in a call-by-
value setting raises a number of issues that fall outsidedbpe of this paper; see [12] for
a discussion. Our goal here is to informally explain whyis an adequate target language
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for compiling mixin modules. Thus, we briefly describe a dienanguage of call-by-value
mixin modules, for which we sketch a compilation scheme.

Mixin modules Mixin modules are unevaluated modules with holes. Mixin oled are to
ML-style modules what classes are to objects in objectatei languages. The language
provides aclose operator to instantiate a complete mixin module into a medillus trig-
gering the evaluation of its components (see below). Inrom®btain a complete mixin
module, the language provides modularity operators, sscomposition and deletion. For
instance, one can define the mixin modwtesn andodd as follows.

mixin Even = import

odd : int -> int
export

even x = (x = 0) or (odd (x - 1))
end

mixin Odd = import

even : int -> int
export

odd x = (x > 0) and (even (x - 1))
end

The holes of a mixin module are called itsports and its defined components are its
exports The contents of mixin modules are not evaluated until imt&déon, as described
below. One camompose&ven andodd to obtain

mixin Natl_Open = Even + 0dd
which is equivalent to

mixin Natl_Open = import

export
even x = (x = 0) or (odd (x - 1))
odd x = (x > 0) and (even (x - 1))
end

The namealat1_0pen refers to the fact that the definitions of this mixin module still
late bound and can be overridden. Then, this mixin modulebe@mstantiatednto a proper
module by

module Natl = close Natl_Open
which is equivalent to

module Natl = struct
let rec even x = (x = 0) or (odd (x - 1))
and odd x = (x > 0) and (even (x - 1))
end

One can then select components froas 1, and write for instanc#at1.even 56.

As an example obverriding one can optimize the definition efren in Nat1_Open
by first removing it fromNat1_Open, and then composing the result with a mixin module
containing the new definition:
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mixin Nat2_Open = (Natl_Open - even) +
import
export
even x = ((x mod 2) = 0)
end

which is equivalent to

mixin Nat2_Open = import

export
odd x = (x > 0) and (even (x - 1))
even x = ((x mod 2) = 0)

end

The obtained mixin module can then be instantiated into i pleodule, as above. Fi-
nally, we extendiat1_0Open with a computation using the defined functions:

mixin Nat_Test_Open = Natl_Open +

import

even : int -> int
export

test = even 56
end

The obtained mixin module is equivalent to

mixin Nat_Test_Open = import

export
even x = (x = 0) or (odd (x - 1))
odd x = (x > 0) and (even (x - 1))
test = even 56

end

An incorrect encoding i, A reasonable idea for encoding mixin modulesiinwould

be to adapt the standard encoding of objects and classesuasive records [5]. However,
this encoding allows to represent mixin modules, but nohtantiate them. Consider for
instanceNat_Test_Open. It would be translated into generator that is, a function over

records:
rec Nat TestOpen=; Aself.

{ever= Ax.(x=0) or (self.odd (x—1))
odd=Ax.(x> 0) and (self.even(x— 1))
test= self.even56 }

in ...

Then, the instantiation afat_Test_0pen would consist of taking its fixed point, which
gives
rec Nat Test=[ Nat TestOpen NatTestin ...

(assumingn to be the correct size), which gives after substitution

rec NatTest= (Aself.{ever= Ax....self.odd...
odd=Ax....self.even..
test=self.even56})
Nat Test
in ...
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—7 rec self=;; Nat Test
Nat Test=/y {even=Ax....self.odd...
odd=Ax....self.even..
test= self.even56})
in ...

— rec self = Nat Test
Nat Test=(y {even=Ax....self.odd...
odd=Ax....self.even..
test= Nat Testeven56})
in ...

whose evaluation is stuck, becaléat Testis not yet evaluated and its definition is already
requested. So the recursive record semantics of objectsdasgks does not directly adapt to
mixin modules. The reason is that the components of a mixiduteomay strongly depend
on each other, in the sense of Section 1.2, while the compemdra class are essentially
methods, which only weakly depend on each other.

Remark 9 (Objects and strong dependenclas)ava, initialization of instance and static
fields by arbitrary expressions can lead to strong depefeiehetween the fields. However,
the semantics of field initialization in Java does not gumrhat a fixed point is reached
[11, section 8.3.2.3]. Here is an example.

static int f() { return x + 1; }
static int x = £f() * 2;

This code assignsto x instead of causing an error as expected.

A correct encoding i, We must find another way to compile mixin modules. In [14], a
mixin module is translated into a record of functions, whiislels correspond to the exports
of the source mixin module. Each export is abstracted overother components upon
which it depends, and over a dummy argument, useful for sutipg the computation in
the absence of dependencies. For instance, the mixin mpdktichas only one expogven,
which depends on the impostid, so it is represented by

rec Even={even= Aodd.A _Ax.(x=0) or (odd(x—1))}
where_ denotes an unused variable. Similadyd is represented by
rec Odd={odd=AevenA _Ax.(x > 0) and (even(x—1))}

The translation of composition merely consists of pickinhg tight fields in the arguments.
For example, composirgyen andodd yields

rec Natl Open= {even= Evenevenodd= Odd odd}

The composition can be generated even in a separate coimpitatting, where only the
types ofEven and 0dd are available. Indeed, it only relies on the names exporieth®
two mixin modules, which are mentioned in their types. Delets as easy as composition,
since we only have to pick the non deleted fields of the argtimen



21

Instantiation is more difficult, because of strong depenenand sizes. Consider for
example the instantiation ofat_Test_0Open. Here,evenand odd must be defined before
test which strongly depends on them. Thus, we obtain

rec evensp; NatTestOpeneven odd(},
odd=; Nat TestOpenodd even(},
test=5 Nat TestOpentest ever{}

in {even= evenodd= odd, test=test

This translation evaluates as expected, provided we ctoalaguess the correct sizefor
theodd component. For some data representation strategiesizbisan be computed from
the static type obdd, but not always for other strategies; see Section 7 for aidion.

Another difficulty of the translation outlined here is toelehine a correct order in which
to evaluate the components of the mixin being closed. Theoaph proposed in [14] and
refined in [16] relies on exploiting dependency informatmided to the static types of mixin
modules. Another approach, outlined in [12,13], is to emdbegokndency information in the
run-time representation of mixin modules, and determinereect evaluation order at run-
time.

2.4.3 Recursive modules

Another possible application af, is for compiling recursive modules in extensions of the
ML module system [7,27,21,9]. Recursive structures aréyeascoded im,. For example,
consider the following two mutually recursive structures:

module Even = struct

let even x = (x = 0) or (0dd.odd (x - 1))
end
and 0dd = struct

let odd x = (x > 0) and (Even.even (x - 1))
end

Define the syntactic sugatruct b end, whereb is a list of declarations of the shape 1>
X101 €1, ..., Xn D> Xn On €n, 10 denoterec X1 ¢1 €1, ..., %X, On € in {X1 =X1,...,Xn =Xn}. Using
this notation, the example above can be expressed as

rec Even=(y struct
even> evernsp; Ax.(x=0) or (Oddodd (x—1))
end,
Odd=| struct
odd> odd=( AX.(x>0) and (Eveneven(x—1))
end
in ...

(wheren is assumed to be the right size indication). Notice that tinetion definitions and
the first module do not need to have known sizes, since theforsard reference concerns
the second modul®dd.

Beyond recursive structures, it is desirable to encoderse@ifunctor applications,
which appear in many practical uses of recursive modulesirstance, consider the fol-
lowing example, taken from the OCaml documentation [20tised.9].
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module A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
end = struct
type t = Leaf of string | Node of ASet.t

let compare tl t2 = ... ASet.compare ...
end
and ASet : Set.S with type elt = A.t
= Set.Make (&)

After erasing the type components of structures, we endodexample im, by

ch>A=msuum
compare> compare=( ... ASetcompare ..
end,

ASet> ASet=; SetMake A

in ...

(wheren is, again, assumed to be the right size indication). Thisesgion evaluates cor-
rectly becaus&etMakeonly weakly depends on its argument. The extension of thieeén
ing to a separate compilation setting does not raise thdgrobf sizes we had for mixin
modules: the sizes of ML modules can be guessed from thegstygowever, the depen-
dency analysis remains difficult, and we are working on tssie.

This section has demonstrated the expressive powdr, dfy showing encodings of
mixin modules and recursive modules, which attests itsesgive power. In order to show
how to compile it to efficient machine code, we now define a nedeenentary language
calledA,, into which we then translatk,.

3 The target languageA,

In this section, we defind,, a A-calculus with explicit heap. It was carefully engineered
to map directly to an abstract machine with a heap, and tolerdficient compilation to
machine code. In particular, the heaps used in the semafdgsly correspond to machine-
level heaps. (This is apparent in the size requirement Bufidate operation to work.)

3.1 Syntax

The syntax of the target languadigis presented in Figure 15. It includes thecalculus with
natural numbers and non-recursiec binding. Note that aet definitiont = E computes
E, and then either binds the result {ifs a variable) or ignores it (f = ). The multiple
value bindindlet t; = Ej,...,t, = E, in E should be understood ast t; =Ej in...let th=
E, in E. We write € for the empty binding. Having a multipleet binding contributes to
make the equational theory £ rich enough for the immediate in-place update scheme to
be correct. Additionally, there are constructs for recqudrations (creation and selection),
and constructs for modeling the heap: an allocation opegatwc, and an update operator
update.

The semantics of, uses a notion of heap, which comes in the form of a kind of dloba
let rec. A raw configuration Gis a pairRecH in E of aheap Hand an expressioB. A
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Variable: X € vars
Name: X € names
Expression: E € Expr =n Natural number
| X|AXE|EE A-calculus
| letBinE Non-recursive definitions
| {R} EX Record operations
| alloc|update Heap operations
Record row: R =¢|(X=V,R)
Binding: B =¢|(t=E,B)
t =X]|- Variable or wildcard
Value: V € Values = x|n

Stored value: Se SValues = AX.E |alloc n|{R}

Heap: H € Heaps 1= ¢|x=SH
Configuration: C = RecHinE
Evaluation answerA € Answers ::= RecHinV

Fig. 15 Syntax ofA,

FV(n) =0 FV({R}) =FV(R)

FV(x) ={x} FV(E.X) —FV(E)

FV(AXE) =FV(E)\{x} FV(alloc) =0

FV(ELE2)  =FV(E1)UFV(E) FV(update) =0

FV(let BinE) =FV(B,.=E)\ dom(B)

FV(e) =0 FV(t=E,B) =FV(E)UFV(B)U({t}Nvars)
FV(R) — |J FV(RX))  FV(RecHinE)= (FV(H)UFV(E))\dom(H)
FV(e) o FV(x=SH) = {Xx}UFV(S)UFV(H)

Fig. 16 Free variables ii,

heap is list of bindingg = S, where thestored value & SValues is either a functio x.E, or
a record{R}, or an application of the shap@1loc nfor some natural number. A value V
is either a natural number or a variable (but not a storedeyakin evaluatioransweris a
raw configuration of the shapecH in V.

Record rowsR, (resp. bindingsB and heapdd) are required not to define the same
name (resp. variable) twice. We use for them the same notaéis forA, record rows and
bindings for domain, codomain, concatenation, and so ose@# that the wildcardis not
a variable, hence is not in the domain of bindings nor in tfree variables.

Structural equivalencerree variables are defined in Figure 16. We s#llictural equiva-
lencethe smallest equivalence relation including reorderingesp bindings and renaming
of bound variables. We catlonfigurationsstructural equivalence classes of raw configura-
tions. We write= for equality of raw configurations ang for equality of configurations.
We extend substitutions to expressions and configuratiotisei standard way. For defining
capture-avoiding substitution on expressions, the onfytmoial case iset B in E: the ap-
plication of a substitution to an expression of the shieqet; = Ey, ...ty = E, in E proceeds
exactly as applying ittaett; =Ej; in...lett,=EpinE.
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Lift context: n:=EO|OV|OX
Nested lift context: ¢ :=0O|E¢ |V |¢.X
¢ |lett=¢,BinE

Allocation context: o :=0O|aE|Ea|a.X|letBj,t=a,BpinE|letBina

Evaluation context: & ::

Fig. 17 Evaluation and allocation contexts Af

Alpha equivalence:

ar=a; E=F E=FE
a1az] = a1[ag)] Ea=FEa aE=aF
B1=B; (let By inE) = (let B, in E’) B=B
(let By,xo ,Bp in E) = (let Bj,xo a,B5 in E') letBina =1letB ina
E=F

Free variables:

Fv(O) =0

FV(a E) =FV(a)UFV(E)

FV(E a) =FV(a)UFV(E)

FV(a.X) =FV(a)

FV(let Bina) =FV(B)UFV(a)

FV(1let By,t =a,B2in E) =FV(B1) UFV(a) UFV(let By in E) U ({t} Nvars)

Captured variables:

Captg(O) =0
Captg (a E) = Captg(a)
Captg(E a) = Captg(a)
Captg(a.X) = Captg(a)
Captg(letBina) = dom(B)
Captg(let By,t =a,By in E) = dom(B1) U Capty (a)

Fig. 18 Structural equivalence @, allocation contexts

Finally, the free variables of a substitution(any function from variables to one of the
syntactic classes) are defined by

Fvio)= |J {X}UFVv(a(x)).
xesupp(0)
3.2 Dynamic semantics
The semantics oA, is defined by aeduction relation—, which, like that ofA., is first

defined as a relation over raw configurations, then straghtirdly lifted to a relation over
configurations.

3.2.1 The reduction relation

The reduction relation is defined in Figures 17, 18, and li&gube following hypothesis.
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Hypothesis 10 (Size ih,) We assume given a functidize from stored values to natural
numbers such that

— for all n, Size(alloc n) =n, and
— for all o € vars — Values andS, Size(0(S)) = Size(S).

The second condition follows the intuition that the size stered value is determined
by its top constructor, and is therefore invariant undesstuiions (which do not change the
top constructor, only its arguments). (It is also of techhigse in the proof of correctness.)

The reduction rules are defined in Figure 19, using the nstafrcontexts defined in
Figure 17, and the scoping rules and functions of Figure 18.

Rule BETA, is unusual in that it applies a heap allocated function torgaraentv. The
function must be a variabbebound in the heap to a valley.E, and the resulti§/ — V](E).
The reduction can take place in any evaluation confext

Rule FRROJECT, projects a namé& out of a heap allocated recofdR} at variablex,
returningR(X).

Rule UrPDATE, copies the contents (the stored value) of a variable to anotiriable.
Both stored values must have exactly the same size and thedcope must not have the
shapealloc n. This condition may seem unnecessary, but it is used to ghatdaultiness
is preserved by our translation. Recall thbtx = S) denotesH where the binding fox is
replaced by =S

As in A, the evaluation of bindings is confined to the top level offigurations. This
requires the LFT, rule, which lifts a binding outside of a lift context.

By rule IM,, if the first definition of the top-level bindind is itself a binding
let Bj in Ej, thenBs is merged withB.

Rule LET, describes the top-level evaluation of bindings. [tet V] denotelx — V] if t
is a variablex, and the identity substitution otherwise. Once the firstilédin is evaluated,
if t is a variable, then this variable is replaced with the oledimalue in the rest of the
expression; it = _, evaluation proceeds directly. When the binding becomgstyerit can
be removed with rule BEPTYLET,.

By rule WEAKGC,, when a heap binding is not used by any other binding thal,itse
and not used by the expression either, it can be removedishitisnalized by requiring that
the corresponding variablebe outside the set of free variableg(H, () UFV(E) of other
heap bindings and of the main expression. This simple rukers to model the garbage
collection step mentioned in the explanation of Figure zillbws garbage-collecting the
blocks obtained by evaluation of the recursively-definegregsions once they have been
copied to the pre-allocated blocks. A general garbagect@terule could detect more kinds
of dead data structures, in particular mutually depend®hgerwise unused data structures.
This additional power is not needed in this paper, so we dohawe a general garbage
collection rule.

Finally, rule ALLOC, is one of the key points of,, by which a configuration of the
shapeRecH in a[g evaluates to the configuratidecx = S Hin a[x], wherex is a fresh
variable. In particular, iBis alloc n, the evaluation allocates a dummy block of sizen
the heap. This reduction can happen in afigcation contextr. Allocation contexts cover
all contexts ofA,, except undeh -abstractions. The idea is that a value can be allocated in
advance in the heap. For instance, given a configur&téend in 1et Bin S it is possible
to allocateSbefore computing the binding, provid&toes not use the variables defined in
B. The side conditiorFV(S) # Capty (o) ensures this, wher€apty (a) denotes the set of
binders located above the context holeripheredom(B) (see Figure 18).
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H(x) =Ay.E

RecH in £XV] — RecH in £[y = V](E)] (OE ™)

H(x) ={R}
RecH in &[x.X] — RecH in &[R(X)]

(PROJECH)

H(y) ¢ {alloc n|ne N} Size(H(y)) = Size(H(x))
RecH in é[update X y] — RecH(x=H(y)) in &[{}]

(UPDATE,)

dom(B) #FV(n)
RecH in é[n[let Bin E]] — RecH in £[let B in n[E]]|

(L1FT,)

dom(By) #{t} UFV(Bz) UFV(E2) (IM,) RecHinlett=V,BinE
RecHinlett=(letB; inE;),ByinEp @ — RecHinft— V](let BinE)
— RecHinlet By,t =E;,B in Ep

(LET,)

x¢ (FV(H\(x) UFV(E))
RecHinE — RecH\(y inE

RecHinlet £inE — RecHin E (EMPTYLET,) (WEAKGC,)

x¢ FV(SUFV(a)UFV(H) FV(S) # Captp (o)
RecHina[§ — Recx=SHina[x

(ALLOC,)

Fig. 19 Dynamic semantics of,

Remark 11 (Non-determinism and evaluation ordém)ike in A,, the reduction of\, is not
deterministic because of rulesBAK GC, and ALLOC,. Nevertheless), remains close to
an abstract machine, which would simply implement a paedicteduction strategy. Fur-
thermore, this non-determinism makes the equational yhefok, rich enough for the cor-
rectness proof of Section 5.

Although A, is not deterministic, function applications are evaludted right-to-left,
because of the lift contexts V andE O. This makes the presentation more concise, since
it avoids lift contexts of the shapg&lloc O, update O, andupdate X O, and explains why
Ao also evaluates its arguments from right to left. The resafltee paper can be adapted to
a left-to-right evaluation setting with some additionalruo

3.2.2 Confluence and errors

Since reduction in\, is not deterministic, it is important to make sure that it @ftuent.
In fact, we show that the reduction relation is strongly canting, which implies that it is
confluent by Hindley’s lemma.

Lemma 12 (The reduction rules are strongly commuting)For all reduction rules R, Ry,

and configurations @C;,Cy, if C P, C; and Ci Cy, then there exists'Guch that G P,
/ Ry /

C'andG —C.

Proof By case analysis on the possible pairs of reductions. Thecteah relation without
rules WEAKGC, and ALLOC, is deterministic, so we only have to examine the pairs in-
volving at least one of these rules. ad
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Expression Comments
Rec€in Before applying rule BTA,, we must re-
(Ax.(x.X.Y)) duce the function and the argument to val-

(lety={Y=0}in{X =y}) ues. For this, we apply (several possible or-
ders) rules ALoc, (three times), ET, and
I+ EMPTYLET,.

x1 ={Y =0},
Rec { X ={X=x1}, in We then apply rule BTA, (the heapH re-
)

X3 = AX.(X.X.Y mains unchanged).
X3 X2
!
RecHin xp.X.Y We finally apply rule ROJECT, twice.
L+
RecHinO

Fig. 20 An example of reduction iA,

A configuration is said to bfaulty if it reduces to a configuration in normal form that is
not in Answers. For a better understanding of the semantics, we now claizethe set of
faulty configurations.

Proposition 13 (Faulty A, configurations) A configuration is faulty iff it reduces to a con-
figuration C in normal form such that:

— C=RecH in &[x V], with either
— X¢ dom(H), or
— H(x) is not a function,
— C=RecHiné[nV],
— or C=RecH in &[x.X], with either
— X ¢ dom(H), or
— H(X) is not a record with field X,
orC=RecHin &[n.X],
or C=RecHin &[alloc] and& # a’[0 n], for all a’,n,
or C =RecH in &[update X Y|, with either
— x ory notindom(H), or
— x and y have different sizes, i.8ize(H (X)) # Size(H(y)), or
— H(y) of the shape11loc n,
or C=RecHin &[update] and & # &[0 x ], for all &', x,y.

3.3 Examples

Figure 20 exemplifies the evaluation of a function applaratin A,. The function selects
theY field of the X field of its argument. However, iA,, neither the function nor the ar-
gument are considered values. The evaluation of the argufneny = {Y = 0} in {X =y})
involves two heap allocations: first = {Y = 0} is allocated; then, we apply rule€ir, and
EMPTYLET,; finally, we allocatex; = {X = x1}. The evaluation of the functiohx.(x.X.Y)
involves one heap allocatio = Ax.(x.X.Y). The executed expression is theyx,, which
reduces in one step t9.X.Y, and then in two steps to 0.
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Expression Comments
Rec€in We pre-allocate a block foodd, evaluate
let odd=alloc n, even(which points to the dummy block),
even= Ax. (x=0) or then evaluate the definition @fdd and up-
(odd (x—1)), date the dummy block with it.
_= update odd

AX. (x> 0) and
(even(x—1)),

in even56
L+
¥ =allocn, First, the two evaluated heap blocks defin-
X2 =AX. (x=0) or . A
. ing odd andevenare allocated, yielding;
Rec (x1 (x—1)), $in -
_ andxy, respectively. Then, the second argu-
X3 =Ax. (x> 0) and ment ofupdate is allocated, yieldings
(X2 (x=1)) ' ‘
let _=update X1 X3
in X 56
L+
=AX. (x> 0) and Now x; is updated withxs, which can then
Rec (X2 (x=1)), in  be garbage-collected, and the evaluation
X2 =AX. (x=0) or can proceed with the two expected mutually
(x1 (x=1)), recursive functions.
X2 56

Fig. 21 Mutually recursive functions id, (compare with Figure 13)

Translation of expressions:[x] =X
[Ax.€] = Ax[€]
[e1 &] = [e] [e]
[{r3] = {r}
[eX] = [e].X
[recbin€] = let Dummy(b), Update(b) in[€]
Pre-allocation of bindings: Dummy(¢) =¢
Dummy(Xx=[y &b) = (x=alloc n,Dummy(b))
Dummy(x =[5 eb) = Dummy(b)
Computation of bindings: Update(¢) £

Update(x = €,b)
Update(x =3 & b)

(== (update x [€]),Update(b))
(x=[€],Update(b))

Fig. 22 Standard translation frork, to A,

Figure 21 shows the evaluation of a mutually recursive fonctiefinition. It is theA,
analogue of the example shown earlier in Figure 13.

4 Compilation
4.1 The standard translation

We now define a translation frovh, to A, that straightforwardly implements the in-place
update trick. This translation, called teandardtranslation, is defined in Figure 22.



29

The translation is straightforward for variables, funnpapplications, and record op-
erations. The translation of a bindirgis the concatenation of twé, bindings. The first
binding Dummy(b) is called thepre-allocationbinding, and gives instructions to allocate
dummy blocks on the heap for definitions of known sizes. Tteos@ bindingUpdate(b)
is called theupdatebinding. It evaluates the definitions and either updatesptbegiously
pre-allocated dummy blocks for definitions of known sizessimply binds the result for
definitions of unknown sizes.

Example 14The standard translation of the first expression of Figuris {Bart of) the first
configuration of Figure 21:

even=y Ax. (x=0) or
(odd (x—1)), | .
rec odd=y AX. (x> 0) and in even56
(even(x—1))
is translated to
odd=alloc n,
evern= AX. (x=0) or
(odd(x—1)), |.
let = updateodd in even56

(AX. (x> 0) and
(even(x—1))),

Remark 15 (Restriction on forward references\iy) The standard translation crucially re-
lies on the fact thad, forbids forward references to definitions of unknown sizsch
forward references, after translation, would produceregfees to unbound variables. For
example, consider the illegal binding=(3 y,y =7 €. Its pre-allocation pass is empty, and
it is translated ag =,y = [€], wherey is unbound. (Recall that, bindings do not have a
recursive scope.)

For any reduction rul®, write R, for the set of pairs of expressions or configurations
that are instances &

Proposition 16 For all v € values\ vars, there exist Hx such that

ALLoC
Rec€in[V] —— RecHinXx

Proof By case analysis on ad

From now on, we assume that the notions of siz&Jirand A, are coherent, in the
following sense.

Hypothesis 17 (Sizéjor allH,x, andv € values\ vars, if Rec€ in[v] —* RecH in X, then
size(V) = Size(H(X)).

Our main result is:

Theorem 18 (Correctness)or all e, if e reduces to an answer, loops, or is faultyAin
then so doege] in A,.

The rest of the paper is devoted to proving this theorem. itises several difficulties,
which we explain before actually delving into the proof.
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4.2 Overview of difficulties

A natural approach to proving the correctness of our traioslas to use a simulation ar-
gument: ife — € in A,, then[e] —* [€]; moreover, ife is an answer[e] should be

an answer as well. However, both properties fail, for reastinstrated in the following

examples.

Example 19 (Administrative reduction§€onsidere = Ax.x. Its translation isE = Ax.x,
which is not an answer. An allocation has to be performed deoto reduce it to the an-
swerRecy = Ax.Xin y. In general, the translation of’a value reduces in a finite number of
ALLOC, steps to a, answer.

Example 20 (More administrative reductiorGpnsidere; = recy =y AX.X in €, where
n = size(Ax.X). If & ~ €, thene, reduces t®) = rec y =y AxXin €, in A.. However, the
translations oy ande] are

[e1] = let y=alloc Nn,_=update Yy (AX.X) in[e]
[€i] = let y=alloc n,_=update Y (AX.X) in[€]

and[e1] does not reduce tf,] in A,: it is generally not possible to reduge,] until the
enclosindlet has been fully evaluated. So, if evaluatiominoccurs under a size-respecting
binding, then in the compiled code the evaluation of thigllig requires a finite number of
ALLOC,, UPDATE,, LET,, EMPTYLET,, and WEAK G C, steps, which are exactly the same
in [e1] and[€].

In order to deal with these administrative reductions, wk imroduce another trans-
lation function, called theop-level translation which performs them on the fly. This is
directly inspired by Plotkin’solon translation26]. However, there are other complications
that we now illustrate, writinge| ™" for the top-level translation.

Example 21 (Granularity)Consider e = (recX =5 Ay.yinx 2). It reduces by rule
SUBST, t0 € = (rec X =5 Ay.yin(Ay.y) 2), and then by rule BTA, to €' = (rec X =y
AY.yinrecy=[, ziny). Remark that rule 88sT, duplicatesAy.y, which is not innocent
w.r.t. the translation]e|™" does not reduce to€ |™". Thus, rule $BST, alone is not
simulated. In the compiled code, abstracting over the aidtnittive reductions, there is no
substitution: rule BTA, is applied directly, fetching the value gfirom the heap. Initially,
we have something likecH in X' z, whereH(X') = Ay.y, which reduces in one step to
RecHinz

Example 22 (Beta and the top-level bindirgpm Example 21, one could expect that al-
though rule ®BST, is not exactly simulated, the combination of ruleseST, and BETA,

is. This is not the case, because rulet®, leaves a fully evaluated binding right where the
subreduction happened, which is not necessarily at tagl-I@onsider again Example 21.:
we have seen thae|™F is a configuration of the shapecH in X' z, whereH (X) = Ay.y,
which reduces in one step @= RecH in z. However, after applying $8sT, and BETA,

to e, we obtaine’ = (rec X = Ay.yinrecy=[; Ziny), where the innetec is not at top
level. Hencel€’ |™" isRecH in 1let Y=z in Y, which is different fronC. Nevertheless, ap-
plying EM, to €', we obtain€” = rec X=5 AY.y,y =5 Ziny, whose top-level translation is
exactlyC. More generally, it turns out that enough reduction segegionsisting of appli-
cations of $BST,, BETA,, and a combination of ET,, IM,, and EM, are simulated by

L_JTOP'
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Example 23 (Stuttering reductions) some cases, we hage— €, but |e|™F = | |™P.
For instance, consider of the shapee = rec b, in rec x = (recbinep) ine. By rule
EM,, ereduces t® = recb,,X=[5 (rec biney) in €. In fact, in both caseg; | trans-
latesh, on the fly, so thate|™F = | & |™P. Thus, the preservation of non-termination is not
trivial.

Example 24 (Lifting and allocation)et b = (y =5 (Ax2.x2) z) and considere =
(AX1.X1) (rec b iny), which reduces by rule [ET, to € = rec bin(Ax1.x1) y. Anticipat-
ing again the definition of -] ™" below, ine, Ax;.x; appears at top-level, and is therefore
allocated on the fly, but nGtxz.x2, so we obtain

C=|e|™" =Recx=Axy.xpin X (let Y= (AX2.X2) Ziny).

On the other hand, id, Ax,.xo appears at top-level, but ndi;.x;, which lies below a not
fully evaluated binding, so we have

C' = |€]™ =RecX =AXo.Xpinlet y=X zin(AX1.X1) V.

Thus, some ALoc, reductions performed ihe|™F are not performed in€’|™". Here,C
reduces by IFT, and ALLOC, toRecX=AX1.X3,X =AX2.Xoin let Y=X zin X Y, which can
be reached frort’ by ALLOC,.

4.3 Overview of the correctness proof

Here is how we deal with these difficulties. First, ExamplesBdws that no small-step sim-
ulation holds, so we adopt a less accurate notion of obsenvatamely evaluation answers
and non-termination:

— if ereduces to an answay then its translation reduces to soganswer related te;
— if ereduces infinitely, then so does its translation.

In order to prove this result, we consider some of the reductules ofA, and A,
as structural, i.e., not counting as proper reduction st€pis eliminates almost all the
difficulties and preserves our notion of observation. Thig oemaining difficulty is that of
Example 21, which we cannot solve in the same way. Indeed eitkar want $BST, nor
BETA, and FROJECT, to be considered structural, as we now explain. First, degmBETA,
structural would prevent us from proving that non termiowis preserved (and doing so for

PROJECT, is thus only a partial, unsatisfactory solution). Furtherej the equational theory

of A, is not rich enough to equate|™" and | & |™F whene %258 ¢ Indeed, this would

involve a currently forbidden duplication (“unsharing @ stored value. It seems possible
to extendA, in a meaningful way, so as to support unsharing of storedegdlusome cases.
It also seems possible to modify the semantick.db avoid duplication before rulesegA,
and RROJECT,. However, the spirit of this article is to keep the source tandet languages
as standard as possible, which rules out these solutiorrss@ution is to consider bigger
steps as atomic iR,: we consider atomic a sequence of applications w§$r,, followed
by an application of BTA, or PROJECT, followed by possible applications ofikT,, and
terminated by a possible application of IMr EM, (to lift a possible binding created by
application of BETA, and merge it with the top-level binding).

We now outline the main steps of the proof, detailed in Sechio
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Rec{;‘inﬂeﬂ oo LeJTOP ---------- > I.aJTOP i Rec £in [[a]]
a
\r ri/
repr repr
[ORITIT. > A

Fig. 23 Summary of the proof (for observation of evaluation ansyvers

The top-level translatior\We start by defining the top-level translatiprj ™", based on an
enriched notion of context iA,, which lends itself better than the standard translatioa to
simulation argument.

Quotient of A, Then, we consider,, defined asA, modulo rules WDATE,, LET.,
EMPTYLET,, WEAKGC,, and ALLOC,. These rules are strongly normalizing, and we
define a faithful translation from, to A,, by taking normal forms as representatives of
equivalence classes. Furthermore, the translatjghsnd |-|™" are well-defined from

Ao 10 Ay, by composition with the canonical injection froh to ) .. Define=5 as the
equality inA,, i.e., the equality of equivalence classes. We then shovctugial properties
gained by taking the quotient. First, we abstract over thmiadtrative reductions:
for any e, [€] =z |e]|™". Second, we make the translation compositional: forealE,
|E[g]|™" =5z |E]™P[[€]]. This addresses the problems illustrated by Examples 19, 20
and 24.

Quotient ofA, Then, we modify the notion of evaluation af by merging rule $BsT,
with the immediately following rules. We obtain a languageene, instead of first copying
the value of a variable and then reducing, we perform theatemtuexactly as i\, by fetch-
ing the value from the heap, applying the appropriate ruld, & the case of beta reduction,
merging the obtained binding with the top-level one (alstini one step). This language cor-
rectly simulates\,, since it reaches the same values, diverges on the samesxme and
goes wrong on the same expressions. This addresses themsotiéscribed in Examples 21
and 22. Then, we quotient the obtained language by rule.HMis gives a language called

Ao which also simulateg,, eliminating the issue raised by Example 23.

CorrectnessFinally, |- |, as a function fromh, to A, yields a simulation. Writing—
for reduction inA ,, — for reduction inA ,, i for the injection fromA, into Ao, andrepr(C)
for the normal form ofC modulo rules WDATE,, LET,, EMPTYLET,, WEAKGC,, and
ALLOC,, the proof may be summarized as in Figure 23 (for observatfavaluation an-
swers), where the dotted arrows and equal signs correspoiimtermediate results.



33

5 Correctness
5.1 The top-level translation
5.1.1 Overview

We first define the top-level translation frokp to A,. We start with a simple example.

Example 25The top-level translation of the first expression of FiguBeislthe last config-
uration of Figure 21:

even=; Ax. (x=0) or

(odd (x—1)), in evens6

gives

Roughly, we consider three levels in the translated exjmess

Top-level The first level consists of the (possibly emptyljyfevaluated part, of the
top-level binding ofe, if any. At this level, |-]T°" performs all administrative reduc-
tions, as previewed in Examples 19 and 20. Hence, the t@d@nslation mapb, to
a pair of a heap and a substitution, representing the heapeafaluation of the stan-
dard translation ob,, plus the successive substitutions produced by this eNvafua
For instance, ib, = (y = AX....y...), then its standard translationys- alloc n,_=
update Y (AX....Y...). Its top-level translation gives directly what we would aibt
after performing the admninistrative reductions, i.eg teapy =Ax....y ... and the
substitution]y — y'].

Allocating Afterb,, we expect - |™" to map answers to answers. Thus, we also want ad-
ministrative reductions to be performed on the fly. The déffece with the previous level
is that (although we could do it) we do not perform administeareductions orrec’s.
Indeed, it is not necessary, and it would lead to considaringe rules as administrative
in A,. For example, consider an expression of the sleapérec b, in(recbine;) &),
with dom(b) # FV(b,) UFV(ey). This expression reduces by rulest, and EM, to
€ = (recb,,bin e &). The purpose of performing the administrative reductions o
the fly is to abstract over some reduction rules that are dersil administrative ii,,
because they have no equivalentiin Here, rule LFT, does have an equivalent iq,
so we may avoid the administrative reductions lidn |e|™" (and perform them for
1€]™P).

Thus, for translating aftds,, we must define a translation function different fron",
but nevertheless performing some administrative redustidhis is the purpose of the
allocatingtranslation[- |. In fact, except for theec case,-|™" and|-| perform exactly
the same administrative reductions, and we defih®” in terms of| - |.

Standard In other the parts ef where no administrative reductions are to be performed,

we apply[-].



[X] = Rec&inX
[Ax.e| = Rec/=Ax[€]in ¢
[{r}] = Rec/={r}in/{
_ . . | |e] =RecH1inE
lev| = RecHi,HyinEV if { V] = RecHp inV
_ . . e ¢ values
ler e = RecHin[e] E 'f{LengRecHinE
leX] = RecHin E.X if |e) =RecHinE

|recbine| = Receinfrecbin€]

Fig. 24 The allocating translation fror, to A,

5.1.2 The allocating translation

Let us now formally defing-|. The idea is to translate the evaluated part of the input ex-
pression into a propey, evaluation context, performing the administrative reghmng on the
fly. When the not-yet-evaluated parts of the expressionemehed, the standard translation
is used. For instance, given a function applicatégre,, wheree; is not a value, one can
consider that the current evaluation point is insgdeand therefore thag; has remained
untouched. So, we will usfe;] and|e;|. The function|- | is defined in Figure 24.

Definition 26 (Locations and substitution&)e choose a sébcs C vars of locations ranged
over by/, such thal.ocs andvars\ Locs are both infinite. We consider only, raw expres-
sions whose free and bound variables areaia\ Locs, which is from now on ranged over
by x. We consider onlyA, raw configuration®ecH in E such thatdom(H) C Locs and
locations are never bound I or the right-hand sides dfi. From now on, we also call
substitutionsranged over by, functions fromvars to vars whose support is disjoint from
Locs. Composition of these substitutions is well defined as menetfon composition. We
call variable allocationssuch substitutions that are furthermore injective on teapport
and whose cosupport only contains locations. We denote byeqr{(final sigma).

We stress in passing that the cosupport, and free variabtesstitutions stay the same,
e.g., cosupport may contain locations.

We then defing - | as a function from\, equivalence classes #q configurations (it is
obviously well defined).

As for the standard translation, variables are translatiecthemselves. A functioAx.e
is translated to\ x.[€], but the result is allocated on the heap, at a fresh locdtigac ¢ =
Ax.[€] in £. The translation of records is similar. For translatingdion application, we use
a new notation: given two heapl andH; such thatdom(Hj) #dom(Hz), we writeH1, Hz
for their concatenation, which is a heap again. If the arquirpart is not a value, then it
is translated with -], while the function is translated with]. If the argument is a value,
then both parts are translated with. The translation of a record selectierX consists of
translatingewith | -] and then selecting the fieKl Finally, a bindingrec b in eis translated
toRec€in[rec bin €].

5.1.3 Generalized contexts

Given an expressios, in order to calculatée| ™", we will decompose into its top-level
bindingb; and the rest of the expressief) and the result will be the translation&f, put in



35

some context representitg, written | by | T°F, which is defined in Figure 27 (Section 5.1.8),
using notions defined in Sections 5.1.3t0 5.1.7. The bindidgided into its evaluated part
b, and the resb, which can be empty, but does not begin with a size-resggdefinition.
We start by giving an informal account of the handlingobpfandb, which leads us to the
definition of a generalized notion of contextAg.

Let us first explain the translation of the unevaluated palm [-], the Dummy function
produces instructions for allocating dummy blocks. In thefevel translation, these blocks
are directly allocated by the functiohDum (see Section 5.1.8), which returns the heap of
dummy blocks and the substitution replacing variables thighcorresponding locations. As
a first example, given a binding= (x; =5 €1,X2 =y €2), TDum(b) essentially returns a
heapl, = alloc nand the substitutiof; — ¢2]. This corresponds to the fact that after the
pre-allocation pass (as generated by the standard tram3|ahe update pass takes place
under this heap and substitution.

In [-], the Update function produces instructions to either update a dummpgkoleith
the translation of the definition, or to perform the bindinwplied by the definition. In- | P,
the only difference is that the first definition linis translated witH - |, while the remaining
ones — still considered to lie past the current evaluationtpoare translated witf]. This is
done by functionT Up (see Section 5.1.8). On the previous examplegif = RecHj in E;,
then TUp(b) essentially returns the hedy and the binding« = E;, - = update Xp [€2].
Under the substitution returned AyDum, the second definition becomesdate ¢> [e;],
as expected.

Now, what should be the top-level translation, writtésp(b,), of the evaluated part
b,? As mentioned above, this translation yields a heap andstitutton. The translation of
definitions is relatively natural, but it is difficult to aseble the results in a coherent manner.
First, consider a single definitiano v. The allocating translation of is an answer, of the
shaperecH in V. It is thus clear that the generated heap and substitutionldibeH and
[x+— V], respectively.

The next question is how to assemble the results obtaineddohn definition. First,
we remark that in the absence of forward references, sutistis should be composed
from right to left. For instance, on a binding likg = (x1 =[7 X0, X2 =[7 X1), the generated
substitution must b — xg] o [X2 — x1], and not the converse. Thus, definitions can be
altered by previous definitions, which may have replacedeseamiables with other values.

However, because of forward references\inbindings, the translated definitions may
also have to be altered by subsequent definitions. For iostaonsider the binding, =
(X1 =[7 X2, X2 =[n) AX.X), Wheren = size(Ax.X). The top-level translation turrs, into a heap
and a substitution. The translation of the first definitiomsists of the heapl; = € and
the substitutiono = [X; — X2], so that subsequent occurrencespfire replaced withxs.
Then, we translate the second definition. This giles= (2 = Ax.x) and ¢ = [x2 — £2],
for some fresh locatior,. Naively, one could think that the substitution corresppngdo
the whole binding should be the right-to-left compositidrite obtained substitutions. But
this is wrong, since the obtained substitution wouldohe ¢. Under this substitution, a call
to x; becomegxy — xz]([x2 — £2](x1)) = X2, while it should rather be directed to. This
example illustrates that variable allocations performgdhe translation are expected to
alter previous forward references to them, which possippyear as substitutions.

This leads us to define a new notion of contexAincalledgeneralized contexin terms
of which we define the translation of bindings. The functi@ridum, TUp, and Top will
be defined as returning generalized contexts, which malesuhiform treatment easier.
Basically, the idea of generalized contexts is that theyaiora heap, an allocation context,
and two substitutions, rather than one. This allows disfisiging variable allocations— ¢,
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which might alter previous translations, from normal sitbsbns x — y, which may not.
Basically, only definitions of known size can alter previdtenslations, because they are
the only ones that can be forward referenced. Furthermouejatly, we will require that
the normal substitution of a generalized contexbhe-way in the following sense.

Definition 27 (One-way substitutiod) substitutiono (with implicitly supp(o) # Locs, by
Definition 26) isone-wayiff supp(0) # cosupp(0).

From the informal explanations above, it should sound métinat the unknown size
definitions of the shape = y generate one-way substitutions. Indeed, they only “gd left
in the binding, and no binding may define, say; Y,y =5 X, because of the syntactic
restriction on forward references.

Let us first prove the following easy lemmas on substitutions

Lemma 28 For all one-way substitutions, 0 o 0 = 0.

Proof For all variablex, eitherx ¢ supp(o), and then both sides are equalxoor x €
supp(0), but thena(x) € cosupp(0), which by hypothesis implies (x) ¢ supp(o), hence
o(o(x)) = o(x), as expected. O

Lemma 29 For all substitutionso; and o>,

— supp(0y o 02) C supp(01) Usupp(02), and
— cosupp(0y1 0 02) C cosupp(01) U cosupp(02).

Proof The first point is point is easy by contradiction.
For the second point, assume cosupp(0; o 02). There is somg # x such thatg; o

a2)(y) = x.
Letz= 0s(y). If X ¢ cosupp(01), thenz= X, sogz(y) = X, andx € cosupp(02).
O

Lemma 30 For all substitutionsoy and oy, if FV(01) # supp(02), thenoy o 02 = 01(02) o
O1.
Proof LetXx € vars.

— If x € supp(02), thenx ¢ FV(01), so(01(02) o 01)(x) = (01(02))(x), which is the ex-
pected result.

— Otherwise, ifx € supp(01), then 01(x) € cosupp(01), S0 01(X) ¢ supp(02), hence
(01(02) 0 01)(X) = 01(X) = (01 © T2)(X).

O
Lemma 31 For all 0,¢, if supp(0) #supp(¢), theng(o)o (=¢o 0o G.

Proof LetX € vars.
— If ¢(x) € supp(0), then both sides are equal(tgo o o ¢)(X).
— Otherwise, since is one-way,g o ¢ = ¢, s0(¢(0) o ¢)(X) =
00 ¢)(X).

¢X)=(cog)(¥)=(¢o

O

Corollary 32 For all ¢, g, if supp(¢) #supp(0),thenoog=¢o 0o (.
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Proof By Lemmas 30 and 31, since obviousiypp(¢) #supp(0) impliesFV(¢) #supp(0).
O

Then, we have the following obvious, but useful result.
Proposition 33 For all a,0,E, if FV(0) # Capty (a), thena(a[E]) = (o(a))[o(E)].

Corollary 34 For all a,0,E, if 0 o 0 = g and FV(0) # Captg(a), then o(a[E]) =
a(afa(E))).

Proof By Proposition 33g(a[E]) = (o(a))[o(E)]

(o(a))l(oc0)(E)|=o(alo(E)

O

Then, we give the following sufficient condition for the coosgion of two one-way
substitutions to be one-way. We recall t&t(o1) # supp(02) means
— supp(01) #supp(02) and
— cosupp(01) #supp(02).

Lemma 35 For all one-way substitutionsy and o, if FV(01) #supp(02), then

— 01 0 0z is one-way,

— supp(01 o 02) = supp(01) Usupp(02),
— cosupp(01) C cosupp(01 © 02).

Proof We prove thaio; o 0y is one-way by contradition. Let = g1 o 0> and assume the
existence ok € cosupp(0) Nsupp(0), i.€., the existence of y, andz, such that

— 0(x) =ywithx#y, and

— 0(2) =xwith x # z
Let thenX' = 02(x) andZ = 0»(2), so that we informally have:

X g2 X g1 y

(op) 4 o1

— If x#£ X andx # Z, thenx € supp(02) N cosupp(a1) which is impossible by hypothesis.
If x=x andx# Z, thenx € supp(01) Ncosupp(01), which is impossible becauss is
one-way.

If x=2Z andx # X, thenx € supp(02) N cosupp(02), which is impossible because is
one-way.

If x=xX andx=Z, theno(z) = y which is impossible since(z) = x andx # y.

The second point is proved as follows.

— By Lemma 29supp(01 o 02) C supp(01) Usupp(02);

— If x € supp(01) Usupp(02) butx ¢ supp(0y o 02), i.e.,01(02(X)) = X, then lety = g,(X).
If x=Yy, thenoi(x) = 01(y) = X, sox s neither insupp(01) nor insupp(0z), which con-
tradictsx € supp(01) Usupp(02). Otherwise, we haves x, which impliesx € supp(0>),
and furthermore anfio o 02)(X) = 01(y) = X, SOX € cosupp(01) Nsupp(02), a contra-
diction.
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FV((H;a;0;¢) =(FV(H)UFV(a)UFV(o)UFV(¢))\dom(H)
Captg ((H; 0 ;0 ¢)) = Captg (a) Usupp(0) Usupp(¢)

Fig. 25 Free variables and captured variables for generalizedextnt

H=H a=d o0=0d <¢=¢ {'¢domH) o =[—/r(0) ¢ =[—"1]C)
(H;a;0;¢)=H";d ;0 ;¢) (H,t=9);a;0;¢)={(H,'=9;a;d;¢)

Fig. 26 Structural equivalence of generalized contexts

Let us now prove the third point: l&tc cosupp(01). There existy # x such thao (y) =
x. By hypothesis, thigis notinsupp(02), so(01 o 02)(y) = X, andx € cosupp(01 0 02). O

Definition 36 (Generalized context$) generalized contexis a 4-tuple of a heapl, an
allocation contextr, a substitutioro, and a variable allocatiog, writteny::=(H ; o ; 7 ;
¢), such that

— O is one-way,

— supp(0) #supp(¢),

a and the range dfl do not have any free location,
cosupp(0) N Locs C dom(H),

andcosupp(¢) C dom(H).

A generalized evaluation conteista generalized context whose allocation context is an
evaluation context, i.e., a generalized context of theskidp & ; 0 ; ¢).

The generalized contexts generated by the translatiorzefreispecting bindings will
haveO as their allocation context. We call such generalized castgeneralized bindings
and write then3.

The generalized contexts generated by dummy allocatiomdfrigs will have the shape
(H;O;id; ¢). We call such generalized contexjsneralized dummy allocationand write
themd.

Also, we define the syntactic sugét ; B; o ; ¢), which, if B is not empty, denotes
(H;1letBinO; 0; ¢), and otherwise denotedl ; O ; o ; ¢). Further, bindingsB are
implicitly coerced to generalized contex{s ; B ; id ; id). Finally, we simply writec for
(¢;0;0;id), and definsSubst((H ; a ; 0; ¢)) =¢oogandCont((H;a;0;¢))=a.

Notes:dom(H) contains only locations, and is thus inherently disjoimtrirsupp(o’)
andsupp(¢). Also, recall that every evaluation contékis also an allocation context.

Next, we define structural equivalence on generalized gtsjtasing the definition of
free variables in Figure 25. For helping the intuition weoadefine the captured variables
for generalized contexts. The intuition behind structexlivalence of generalized contexts
is that the locations bound tom(H) may be renamed freely, since they may only be men-
tioned in the cosupport af and¢. Formally, structural equivalence is defined in Figure 26,
as the least equivalence relation respecting the rulesfifgteule says thatr-equivalence
on expressions, heaps, and stored values is included; ¢badeule says that a location in
the heap may be renamed, provided it does not clash with anotte.

Example 37Consider the bindingb, = (X1 =[2 X0, X2 =[7 X4, X3 =[7 X1, X4 =[p Ax.X), which
is an interleaving of previous examples, dng (xs =[5 X2).
Via Top, each definition irb, yields a generalized context:
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— xyyieldsyin = (€0 [x +— Xg] ; id),
- xpyieldsyio = (&0 [x2 = Xd] ; id),
- xgyieldsy;z= (¢;0; [xg— x1] ; id), and

— Xgyieldsyis= (£=AxXx;0;id; [X4+— £]).

The not yet evaluated bindiny yields the heafH = ¢’ = alloc n and the variable
allocationg = [xs — ¢] by functionTDum, which we writey, = (H ; O ; id ; ¢).

Via TUp, b yields the heapl’ = ¢ and the bindind® = (_ = update Xs X2), which we
write y5 = (H' ; let Bin O ; id ; id). Note that this is the only use of generalized contexts
using allocation contexts (hetet B in O) which are not evaluation contexts.

5.1.4 Composition of generalized contexts

We then need a notion of composition of generalized contéxterder to assemble the
pieces of our translation. The guiding intuition here ig thlhen composing two generalized
contextsyy = (Hy ; a1; 01; G1) andy, = (Ha ; 02 ; 025 ¢2), we want the result to be well-
defined and equal to

(H1,Hz ; a1fag] ; 010 02 G+ Q),

but we also want the following two equations to hold for anynposables andy,, and for
any expressiok:

((€1+62) 0 010 02)(H1,Hz2) = ((G1+ G2) © 01)(H1),
(G0 ¢(01) 0 o 02)(Hz))

and

(G +G2) 0 g1 0 02)(a1[a2[E]]) = ((61+ G2) 0 01)(a1[(G2 0 T2)(a2[E])])-

In these equations, the left member is (part of) what we geagplying the result of
the composition td, as defined below (Definition 45). The right member descrims
we would like the four substitutions to interact. For instejo> is a standard substitution,
which does not affect upper levels of context: in both leftmbers, it does not act on the
components of4. On the other hand, has to affect them, but should not be shortcut by
a1 and oz, which explains why we require that it still affects the wdnlies inaz[E] andH»
before, respectivelyy; andoai, which come first in the left members.

We use the following definition, which natural except for tt@main of definition: two
generalized contexty = (Hy; 01; 01; G1) andy, = (Hz ; a2 ; 02 ; ¢) arecomposable
written yy > b, iff

— the four substitutions, ¢1, 02, andg; have pairwise disjoint supports,

— supp(02) #FV (1),
— Captp(a1) #FV(02) UFV(¢2).

These conditions are oviously preserved by structuraivatgrice, which justifies the defi-
nition of composability on equivalence classes of genegdlicontexts.
We then state:

Definition 38 (Composition of generalized conteXts)y all such composable generalized
contextsy; and y» define theircompositionyy ® ¥ by y1 ® Vo = (Hi,Ha ; as]az] ; 01 0

02 ; G1+ G2), provideddom(H1) # dom(H2) (which can always be reached by structural
equivalence).
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Proposition 39 The conditions for being composable are equivalent to

— FV(01) #supp(02),

— supp(G) #supp(G2),

— supp(01) Usupp(02) #supp(¢1) Usupp(G2),
— supp(02) #FV(H1) UFV(ay),

— cosupp(02) # Capty (01),

— supp(G2) #supp(01) U Captg(a1).

Proof Easy check. ad

In the light of this, the conditions for composability may trederstood as follows:

— The first three items ensure that the result is a well-formenkcalized context. Well,
actually they do a bit more: they use the sufficient conditbiemma 35, requiring
FV(01) #supp(02) andsupp(01) Usupp(02) #supp(G1) Usupp(¢2) instead of requiring
01 0 02 to be one-way, ansupp(01 o 02) #supp(G1) Usupp(G2) to hold. But this more
restrictive requirement allows an easy proof of weak asgiodly for composition of
generalized contexts, and is general enough for our puspose

— The fourth item ensures thap does not affecH; anda;.

— The fifth item ensures that, is not shortcut bya; (i.e., 02(a1]...]) = o2(a1)[o2(. . .)],
which by the previous point is in fact; [02(. . .)]).

— The sixth item ensures that is not shortcut byo; andas.

Example 40Consider agairb, from Example 37. Its top-level translation yg; ® Y12 ®
Y13 ® Y14, Which is exactlyyy = (Hp, ; O ; O, ; G, ), With the heafHp, = ¢ = Ax.x, the vari-
able allocatiorg,, = [X4 — ¢], and the substitutioy,, = [X1, X3 — Xo, X2 — X4]. Note that the
rest of the translation ensures that variable allocatioasavays applied after substitutions,
so thatx, will eventually be redirected té.

We noww prove useful sufficient conditions for composapiind associativity. They
use the following notation for, respectively, theknown sizandknown sizevariables of a
bindingb:

- UV(b) = {x| e (x=5 €) € b},
— KV(b) = {x] 3n,e (x=[ €) € b}.
Proposition 41 If (by,by) is syntactically correct, theRV(by) # UV (by).

Definition 42 For all generalized contexts= (H ; a ; 0 ; ¢), and correct bindingb, we
say thato justifiesy, and writeb Iy, iff:

— FV(y) C FV(b), and more specifically,
— supp(0) C UV(b),
— supp(¢) € KV(b).

Lemma 43 Assume a correct binding of the shafi®,b,) and two generalized contexts
yi=(Hi; a; gi; G), such that by, for i = 1, 2. If moreoverCapty(a1) = 0, theny; > v
and by,by -y ® .

Proof First, the four involved substitutions have as supportsitihveains of pairwise disjoint
parts ofby, by, hence have pairwise disjoint supports. Furthermoregdind; is correctby
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makes no (forward) reference t/(by), hencesupp(o2) #FV(y1). Thus,Capty(a1) being
empty, we haves > .
Furthermore, we have

FV(y1 ® y2) C FV(y1) UFV(y2) C FV(by) UFV(bp) = FV(by, by).
By a similar reasoning on substitutions, we obtainb, - 3 ® y» as desired. ad

Lemma 44 Assume a correct binding of the shafim, by, bz) and three generalized con-
textsy = (Hi ; ai ; gi ; G), such that b+ y, for i = 1,2, 3. If moreoverCapt (aj) = 0, for
i=12then(yy ® ) ® s andy1 ® (. ® y3) are defined and equal.

Proof By the previous Lemma, we obtaia >~ y» and by, by F y1, o, hence by the same
Lemma,(y1 ® y») > y5. Symmetrically,ys > (y» ® ys). Thus, both sides are defined at the
same time. Equality is then a simple check. ad

5.1.5 Generalized context application

We have seen that the top-level binding will be translated gsneralized context. We will
then fill the context hole with the translation of the restha £xpression, using generalized
context application, which we now define.

Definition 45 (Generalized context applicatidRyr every generalized context= (H ; a ;
0 ; ¢) and configuratiol® = RecH’ in E, let y[C] = (Rec (¢ 0 0)(H,H’)in(¢ o 0)(a[E)))
be theapplicationof y to C, provideddom(H’) # dom(H) U cosupp(0) U cosupp(¢) (which
may always be reached by structural equivalence).

Example 46Consider again the bindindp,, b) from Example 37. Its translation jg ® y1 ®
ya, which is exactlyy = (Ho ; 0o ; Op, ; G © Gy, ), With

£=AXX,
— the heafHg = (g/ =alloc n)

— and the contextro = 1let B in O.

If, for instance,y is filled with a configuratiorRecH in E, if the conditions for the
generalized context application are met, weyjgécH in E] = Rec 0(Ho,H) in o (aplE]),
X5 — f’,

X1, X3 > Xo,
Xo — L,
Xq L

whereg = (G o G, © Op,) =

We now prove the equations that had motivated the definitfogeaeralized context
composition.

Lemma 47 For all composable generalized conteytss (H; ; ai ; 6 ; ) and configuration
RecH in E, if dom(H) #dom(H1,Hz), then

(Y1 ® 2)[RecH in E] = Rec ((G1+ ¢2) 0 01)(H1),
(GLo (1) 0 2o g2)(Hz,H)
in((G1+62) 0 01)(a1[(G2 © 02)(a2[E])]).
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Proof First, byy; > y», we haveFV(H1) #supp(02), S0((G1+ ¢2) 0 010 02)(H1) = ((G1+
G2) 0 01)(Ha).

Furthermoregi + ¢ = 1 o G. But by y1 > y» again, we haveupp(¢z) # supp(01). SO
by Lemma 3062 0 01 = G2(01) o ¢. This gives((¢1+G2) 0 010 02)(Ha,H) = (Gr 0 ¢(01) 0
G20 02)(Hz, H).

Now, by composability againCapty(a1) # FV(02) UFV(¢). But FV(¢ o 02) C
FV(02) UFV(¢2), soCapty (01) #FV(G o 02). By Proposition 33 and the above, this yields
(G20 02)(a1[a2[E]]) = (G2 © G2)a1)[(G2 © T2) (a2[E])].

But supp(02) # FV(a1) and ¢z o G2 = G2, S0 ((G2 0 02)a1)[(G2 o G2)(a2[E])] =
(@2(a1))[(@ o ¢ o 02)(a2]E])], hence by Proposition 33 again, this is equal to
Q(o1](G o 02)(a2[E])]). Thus, ((¢1 + @) o g1 o 02)(a1[az[E]]) is indeed equal to
(G0 G2(01) © G2)(a1[(G2 0 O2) (a2[E])]), which is in turn equal t4(¢1 + G2) o 01)(aa[(Gz 0
) (a2[E])]), as desired. O

5.1.6 Weak composition of generalized contexts

Although the notion of composition of generalized contestseeded to properly translate
size-respecting bindings, it is somewhat inconveniene&son with. For instance, the usual
equation(y, ® ¥»)[C] = y1[)2[C]] obviously does not hold in general: the variable alloca-
tion of y» may affectys in (y1 ® y)[C], but not inyi[y,[C]]. Nevertheless, whep andy,
stem from distinct bindings with no defined variable in conmmwe recover more standard
properties. More generally, we define the following notiohsontext interferencandweak
compositionwhich take advantage of such cases in the following sensakwomposition
has more standard properties th@nand coincides with it when the considered contexts do
not interfere. We first define weak composition and show ttetisfies the equation above.

Definition 48 (Weak composition of generalized conte®isgny = (H; ; ai ; gi ; ), for
i=12,if 1 = yis defined, we defing o yo = ((H1,H2) ; a1]a2] ; (GLo 010 ¢ o 02) ; id).

Proposition 49 For all y1, 5, and C,(y1 o ¥»)[C] = y1[2[C]], when the former is defined.

Proof By definition of weak composition and generalized contextliaption. ad
Now, we define context interference, and state the expeetadtr

Definition 50 (Context interferenc&iven two generalized contexys= (H; ; ai ; Gi ; G),

fori=1,2, let us say that the pair (the order mattésg) y») interferesff supp(¢y) intersects

FV(01), so thatg, o 01 ando; o ¢ are not necessarily equal.

Proposition 51 If supp(¢) #FV(0), then(¢o g) = (0o ¢).

Proof Sinceg is a variable allocationsosupp(¢) #supp(0), by which the result follows.
O

Proposition 52 For all y1 and ys, y1 ® y» and y1 o y» are defined at the same time, and if
(y1, y2) does not interfere, thefls ® y2) = (Y10 V).

Proof By definition of composition and interference. ad
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5.1.7 Preservation of some reductions inside generalinetiexts

In this section, before presenting the top-level transitative collect two small results about
preservation of certain reductions inside certain germgicontexts.

First, we remark that not every reduction is preserved engeheralized contexts, since
for instance, rules ET, and EMPTYLET, are only valid at top-level. However, inside gen-
eralized bindings, reduction is preserved. Note that egeneralized dummy allocation is a
generalized binding, so the following result also appleéegeneralized dummy allocations.

Proposition 53 For all C1,Cy, andf3, if C; — Cy, thenB[C1] — B[Cy].
Proof By case analysis on the applied rule. ad

Moreover, we note that rulelA oc, is preserved by generalized context application.

Proposition 54 For all generalized contextg and configurations C and'Gf C ALLoc,, C,

theny[C] 2%, yiC].

Proof Follows from composability of allocation contexts: for all and a2, ai[a>] is an
allocation context. a

5.1.8 The top-level translation

We now present the top-level translatip™P®, defined in Figure 27, as a function frokg
(a-equivalence classes of) expressiona.taonfigurations (it is well defined). As explained
above, generalized bindings are used to record the alreadslated definitions along the
translation of top-level bindings, preserving the didtioe between variable allocatiorgs
and ordinary substitutiong. Variable allocations that must alter previous transtatiare
those generated by the translation of=g definition, since only those can be forward
referenced.

We first define the top-level translation without checking thalidity of the involved
generalized context compositions. They are checked gredtdrwards.

The top-level translation handles the size-respectinggidaop-level bindings with the
function Top. This function expects a size-respecting binding. Wheraiggument is the
empty binding, it returns the empty generalized binding. fam-empty bindings, the def-
initions are translated as sketched above. For a definitiamknown sizex =3 v, v is
translated by -] toRecH inV, and is included in the translation as the generalized bgndi
(H;0O; [x+V];id). A definition of known sizex =, v is translated into a heap and a
variable allocationv has a translation of the shapecH in ¢, and it is included in the trans-
lation ofb, as(H ; O ;id ; [x— ¢]). The top-level translation of an evaluated binding is the
composition of the translations of its definitions. If theuk is someH ; O ; o ; ¢), then
the variable allocation is applied after the ordinary sinson, which allows the correct
treatment of forward references, as sketched in Sectio.5.1

The two other functionsTDum andTUp, are defined as announced in the beginning of
Section 5.1.3. The three functions return generalizedextsttT Dum returns a generalized
dummy allocation(H ; O ; id ; ¢), TUp returns(H ; B; id ; id), which (by the notation of
Section 5.1.3) igH ; let Bin O ;id ; id) if B €, and(H ; O;id ; id) otherwise.

In case the whole bindingb,,b) is evaluated (i.e.b is empty), the contexts for pre-
allocation and updateTDum(b) and TUp(b) are empty, andrecb,,bine|™" is |g],



|rec by, ine|™P = |b,|™"[|e
|recbine|™P = |b|™PRecein[€]] if bis not size-respecting
le| TP = |e if eis not of the formrec b in €
|by,b|ToP = TDum(b) ® Top(b,) ® TUp(b)
whereb does not begin with a
size-respecting definition.
Top(X=pz V) = <H O; [XHV] id) if |[v] =RecHinV
Top(X=jyVv) = (H;0;id;[x—£]) if [v| =RecHin/
andsize(v) =n
Top(¢) = (g; d;id)
Top(xov,by,) = To (x<>v) @® Top(by,)
TDum(e) = (g; d;id)
TDum(X=[ 76 b) =TD (b)
TDum(x =y gb) = ({¢ allocn O;id; [x— £])) o TDum(b)
TUp(e) = (e:0;id;id)
TUp(x=p3 &b) = (H; (x=E,Update(b)) ;id ; id)

if |e| =RecHinE
TUp(x=y &b) = (H; (-= (update x E),Update(b)) ; id ; id)
if |e| =RecHinE

Fig. 27 The top-level translation from, to A,

put in the contexfTop(b,). Otherwise,|rec by,bin €|™F is Recein[€], put in the con-
text TDum(b) ® Top(b,) ® TUp(b). Notice that there is no context interference, since
the innermost oneTUp(b), does not have any variable allocation, and the outermast on
TDum(b), has no substitution (but only a variable allocation). Se.ceuld equivalently use
TDum(b) o Top(by,) o TUp(b). We have two easy results on answers and faulty terms:

Proposition 55 The function| - | ™" maps answers to answers.

Proof A simple case inspection. ad
Proposition 56 For e of one of the shapes i{8) of Proposition 7,/ ey| ™" is faulty.
Proof By case inspection. ad

Finally, we prove that all the generalized context compas#t we use are well-defined
and associative.

Proposition 57 For all b, x, v, and b, the following hold

bE TDum(b), bt TuUp(b),
XoVE Top(xov), and R+ Top(by).

As a corollary, all the possible generalized contexts tewufrom the top-level trans-
lation may be composed (by Lemma 43) in an associative fasfiip Lemma 44). This
justifies the absence of parentheses in the definition.
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5.2 Quotient ofA,

In this section, we relate the three translation functipfis|- |, and |-|™": we show that
their results are equivalent modulo the ruleBDATE,, LET,, EMPTYLET,, WEAKGC,,
and ALLOC,. So, lettingA, be the quotient oA, modulo these rules, we obtain that they
are equal as functions from, to A,. Then, we study the compositionality of this function.

Definition 58 (,) Define =5 as the smallest equivalence relation osgrcontaining the
rules UPDATE,, LET,, EMPTYLET,, WEAKGGC,, and ALLOC,. Let A, be the set of=%-
equivalence classes. Let reductioniy written —, be defined by the rules:

Ci=:C, C,-5C, Cy=:C,
CL—=C

whereR ranges over the other rules€BA,, PROJECT, LIFT,, and IM,).
Define=ai0c, € =5 to beA, convertibility by rule ALLOC,.

We obtain tha#\ , andA, behave identically:
Lemma 59 For all C, C reduces to an answer, loops, or is faultyliniff it does iNA,.

Proof We show the following:

1. If C —* A, thenC —3* repr(A). The reduction sequence My is one inA, where
some steps become equalities.

2. Conversely, a reduction sequence to an answar,inorresponds to a sequence of re-
ductions and anti-reductions My, which by strong commutation (Lemma 12) lead to a
sequence of reductions. _

3. If C loops inA,, thenC also loops inA ,, because any infinite reduction sequence in-
volves an infinite number of ruleseBA, and FRROJECT,.

4. Conversely, we obtain from any infinite reduction seqeena , an infinite sequence of
reductions and anti-reductions A3, with an infinite number of BTA, and RROJECT,
reductions and no such anti-reduction. By strong comnutathis yields an infinite
reduction sequence iy.

5. Finally, faulty configurations are the same in both calcul

5.2.1 Equating the three translations

We first show that the three translations coincide as funstim A ,. First, we have the
following for the allocating translation.

Proposition 60 For all v, |v| = |v|™".

Proof By definition of |- |TF. |
Proposition 61 For all v, (Rec€in[V]) =arioc, |V]-

Proof Trivial for variables. For other values, apply Propositits ad

Proposition 62 For all e, (Rec€in[€]) =aLioc, |€]-
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Proof By induction one, using Propositions 61 and 54. ad

Consider now the top-level translation of bindings. It tsplhe bindings in two, cutting
at the first non-size-respecting or non-evaluated defmifut of course, one could split at
another point, provided the first part is size-respectingeéd, the first part is given as an
argument to th&op function, which is defined only on size-respecting, evaddiindings,
whereas the second part is given as an argument t@ Ehen and TUp functions, which
work as well on value and non-value definitions.

Definition 63 (Partial translation)or allb = (b,,b'), let thepartial translation of b up to
b, be TDum(bY) o Top(h,) o TUp(b').

The partial translation db up tob, is its top-level translation, computed affdid not
begin with a size-respecting definition. In fact, any pattenslation is=5-equivalent to the
top-level translation, as we now show, using the followinggerties of the function€Dum
andTUp, and of substitution.

Proposition 64 For all C = (Recein E), and b,Update(b)[C] =a.i0c, TUp(b)[C], using
the notation of Section 5.1.3 for coercing bindings to gatiezed contexts.

Proof By Propositions 62 and 54. ad
Proposition 65 For all b, B, and E,

Rec&in let Dummy(b),Bin E =3 TDum(b)[Rec £in let B in E].
Proof By induction onb and rules ALoc, and LET,. a
Proposition 66 For all V, g, and x¢ FV(0), [x+— g(V)]oco =0 o [x+—V].

The key lemma (67) then states that the in-place update maghindeed computes the
expected recursive definition. Hypothesis 17 is crucia¢ hensuring that the update is valid.

Lemma 67 For all C = Recein E and size-respecting,p= (b,,x ¢ v), it holds that

(TDum(x ¢ V) o Top(by) o TUp(x ¢ v, b))[C]
. (Top(by,) o Update(b) C),

using the notation of Section 5.1.3 for coercing bindinggeneralized contexts.

Proof Let &= TDum(xo V) = (Hyx; O id; Gax) andPp, = Top(by) = (Hp, ; O; T, ; Gb, )-
Let alsoCy = &y o By, o TUp(x o V,b)[C] andC, = (Top(b,,) o Update(b))[C].

First, we haveTop(by,) = By, ® Top(xo V).

Then, we proceed by case analysisarv.

= (xoV) = (Xx= v) with size(v) = n. Then,v is not a variable. Thus, by definition of
|-], [v] has the shaprec/ = Sin ¢, for some( ¢ FV(S). By a-equivalence, we may
choose another fresh locatidh such that|v] = (Rec? = Sin ¢'). It then holds that
Hax = (¢ = alloc n) andgqy = [X+— £], for some’.
Let 01 = (Gax+ Gp,) © Op, . We have:

Ci = (Recl=allocn, ! = 01(S),01(Hp,)
in let _=update ¢ ', 01(Update(b)) in 01(E))
=5 (Recf = O']_(S),f/ = O']_(S), O'l(Hbv)
in let 01(Update(b)) in 01(E))
(by rules WPDATE, and LET,),
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becaus&ize(01(S)) = Size(S) = size(V) = n= Size(allocn), by Hypotheses 10 and 17.
But then,¢’ is unused, so the obtained configuration reduces by rida G C, to

@)
sl

=Recl =01(S),01(Hp,) in 01(1et Update(b) in E)
((¢=SHp, ; 0; O, ; (Gax+ Go,)))[Rec€in let Update(b) in E]
(Top(by,) o Update(b))[C] = Co.

— (XoV) = (X=[p V). Then,&« = (¢ ;0 ;id ; id). Let [v] =RecHyinV. We haveTop(x o
v)=(Hy; O; [x—V];id).
Now, let H; = Hy,Hp, and 01 = ¢, o Op,. We haveCy = Rec 01(H1) in 01(let X =
V,Update(b) in E). By rule LET,, we have

C1 =z Rec01(H1) in[x— 01(V)](01(1et Update(b) in E)).

But b; may not contain forward references to definitions of unkneize, so the defini-
tions ofb,, can not depend ox So,01(H1) = [x— 01(V)](01(H1)), and moreover, by
Proposition 66, we havig@— 01(V)] o 01 = g1 o [X— V]. So, the obtained configuration
is equal taRec (01 o [x+— V])(H1) in (01 o [x— V])(1et Update(b) in E), which isCy,
sincedy o [x+— V] = @, o (0p, o [x—V]).

We then obtain the following.

Lemma 68 For all b,,b,,b, and C= ReceinE, if (b,,b,,) is size-respecting, then
(TDum(by,) © Top(by) o TUp(by,, b)) [C] =z (Top(by,by,) o TUp(b))[C].

Proof By induction onb,,. The base case is obvious. For the induction step, assurne tha
by, = (xov,by,). We haveTDum(by,) = TDum(x < v), TDum(b,, ). By Lemma 67,

(TDum(x o V) o Top(by,) o TUp(x< v, by,,b))[C]

=z (Top(by,x o V) o Update(b,,,b))[C]

=z (Top(by,xo V) o TUp(by,,b))[C] (by Proposition 64)
This obviously gives (using Proposition 49)

(TDum(xoV,b,) o Top(B,) o TUp(xo v by, b)) [C)
= TDum(by,)[(TDum(x < V) o Top(by) o TUp(x oV, by, ,b))[C]]
=z (TDum(by,) o Top(by,x o V) o TUp(by,,b))[C].

By induction hypothesis, we obtain

(TDum(by,) o Top(by,x o V) o TUp(by,,b))[C]
=z (Top(by, by,) © TUp(D))[C],

which gives the expected result. ad
Lemma 69 For all b and E,

Rec€in let Dummy(b), Update(b) in E =5 | b|™"[Rec £in E].
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Proof First, if bis empty, then the results holds by application of rulePEYLET,, which
is included in=5.
Otherwise, we have

Rec€in let Dummy(b), Update(b) in E
=z TDum(b)[Rec € in 1let Update(b) in E] (By Proposition 65)

= TDum(b)[Update(b)[C]] (ForC =ReceinE)
=z TDum(b)[TUp(b)[C]] (By Proposition 64)
=z (TDum(b) o TUp(b))[C] (By Proposition 49).

Now, b may be decomposed &s= (b,,,bo), wherely does not begin with a size-
respecting definition. By Lemma 68 with = &, we have

(TDum(by,) o TUp(by,, bo))[C] == (Top(by,) © TUp(bo))[C],
which gives

TDum(b) o TUp(b))[C]
= TDum(by,,bo) o TUp(by,,bo))[C]
= TDum(bp)[(TDum(by,) o TUp(by,,bo))[C]](By Proposition 49)

=z TDum(bo)[(Top(by,) o TUp(bo))[C]] (By Proposition 53)
= (TDum(bp) o Top(by,) o TUp(bo))[C] (By Proposition 49)
= |bJ™"[C] (By definition of | - |T°P).

Corollary 70 For all b and e Rec€in[rec bin €] =5 |b|™F[Rec € in[€]].

Finally, the following lemma states that the three transtet[-], |-|, and [-]™" are
equal as functions from, to A ,.

Lemma 71 For all e, it holds that(Rec e in[€]) =z |e] =z | &|™".

Proof Proposition 62 directly impliefRecein[€e]) =z |€].

To prove |e] =z |e]™P, we proceed by case analysis en If e is not of the
shaperec b in €, then the result follows by definition of-|™". Otherwise, by Corol-
lary 70, we have|e| = Recein[recbin €] =5 |b|™[Recein[€]], SO we just have
to prove |b|™F[Recein[€]] =z |recbin€|™F. If b is not size-respecting, then the
result holds by definition of - |T™F. Otherwise, we havérec bin € |TF = |b|™F[| € |].
But by Proposition 62,Recein[€]) =avoc, |€], SO by Proposition 54 we obtain
[b]™"[|€|] =ALLoc, |b]™F[Rec€in[€]], which gives the expected result. |

5.2.2 Compositionality

For proving that the evaluation of an expressiomincorresponds to the evaluation of its
translation im,, we seek compositionality properties of our translatidie standard trans-
lation is obviously compositional, in the following sense.

Definition 72 (Standard translation of context3gfine [E] by extension of]-] on expres-
sions, with[O] = O.

Proposition 73 For all E and e,[E[€]] = [E][[€]]-
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Gen(RecHin @) =(H;¢;id;id)
|F 7o = Gen(|F))
|rec by, inF|™P = |b,|™Po Gen(|F])
|rec by, xoF,bine|™" =
TDum(x o F,b) o Top(by) o TUp[g (X o F,b)
TUpg(xoF,b) = (H;lett=¢,BinE;id;id)

if TUp(xoF,b)=(H; (t=¢,B);id;id)

Fig. 28 Top-level translation of contexts fro, to A,

Proof By trivial induction onE. ad

However, we have seen thg} does not lend itself to a simulation argument, so we con-
sider the compositionality gf | ™. We obtain below in Corollary 77 that for all expressions
e and evaluation contexis, |E[e]|™F =5 |E|™F[|e|]. This is not exactly what one could
have hoped for|E[€] | " =5 [E|™F[|e]™F]) but it will be enough to prove correctness of
our translation.

Figure 28 define§en(RecH in ¢) as the obvious generalized context madéioénd
¢, using the fact that nested lift contexts are allocatiort@as. Then, defing:| on nested
lift contexts by extension of-| on expressions: we considernot to be a value, and put
|O] =Recein O. For anyF, the translation F| ™" has the shapkecH in ¢ for someH
and¢. This gives

Proposition 74 For all ¥, Gen(|F]) is a generalized evaluation context.
Proof By induction onF and case analysis on lift contexts. ad

Figure 28 then defines the translation of evaluation cost&tie translatiomDum (X ¢
IF,b) has no holeTUp(x ¢ F,b) has two: one fronf, plus one for the body of the returned
let-binding (present for anyfUp(b)). The special notatioMUpg (x ¢ T, b) fills the latter
with E. We obtain the following immediately.

Proposition 75 For all E, |E|™F is a generalized evaluation context whose variable allo-
cation isid.

Proof By case analysis ofi and Proposition 74,F |™F is a generalized evaluation context.
By case analysis, we then prove that its variable allocasiah If E is a nested lift context,
then by definition ofGen, it is the case. In both other cas¢E,| ™" is defined as the weak
composition of more than one generalized evaluation contehich by definition hasd as
its variable allocation. O

This allows stating the expected compositionality result.

Lemma 76 For E =0 and all e,|E[g] |™" = | E|™"[| e|™"].
For E # O and all e, if e¢ values, then|E[g] |T™F = |E|™"[| e]].
For all E and v, |E[V]|TF =5 |E] T[] v]].

Proof The first point is trivial. The second is obtained for lift ¢exts first (by a simple case
analysis), then for nested lift contexts by straightforvieduction, and finally by case anal-
ysis onE. As for the last point, ifg is replaced with a value, it may permit the allocating and
top-level translations to perform more administrativeugibns, as for instance in contexts
of the shape O. The proof uses Lemma 68. ad
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Corollary 77 (Weak compositionality) For all E and e,|E[g]| ™" =5 |E|™"[|e]].

Full compositionality does not hold]E[g]|™" is not always =s-equivalent to
|E|™F[|e|™F]. The reason is becausez does not include rule I as shown
by taking E = (recX =} OinX) and e = (recy =5 {X = z,Z =5 y.Xiny). In
this case, |E[g]|™ = (Rec€inletX = (lety = {X = z},Z = yXiny)inXx), and
[E|™P[|e]™F] = (Recf = {X = Z¥inlet X = (let Z = £.X in¥¢) inX). An application
of IM, is needed in order to relate them.

Further quotienting\, by this rule might lead to full compositionality. Moreoveve
think that it would preserve the good properties of the tiaimn. In particularA, reductions
by rule IM, cannot be infinite, so non-termination would remain cotyesitulated by the
translation. However, this is not needed to complete ourectmess proof, so we did not
investigate it.

5.3 Quotient ofA,

We now definel., based on the following notions of binding scrapipfgx) and context
scrapingE*(v). The intuition is thafE*(x) does much the same work as iterating the rule
SuBST, until a non-variable value is found. Below, we use it to replaule )BST,, in the
case wherdE is dereferencing. In such cases, if there is no non-variedlige forx, then
E[x is faulty, so we do not have to consider it. Technicall(x) is then undefined.

Example 78Letb, = (x=;5 AX.X,y =5 X) and considee = (rec b, in(y {})). In order to

reduce toe' = (rec b, in((AX.X) {})), e takes two $BST, steps. InA,, we will directly
replacey with (rec b, in O)*(y), which isAX'.X, and perform the BTA, step on-the-fly.

Definition 79 (Binding scraping}or all setsP of variables, bindingd (not necessarily
size-respecting), and variables dom(b), define binding scraping recursively by:

bh(x) = b(x) if b(X) ¢ vars or b(x) € vars\ dom(b)
bh(X) = cycle if b(x) € dom(b)NP
bb(X) = b p) (0(X)) if b(X) € dom(b) \ P.

For all suchb andx, if bj(x) # cycle, defineb*(x) = by (x).

Definition 80 (Context scraping)
Define E*(x) = (Binding(E))*(x) if X € dom(Binding(E))
E*(v) = vif v ¢ vars or v € vars\ dom(Binding(E)).

Let us now prove elementary properties of binding scraping.
Lemma 81 Binding scraping is well-defined, i.e., for all b and B, is a total function.

Proof Let the measurg@ be defined from pairs of a binding and a set of variables toraktu
numbers byu(b,P) = |dom(b) \ P|, the cardinality olom(b) \ P.

First, we notice that ifz(b,P) = 0, then binding scraping immediately returns, on any
variablex € dom(b). Indeed, ifb(x) ¢ vars, it returnsb(x). Otherwise, if the variablb(x) is
in dom(b), then it is also irP, sobj(X) = cycle, and if the variabld(x) is not indom(b),
thenbp (x) = b(x).

Then, as the measure decreases by 1 at each recursive cabnalede thabp(x) is
well-defined for any € dom(b). O
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Proposition 82 For all b, Py, and x& dom(b), if bi(x) =y, then y¢ dom(b).

Proof By induction on the proof obs(x) =y. The base case is whdifx) =y andy ¢
dom(b), which gives immediately the expected result. The inducstep is when there
existsz € dom(b) \ P such thab‘ix}up(z) =y. By induction hypothesis, this givgst dom(b)
as expected. ad

We now define), as having the same expressionsiasbut a different reduction rela-
tion, written —;.

Definition 83 Let themergingE(rec b in €) of rec b in einto the contex® be defined as

— recbineif E=0O,
— and otherwise the result of normalizifirec b in €] w.r.t. rule CONTEXT./LIFT,, plus,
if E had a top-level binding, applying IMor EM, once.

Note that the capture-avoiding side conditions of Definif®3 are always satisfiable by
bound variable renaming.

Then, we define—; relatively to — by removing rules BTA,, PROJECT, and
SuUBST,, and adding the following three rules:

BETA, ProJECT,
E*(vo) =Ay.e E*(vp) ={r}
E[vo V| —3 E(recy =3 vVine) E[vo.X] —5 E[r(X)]
UPDATE,

b,*(y)=v size(V) =n
rec by, X=p y,bine—s recb,,X=p V,bine

Observe that allA, rules are simulated ., except rule 8BsST,. Indeed, rules
BETA, and FRROJECT, are special cases of ruleseBA, and FRRoOJECT,. Rule SUBST,,
albeit not directly simulated, yields a simulation w.r.tir@bserables: evaluation answers,
non-termination, and faultiness, as we now show.

Lemma 84 For all D and k, = Binding(D), for all x € vars, v ¢ vars, and finite sets of
variables P, if x¢ P and Q5(x) = v, then there exists a valué such thatD(x) = V' and
D[V] —* D|V].

Proof We proceed by induction on the proofiafs(x) = v.

— If by (x) € vars\ dom(b), thenb, 5(x) # v, contradiction.

If by(x) =v, then, takingv = v, we haveD(x) = b,(x) = v and D[v] —* D[v] by
reflexivity, as expected.

If by (x) € dom(b) NP, thenb, 5(x) = cycle, contradiction.

If by, (X) € dom(b) \ P, lety = by (x). We knowb, j,, p(Y) =V, soy ¢ {x} UP. Thus, by
induction hypothesis, there existg’asuch tha(y) = v/ andD[v’] —* D|v]. Butthen,
D[y] — D[V'] —* D|V]. So, takingv’ =y, we obtainD(x) =V andD[V'] —* Dv].

O

Lemma 85 For all D, x, and v¢ vars, if D[x] —* D[v] thenD*(x) = v.
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Proof By Lemma 84, there exists such thaiD(x) =V andD[v] —* D[v], which imme-
diately gives the expected result. ad

Finally:

Lemma 86 For all e, if e reduces to an answer, loops, or is faultyAi) then so it does in
Ao.

Proof The lemma says:

1. ife—"* @, thene —;* g;

2. if eloops inA., i.e., there exists an infinite reduction sequence staftmyg e, thene
also loops iM,;

3. if eis faulty in A., then it is also faulty im,.

First, consider a reduction sequence frerto a normal forme; in A,. We prove by
induction on its length that

— if &1 is an answer, theareduces to an answerﬁg, and _

— if e; has the shapB|v], i.e.,eis faulty in A,, theneis faulty in A, too.
The base case is trivial. For the induction step, if the fiestuction step in the given se-
guence is not 8BST,, then it is simulated irA,, so we get the expected result by induction

hypothesis. Otherwise= D[x] and the first step has the shdpg] — DIv], with v=D(x).
Consider the maximal subsequence of the given reductiareseg having the shape

SUBST, SUBST, SUBST,

D{x] = D[vo]

D[v4] D{v]

with eachv; # vi41, i.e., rule $BST, applies each time d. Thus,n > 0, and fori < n, v;
is a variable.

Now, if D[vq] is an answer, thel» has the shapgec B~ | in V' with size(vn) = m, hence
e —z €1 by rule UPDATE,.

Otherwise, ifD[vy] is not an answer, but is actualy, i.e., is in normal form, the[x|
is in normal form inA, and not an answer, hence faulty in both calculi.

Otherwise, ifD has the shapeec ]E%:M in € for somer, ]B:m , ande/, thene —3 D[vy]
by rule UPDATE, in s, and we conclude by induction hypothesis.

Otherwise,D[vy,] further reduces by one of A, and RROJECT, and then the cor-
responding rule (BTA. or PROJECT,) applies inA,, and we again conclude by induction
hypothesis.

Finally, to show that non-termination is preserved, giverrdinite reduction sequence
in A, build one inA, by the same algorithm: if the first step is notv&sT,, then it is
simulated directly, otherwise, consider the maximal sgbeace of 8BsT, steps. ad

We now quotienﬁo by EM, and UPDATE, to obtainA..

Definition 87 @.) Define=5 as the smallest equivalence relation o§groontaining the
rules EM, and UPDATE,. Let the terms ofA, be the set of=s-equivalence classes. Let
reduction inA,, written —5, be defined by the rules:

e =s € e(li>ge(2 & =s&
€ —s &

whereR ranges over the other rulesifiT,, CONTEXT,, IM,, BETA., and RROJECT).
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We now show thaf, simulatesh,, and that|-|™P remains well-defined as a function
from A, to A,. For this, we prove that rules EMand UPDATE, preserve|-|™" (modulo
=z, which A, is quotiented by) and that infinite, reductions can not exclusively contain
EM, or UPDATE, reductions. For each of these two rules, we start by definimgasure,
and show that each rule makes its measure strictly decraadepreserves the top-level
translation. We start with EM

Definition 88 (Number afec nodes)Nbletrec(e) is the number ofec nodes ire.

Lemma 89 (External merging) For all e and ¢, if e EM,, €, then Nbletrec(e) >
Nbletrec(€/) and |e|™F =5 | & |T°P.

Proof Let e=rech, inrecbingy
and€ =rec b,,b in ey.
Obviously,Nbletrec(e) > Nbletrec(€/). Furthermore, we have

|€]™F = Top(b, )[Rec £ in 1et Dummy(b), Update(b) in [eo]].

If bis empty, after applying rule PTYLET, (which is in=z), the configuration becomes
Top(b, )[Rec € in [ep]], Which is=z-equivalent toTop(b, )[|&|] = | €] ™".

Otherwise, using Proposition 53, and after checking Tatb, ) is a generalized bind-
ing, we have

|e|™P = Top(by,)[Rec € in 1let Dummy(b), Update(b) in [ep]]

=z (Top(by) o TDum(b))[Rec € in 1let Update(b) in [ep]]
(by Propositions 53, 49, and 65)

=z (TDum(b) o Top(by))[Rec € in 1let Update(b) in [ep]]
(by Proposition 52, sincéom(b) # dom(b,) UFV(by))

=z (TDum(b) o Top(by,) o TUp(b))[Rec € in [ey]]
(by Propositions 53, 49, and 64) .

But then, letb = (b,,,b’) with b’ not beginning with a size-respecting definition. We
have

—~

TDum(b) o Top(b,) o TUp(b))[Rec € in [ep]]

= (TDum(by,,b’) o Top(b,) o TUp(by,,b'))[Rec € in [ep]]

(TDum(by,) o TDum(b') o Top(by) o TUp(by,,b'))[Rec & in ep]]

(TDum(b’) o TDum(by,) o Top(by) o TUp(by,,b'))[Rec & in [ep]]
(by Proposition 52)

= TDum(b')[(TDum(by,) o Top(by) o TUp(by,,b'))[Rec € in[ep]]]
(by Proposition 49)
=z TDum(b')[(Top(by,by,) o TUp(b'))[Rec € in[eo]]]
(by Lemma 68 and Proposition 53)
= (TDum(b) o Top(by,by,) o TUp(b'))[Rec€ in [eg]]
(by Proposition 49).
But if b’ is not empty, then this last configuration is exadtl/| ™°". Otherwise, ifty is
empty, thenTDum(b') o Top(by,by,) o TUp(K')) = Top(hy, by,) is a generalized binding.
But by Propositions 62 and 53,

Top(bv,bVO)[Recsin [[Q)]]] =z Top(bv,b\,o)“eoﬂ = Le(JTOP7

which gives the expected result. ad
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Next, we define a measure that strictly decreases by agpticat rule UPDATE..
Definition 90 We defineLength, as follows:

Length, (rec b,,b in €) = |dom(b)| whereb does not begin with a
size-respecting definition.

Length,(e) = 0 if e does not begin withrec.

The lemma for rule BDATE, requires the following properties of the top-level transla
tion, about how variables can be accessed in the translatiaminding.

Lemma 91 For all x,v,H,0,¢, and h, if Top(by) =(H; 0; 0; ¢) and k*(x) = v, then
there exist Hand V such thatv| =RecHyinV,(¢o 0)(x) =V and H, C H.

Proof We prove more generally that for allv,H, o, ¢,Pandb,, if Top(b,)=(H;0;0;¢)
andb, p(x) = v, then there existl, andV such thatjv| =RecHyinV, (¢ o 0)(x) =V and
Hy CH.

We proceed by induction on the prooflafs(x) = v.

The base case amounts to proving the result with the additiypothesis thab, ()
v. For this, we decomposg, into by,,x ¢ v, b,,. By definition of Top, we haveTop(b,)
(T0p(bvo)>® Top(xoV) @ Top(by,)). Let Top(by,) = (Ho; O 0o ; Go), andTop(by, ) = (H
0;01;6)-

firy

— If vis a variabley, thenTop(xoVv) = (g;0; [x—Y];id). LetH, = € andV =y. We
haveo = (gp o [X— Y] o 01) and¢ = (G o G1). Furthermore, we know ¢ dom(0y),
and by Proposition 82y ¢ dom(b,). This also gives/ ¢ dom(¢) U dom(0), because
(dom(¢) Udom(0)) C dom(b,). Thus(g o g)(x) = (¢ o 0p)(y) =, as expected.

— If vis not a variable, theffop(x ¢ v) = (Hy; O ;id ; [X+— £]), with |[v] =RecHyin 4.
TakeV = ¢. We have¢ = (g o [x+— £] o ¢1) and g = (dp o 01). But we knowx ¢
dom(0) Udom(¢1) Udom(Gp), SO(G o 0)(X) = (Go o [x+— £])(X) = £ =V as expected.

For the induction step, assurbg(x) =y andb, },, p(y) = V. Then,b, has the shape
(byy,X 0 y,by,) for someb,,,b,,. By definition of Top, we haveTop(b,) = (Top(b,,) ®
Top(x oY) @ Top(by,)). Let Top(by,) = (Ho; O; 00 ; Go), andTop(by,) = (H1;0; 01;
G1). We know thatH = (Ho,H1), 0 = (dg o [x+— Y] 0 01) and¢ = (Go o ¢1). By induction
hypothesis, there exist, andV such thafv| =RecHyinV, H, C H, and(¢ o o)(y) =V.
Thus, there only remains to prove thgto 0)(y) = (¢ o g)(X).

— If y € dom(b,, ), then, sincéb, contains a forward reference frontoy, y has a known
size indication inb,. So,y € dom(¢1), hencey ¢ dom(o). Thus,(¢ o 0)(y) = ¢(y) =
(¢odgo [x—y])(X) = (¢o0)(X).

— If y ¢ dom(by,), then(¢ o 0)(y) = (¢ o Go)(y) = (G 0 dp © [x+— Y])(X) = (¢ 0 O)(X).

O

Lemma 92 For all E,x,H, &, 0, and v¢ vars, if [E|]™"=(H ;& ; 0 ;id), andE*(x) = v,
then there exist tHand ¢ such that|v] =RecHyin ¢, o(X) =¢and H, C H.

Proof By case analysis oR. First, if E is a nested lift context, then= x andx ¢ dom(0o),
which gives the expected result.

If E= (rech, inTF), then|E|™F = Top(b,) o Gen(|F]). But by definition,Gen(|F|) =
(H'; ¢ ;id;id) for someH’ and¢. So,0 = Subst(Top(b,)), and we conclude by Lemma 91.
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If E = (recby,,yoF,bine), then|E|™" = (TDum(y ¢ F,b) o Top(b,) o TUpyg(y ©
IF,b)). LetTDum(y< F,b) = (Ho; O id ; Go), Top(by) = (Hp, : O; Oh, ; G, ), andTUppg (Yo
F,b) = (Hy; & ;id; id) (they have these shapes by definition). We hawve (¢ o ¢, © Oy, ),
H = (Ho,Hp, ,H1). By Lemma 91, we obtaifd, and¢ (becauses ¢ vars) such that|v| =
RecHyin ¢, Hy C Hp,, and(g, o d, )(X) = £. Here, this immediately gived, C Hp, C H
ando(x) =/. O

Lemma 93 For all e and &, if o UPPATE, €, thenLength, (€) > Length, (¢/) and |e] ™" =z
Le(JTOP.

Proof Obviously, Length, (€) > Length, (¢). Furthermore, we have = (rec(by,y =

X,b) in €). Let D = (rec(by,y =y O,b) in &). Since D[x] il N €, we have some
non-variable values such thatb,*(x) = v andsize(v) = n. By Lemma 92, and letting
ID|™" = (H ; &; 0 ;id), we have|v] = RecHyin ¢ such thatH, C H and o(x) = /.
Then, letd, = TDum(b) anddy = (¢’ = alloc n; O} Gy ; id) = TDum(y =, O) for some
location?’, with ¢, = [y — ¢']. Let d = &y o &, andTop(by) = (H1; O ; 01 ; id), such that
Hy € H1 € H ando = Subst(d) o g1 = Subst(dy) o Gy o 01.

We have

[D[X]]™F = (6 o Top(by))[1et - = update Y X, Update(b) in [&g]].

Buty ¢ supp(01), SO
|D[X]|™" = (8 o Top(by))[let -=update ¢ ¢,Update(b)in [eg]].

Furthermoresize(v) = Size(Hy(¢)) = n, by Hypothesis 17, and moreover by construction of
the translationH, only contains one binding. So, in fact, the update copig®ntirely, and
the previous configuration reduces bybATE, and LET, to

(& o Top(by,y =y V))[Let Update(b) in [eo]].

Finally, by Proposition 64 and Lemma 68, thissig-equivalent to| D[v] |7, which is ex-
actly | |™".
O

We obtain thai\, simulatesXm and hence also simulatas.

Lemma 94 For all e, if e reduces to an answer, loops, or is faultyiln then so it does in
Ao.

Proof The only non-trivial point is non termination. By Lemmas 838da93, and since
UPDATE, preserved\bletrec, the lexicographic ordefNbletrec, Length, ) stricly decreases

by EM, and UPDATE,. Thus, there is no infinite reduction sequencéirinvolving only
these rules. O
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5.4 Correctness

We now have the tools to prove the expected correctnessetimedt/e first notice the fol-
lowing useful property oE(rec b, in €).

Proposition 95 For all E,b,,e, if E(recb, in€) is defined, theqE(rech, in€)|™F =
[E]™" o [by [T Le]].

Proof By commutation ofTop(b, ) with Gen(|F|), whereF is the nested lift context part of
E. O

Lemma 96 (Correctnessyor all e and &, if e —= €, then|e|™%" —5zT |€|T°".
Proof We proceed by case analysis on the rule used.

BETA, There exisit, vo, andv such thae = E[vp V], E* (Vo) = Ax.g, and€ = E(rec X =y
ving). Let |[v| =RecHyinV and |Ax.g] = RecHjin ¢ (with Hy = ¢ = Ax.[g]). Let
|[E|™P=(H;&;0;id).

— If vop = Ax.g, then

le|™® E|™P[|vo v]]
|™P[RecH1,Hyin £ V]

I [

[E|™"R

\[EJTOP%Rec H1,Hyin[x+— V]([g])]
|E

i

=a
—a

E|™PRecHy in[x— V]([d])]

T 0 [X=[3 V]"[Rec £ in[g]]
E]™" o [x=p v|™|g]]
/[P,

— If vo =y with E*(y) = Ax.g, then by Lemma 92 we have a locatiép- g(y) such
thatH(¢) = Ax.[g]. So we have

le|™P =

I
o e e

[E]™[ly v]]

|E|™PRecHyiny V]

|E|™P[RecHyin £ V]

—7 [E]™"[RecHyin[x— V]([g])]
=z |€|™" (as above)

ml o |

ProJECT There existE, vo, andX such thae=E[vp.X], andE*(vp) = {r} with r(X) =z
Let [{r}] =RecHi in ¢ (with H; = ¢ = {r}). The whole expression reducesEfz]. Let
|E|]™P=(H;¢&;0;id).

— If vo ={r}, then
& =5 [E]™[|vo.X]]
EJ OPlRecHyin £.X]
E|™P[RecH;in 7
E|™P[Rec£in 7]
E[ HTOP

— If vo =y with E*(y) = {r}, then by Lemma 92 we have a locatiér= o(y) such
thatH(¢) = {r}. So we have

e =5 [E[IyX]
=z |E|™P[Recein £.X]
—5 |E|™PRec€in 7
= [E[Z]™"
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CONTEXT, with LIFT, We havee= E[ey], with e = L[rec b in &), and€ = E[ey], with
e =rechbinl|g)]. Lety=(H;&;0;id)=|E|™and|L] = (HL ; nL ;id; id). We
have

|E[e1]|™" =z y[RecHL in np[let Dummy(b), Update(b) in [ep]]]
y[RecHp, in let Dummy(b), Update(b) in ny[[eo]]]

y[Rec€in[ey]]

€.

IM, We havee=recbineyand€ =rec b’ in gy, with b= (b,,x¢ (rec by in€1),by),
andb’ = (b, b1, x0 ey, by).
Let By, = Top(by), bo = (x© (rec by iner),bp) andby = (x ¢ e, by).
By definition of the translation, we havérec biney]™ = TDum(bp) o Sy, ©
TUp(bp)[Rec € in[ep]].

_JxD)ifo==q
Letnow(t,¢) = { (_,update x O) otherwise.
We have

—3

o |

(Rec€infrec by iney])
(Rec€in let Dummy(by),Update(by) in[e1])
Rec&inE;.

I_Iec b; in eﬂ

So|rec biney|™" = TDum(bp) o By, [Rec€in let t = ¢[Ez],Update(by) in[ep]].
But this reduces by (maybe ruledT, and) rule 1M, to

TDum(bp) o By, [Rec £in let Dummy(by), Update(by),
t= ¢[[e1]], Update(by)
in [ep]].
But we recognizeJpdate(by, b)), so the obtained configuration is equal to
C = TDum(by) o By, [Rec € in let Dummy(by), Update(by, bp) in[eo]].
Then, by Propositions 53 and 65, we obtain
C =z TDum(l) o By, © TDum(by)[Rec € in let Update(by, by) in [eo]].
But asdom(b;) #dom(b,) UFV(h,), this is equal to
TDum(by,bg) o By, [Rec € in let Update(by, bp) in [eo]],

which by Proposition 64 and Lemma 684s-equivalent to|rec b’ in ey] ™", which
concludes the proof.

This yields:

Corollary 97 For all e, if e reduces to an answer, loops, or is faultyAip, then so does
le|™Pin A,.
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Proof Since|-]™ maps answers to answers (Proposition 55§ iéduces to an answer,
then so doege|™". Moreover, because Lemma 96 uses; ™, if e loops, so doese] ™".
Finally, if e is faulty, then it reduces to a tersg in normal form of one of the shapes in
Proposition 55, hencee| ™" reduces td ey | ™F, which is faulty by Proposition 56. Hence
|e|™P is faulty. |

We finally have:

Proof (of Theorem 188y composing Lemmas 86, 94, Corollary 97, and Lemma 59, we ob-
tain the result fot e| 7. But | e|™F =; [€] in A, hence they behave the same by Lemma 59.
O

6 Related work

Ariola and Blom [2] studyA -calculi with 1let rec, in relation with the graphs they repre-
sent. TheA, language presented here is mostly a deterministic varfaheo call-by-value
calculus. The main difference lies in our size indicatiomkich specialize the language for
efficient compilation.

Lang et al [19] studyA -calculi with sharing and recursion, resulting in the notiaf
Addressed Term Rewriting Systetdslike in A,, cyclic data structures are represented using
addresses: each node of a term is given an address, whicheceefdored to by @ack
pointer. Addresses can be shared among instances of the same tereovelio addresses are
not bound in the considered term, whereaddnrec does bind variables. Thus, addressed
terms must satisfy a number of coherence conditions, whigtear to be far from trivial.
This explains our choice of Ariola et al.'s approach.

Erkdk and Launchbury [10] consider the interaction of remn with side effects. In the
setting of monadic meta-languages, Moggi and Sabry [23kdean operator namettix,
with an operational semantics, which unifies different laage constructs for recursion.
This very interesting work is more abstract than ours, ingéese that it unifies several
recursion constructs from both eager and lazy languagesteah our work is specific to
call-by-value. Also, we are not specifically interestedha tnteraction between recursion
and side effects, although we treat it with care. MoreovekpE and Launchbury and Moggi
and Sabry are not concerned with compilation.

Another work on recursion, already discussed in Sectionid¢.Boudol's calculus [3].
From the standpoint of expressive power, this calculusdsrimparable with\,. On the one
hand, the semantics d¥,, based on Ariola et al.'s work, allows to represent cyclitada
structures such dst rec X = cons 1 X, while such a definition loops in Boudol’s calculus.
On the other hand, the unrestricteék rec of Boudol's calculus avoids the difficult guess
of correct size indications.

From the standpoint of compilation, Boudol and Zimmer [4§ @s backpatching ap-
proach, thus increasing the number of run-time tests aricettibns. A similar backpatch-
ing approach is used in Russo’s extension of ML with recersiodules [27], implemented
in Moscow ML, and in Dreyer’s work on typing of extended resian [8].

Syme [30] extends the F# language with generalized recuddfinitions where the
right-hand sides are arbitrary computations. Haskelkdtzy evaluation is used to evaluate
these recursive definitions: a strong, forward referenaerzursively-defined variableis
not an error, but causes the definitionxafo be evaluated at this point. In the application
scenario considered by Syme, namely interfacing with tibeawritten in object-oriented
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languages, no compile-time information is available oneshglencies and object sizes, ren-
dering our approach inapplicable and essentially fordiegise of lazy evaluation. However,

lazy evaluation has some additional run-time costs and snakauation order hard to guess
in advance.

Nordlander, Carlsson and Gill [24] describe an originaliasir of the in-place update
scheme where the sizes of the recursively-defined values metebe known at compile-
time. Consider a recursive definitiarecx = e. The variablex is first bound to a unique
marker; theng is evaluated to a valug finally, the memory representation vfis recur-
sively traversed, replacing all occurrences of the unigaeker with a pointer tos. This
recursive traversal can be much more costly than the uggafidummy blocks performed
by the in-place update scheme: a naive implementation rutimme O(N) whereN is the
size of the valuev. (This size can be arbitrarily large even if the evaluatiére ¢s trivial:
considerrecx = Cons | x wherel is a 1¢ element list previously computed.) Assuming
linear allocation and a copying garbage collector, theetrsad can be restricted to blocks
allocated during the evaluation ef resulting in a reasonable complexi®min(N,M))
whereM is the number of allocations performed by the evaluatior. diowever, this im-
provement seems impossible for memory managers that perfon-linear allocation like
those of OCaml and F#.

Mutually-recursive definitions of functions (syntacflcabstractions) is a frequently-
occurring special case that admits a very efficient impleatem [18, 1]. Instead of allo-
cating one closure block for each function, containing i to the other closure blocks,
it is possible to share a single memory block between theucdss and use pointer arith-
metic to recover pointers to the other closures from anyrgatesure. No in-place update
is needed to build loops between the closures. We believéhisarick could be combined
with a more general in-place update scheme to efficientlypil@mecursive definitions that
combine syntactid -abstractions and more general computations. Howevaenifisignt ex-
tensions to\, would be needed to account for this approach.

7 Conclusions and future work

In this article, we have developed the first formal semantezoant of the in-place update
scheme, and proved its ability to implement faithfully atesxded call-by-value recursion
construct, as characterized by our source langdage

At this point, one may wonder wheth@r embodies the most powerful call-by-value
recursion construct that can be compiled via in-place wdgte answer is no, because of
the requirement that the sizes (of definitions that are foiweferenced) be known exactly
at compile-time. In a context of separate compilation amghéi-order functions, often the
only thing that the compiler knows about definitions is tist@tic types. With some data rep-
resentation strategies, the sizes are functions of thie stpes, but not with other strategies.
For example, the closures that represent function valueseither follow a “two-block”
strategy (a closure is a pair of a code pointer and a pointarseparately-allocated block
holding the values of free variables) or a “one-block” stgpt (the code pointer and the val-
ues of the free variables are in the same block). With thelilwok strategy, all definitions
of function typer; — 1> have known size 2; but with the one-block strategy, the sideHin
wheren (the number of free variables) is not reflected in the fumctigpe and is therefore
difficult to guess at compile-time.

There are several ways to relax the size requirement anefftiierincrease the usability
of A, as an intermediate language. First, one could permit valfisize smaller than ex-



60

Variable: X € vars
Name: X € names
Expression: ecexpr = X|Ax.e| e e A-calculus
| {r}|eX Record operations
| recbine  Recursive definitions
Record row: ri=g|X=xr
Binding: = ¢g|xoeb
Size indication: o= =gl¥

Fig. 29 Syntax of generalized,

pected to fill the pre-allocated blocks. In this case, updps pre-allocated block changes
not only its contents but also its size, an operation that mesnory managers support well.
All we now need to determine statically is a conservativeaufymund on the actual size. For
example, if the type of a definition is a datatype (sum typ&)can take the maximum of the
sizes of its constructors. In the case of one-block closuvescan allocate dummy blocks
with a fixed size, say 10 words, and instruct the compiler teengenerate closures larger
than this, switching to a two-block representation for ates with more than 9 free vari-
ables (such closures are uncommon). This simple extenaiobeformalized with minimal
changes tad,, A, and the proofs presented in this paper.

Another way to relax the size requirement is to notice thatgizes of pre-allocated
blocks do not need to be compile-time constants: the ineplgaziate scheme works just as
well if these sizes are determined by run-time computatibastake place before the recur-
sive definition is evaluated. For example, in the encodingiafns outlined in Section 2.4.2,
each component of a mixin could be represented not just asexaer functionf, but as a
pair (n, f) wheren is the size of the result of. The recursive definition implementing the
close operation could, then, extract these simefsom the run-time representation of the
mixin and use them to pre-allocate dummy blocks.

In preparation for future work, we now sketch an extensioA.oivhere the size indica-
tions over bindings are no longer compile-time constantsithitrary expressions. Figure 29
gives the syntax of this extended language. In bindingssite indications are all evalu-
ated before the evaluation of definitions begins, and cargfet to the recursively defined
variables.

From the standpoint of compilation, we believe that in-plapdate applies straight-
forwardly. However, a serious issue with this extensiona tio ensure statically that the
predicted sizes are correct: given a definitiose,| €2, we would like to guarantee thaj
will evaluate to a value of size the valueef If e; is an arbitrary expression, a type system
or another static analysis can not try and eval@atbecause this would make it undecid-
able. Instead, we have to find static means of ensuring thityadf definitions in the useful
cases.

For this, we plan to start from Hirschowitz’s type systemAo{12] and extend it with
dependent product types and a special sized syped,(T), denoting the set of values of
type T and of sizev. Givenn ande of sizen, one could give a dependent product type to
the pair(n,e), namely(x : int,Sizedx(T)). Conversely, take for example a dependent pair
e of type (x:int, 71 — Sizedy(T2)), the expressiorisnd(e) €) has sizefst(e), and this
can be checked statically. This guarantees that the definit;.. ) (snd(e) €) is correct
W.I.t. sizes.
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