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QUADRATIC FORMS OF DIMENSION 8 WITH TRIVIAL

DISCRIMINANT AND CLIFFORD ALGEBRA OF INDEX 4.

ALEXANDRE MASQUELEIN, ANNE QUÉGUINER-MATHIEU,
AND JEAN-PIERRE TIGNOL

Abstract. Izhboldin and Karpenko proved in [IK00, Thm 16.10] that any

quadratic form of dimension 8 with trivial discriminant and Clifford algebra
of index 4 is isometric to the transfer, with respect to some quadratic étale
extension, of a quadratic form similar to a two-fold Pfister form. We give a
new proof of this result, based on a theorem of decomposability for degree 8
and index 4 algebras with orthogonal involution.

Let WF denote the Witt ring of a field F of characteristic different from 2. As
explained in [Lam05, X.5 and XII.2], one would like to describe those quadratic
forms whose Witt class belongs to the nth power InF of the fundamental ideal
IF of WF . By the Arason-Pfister Hauptsatz, such a form is hyperbolic if it has
dimension < 2n and similar to a Pfister form if it has dimension 2n. More generally,
Vishik’s Gap Theorem gives the possible dimensions of anisotropic forms in InF .

In addition, one may describe explicitly, for some small values of n, low dimen-
sional anisotropic quadratic forms in InF . This is the case, in particular, for n = 2,
that is for even-dimensional quadratic forms with trivial discriminant. In dimen-
sion 6, it is well known that such a form is similar to an Albert form, and uniquely
determined up to similarity by its Clifford invariant. In dimension 8, if the index of
the Clifford algebra is ≤ 4, Izhboldin and Karpenko proved in [IK00, Thm 16.10]
that it is isometric to the transfer, with respect to some quadratic étale extension,
of a quadratic form similar to a two-fold Pfister form.

The purpose of this paper is to give a new proof of Izhboldin and Karpenko’s
result. Our proof is in the framework of algebras with involution, and does not
use Rost’s description of 14-dimensional forms in I3F (see [IK00, Rmk 16.11.2]).
More precisely, we use triality [KMRT98, (42.3)] to translate the question into a
question on algebras of degree 8 and index 4 with orthogonal involution. Our main
tool then is a decomposability theorem (Thm. 1.1), proven in § 3. We also use a
refinement of a statement of Arason [Ara75, 4.18] describing the even part of the
Clifford algebra of a transfer (see Prop. 2.1 below).

1. Notations and statement of the theorem

Throughout the paper, we work over a base field F of characteristic different
from 2. We refer the reader to [KMRT98] and [Lam05] for background information
on algebras with involution and on quadratic forms. However, we depart from
the notation in [Lam05] by using 〈〈a1, . . . , an〉〉 to denote the n-fold Pfister form
⊗ni=1〈1,−ai〉. For any quadratic space (V, φ) over F , we let Adφ be the algebra
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2 A. MASQUELEIN, A. QUÉGUINER-MATHIEU, AND J.-P. TIGNOL

with involution (EndF (V ), adφ), where adφ is the adjoint involution with respect
to φ, denoted by σφ in [KMRT98].

For any field extension L/F , we denote by GPn(L) the set of quadratic forms
that are similar to n-fold Pfister forms. This notation extends to the quadratic
étale extension F × F by GPn(F × F ) = GPn(F ) × GPn(F ). For any quadratic
form ψ over L, let C(ψ) be its full Clifford algebra, with even part C0(ψ). Both
C(ψ) and C0(ψ) are endowed with a canonical involution, which is the identity on
the underlying vector space, denoted by γ (see [KMRT98, p.89]). If ψ has even
dimension and trivial discriminant, then its even Clifford algebra splits as a direct
product C+(ψ) × C−(ψ), for some isomorphic central simple algebras C+(ψ) and
C−(ψ) over F (see [Lam05, V, Thm 2.5]). Those algebras are Brauer-equivalent
to the full Clifford algebra of ψ and their Brauer class is the Clifford invariant of
ψ. Assume moreover that dim(ψ) ≡ 0 mod 4. As explained in [KMRT98, (8.4)],
the involution γ then induces an involution on each factor of C0(ψ), and one may
easily check that the isomorphism between the two factors described in the proof
of [Lam05, V, Thm 2.5] preserves the involution, so that we actually get a decom-
position (C0(ψ), γ) ≃ (C+(ψ), γ+) × (C−(ψ), γ−), with (C+(ψ), γ+) ≃ (C−(ψ), γ−).

Let L/F be a quadratic field extension. For any quadratic form ψ over L, we
let tr⋆(ψ) be the transfer of ψ, associated to the trace map tr : L → F , as defined
in [Lam05, VII.1.2]. This definition extends to the split étale case L = F × F and
leads to tr⋆(ψ, ψ

′) = ψ + ψ′. On the other hand, for any algebra A over L, we let
NL/F (A) be its norm, as defined in [KMRT98, §3.B]. Recall that the Brauer class
of NL/F (A) is the corestriction of the Brauer class of A. Moreover, if A is endowed
with an involution of the first kind σ, then the tensor product σ ⊗ σ restricts to
an involution NL/F (σ) on NL/F (A). We use the following notation: NL/F (A, σ) =
(NL/F (A), NL/F (σ)). In the split étale case, we get NF×F/F ((A, σ), (A′, σ′)) =
(A, σ) ⊗ (A′, σ′) (see [KMRT98, §15.B]).

Let (A, σ) be a degree 8 algebra with orthogonal involution. We assume that
(A, σ) is totally decomposable, that is, isomorphic to a tensor product of three
quaternion algebras with involution,

(A, σ) = ⊗3
i=1(Qi, σi).

If A is split (resp. has index 2), then (A, σ) admits a decomposition as above in
which each quaternion algebra (resp. each but one) is split (see [Bec08]). Our main
result is the following theorem:

Theorem 1.1. Let (A, σ) be a degree 8 totally decomposable algebra with orthogonal
involution. If the index of A is ≤ 4, then there exists λ ∈ F× and a biquaternion
algebra with orthogonal involution (D, θ) such that

(A, σ) ≃ (D, θ) ⊗ Ad〈〈λ〉〉 .

The theorem readily follows from Becher’s results mentioned above if A has index
1 or 2; it is proven in § 3 for algebras of index 4. For algebras of index ≤ 2, we may
even assume that (D, θ) decomposes as a tensor product of two quaternion algebras
with involution; this is not the case anymore if A has index 4, as was shown by
Sivatski [Siv05, Prop. 5].

Using triality, we easily deduce the following from Theorem 1.1:

Theorem 1.2 (Izhboldin-Karpenko). Let φ be an 8-dimensional quadratic form
over F . The following are equivalent:
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(i) φ has trivial discriminant and Clifford invariant of index ≤ 4;
(ii) there exists a quadratic étale extension L/F and a form ψ ∈ GP2(L) such

that φ = tr⋆(ψ).

If φ = tr⋆(ψ) for some ψ ∈ GP2(L), it follows from some direct computation
made in [IK00, §16] that φ has trivial discriminant and Clifford invariant of index
≤ 4.

Assume conversely that φ has trivial discriminant. By the Arason-Pfister Haupt-
satz, φ is in GP3(F ) if and only if it has trivial Clifford invariant. More generally,
it is well-known that φ decomposes as φ = 〈〈a〉〉q for some a ∈ F× and some 4-
dimensional quadratic form q over F if and only if its Clifford invariant has index
≤ 2 (see for instance [Kne77, Ex 9.12]). Hence, in both cases, φ decomposes as a
sum φ = π1 + π2 of two forms π1, π2 ∈ GP2(F ). This proves that condition (ii)
holds with L = F × F .

In section 4 below, we finish this proof by treating the index 4 case. This part
of the proof differs from the argument given in [IK00]. In particular, we do not use
Rost’s description of 14-dimensional forms in I3F .

2. Clifford algebra of the transfer of a quadratic form

Let L/F be a quadratic field extension. By Arason [Ara75, 4.18], for any qua-
dratic form ψ ∈ GP2(L), the Clifford invariant of the transfer tr⋆(ψ) coincides with
the corestriction of the Clifford invariant of ψ. In this section, we extend this re-
sult, taking into account the algebras with involution rather than just the Brauer
classes. More precisely, we prove:

Proposition 2.1. Let L = F [X ]/(X2 − d) be a quadratic étale extension of F .
Consider a quadratic form ψ over L with dim(ψ) ≡ 0 mod 4 and d±(ψ) = 1, so
that its even Clifford algebra decomposes as

(C0(ψ), γ) ≃ (C+(ψ), γ+) × (C−(ψ), γ−), with (C+(ψ), γ+) ≃ (C−(ψ), γ−).

For any λ ∈ L× represented by ψ, the two components of the even Clifford algebra
of the transfer of ψ are both isomorphic to

(C+(tr⋆(ψ)), γ+) ≃ Ad〈〈−dNL/F (λ)〉〉⊗NL/F (C+(ψ), γ+).

Proof. In the split étale case L = F × F , the quadratic form ψ is a couple (φ, φ′)
of two quadratic forms over F with

dim(φ) = dim(φ′) ≡ 0 mod 4 and d±(φ) = d±(φ′) = 1 ∈ F ⋆/F ⋆2.

Pick λ and λ′ in F respectively represented by φ and φ′; the norm NF×F/F (λ, λ′)
is λλ′. So the following lemma proves the proposition in that case:

Lemma 2.2. Let φ and φ′ be two quadratic forms over F of the same dimension
n ≡ 0 mod 4 and trivial discriminant. For any λ and λ′ ∈ F×, respectively repre-
sented by φ and φ′, the components of the even Clifford algebra of the orthogonal
sum φ+ φ′ are isomorphic to

(C+(φ+ φ′), γ+) ≃ Ad〈〈−λλ′〉〉⊗(C+(φ), γ+) ⊗ (C+(φ′), γ+).

Proof of Lemma 2.2. Denote by V and V ′ the underlying quadratic spaces. The
natural embeddings V →֒ V ⊕ V ′ and V ′ →֒ V ⊕ V ′ induce F -algebra homomor-
phisms

C(φ) → C(φ+ φ′) and C(φ′) → C(φ+ φ′).
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One may easily check that the images of the even parts centralize each other, so
that we get an F -algebra homomorphism

(C0(φ), γ) ⊗ (C0(φ
′), γ) → (C0(φ+ φ′), γ).

Pick orthogonal bases (e1, . . . , en) of (V, φ) and (e′1, . . . , e
′
n) of (V ′, φ′). The ba-

sis of C0(φ + φ′) consisting of products of an even number of vectors of the set
{e1, . . . , en, e

′
1, . . . , e

′
n} as described in [Lam05, V, cor 1.9] clearly contains the im-

age of a basis of C0(φ) ⊗ C0(φ
′), so that the homomorphism above is injective. In

the sequel, we will identify C0(φ) and C0(φ
′) with their images in C0(φ+ φ′).

Consider the element z = e1 . . . en ∈ C0(φ). As explained in [Lam05, V, Thm2.2],
for any v ∈ V , one has vz = −zv ∈ C(φ) and z generates the center of C0(φ). Since
φ has dimension 0 mod 4 and trivial discriminant, this element z is γ-symmetric,
and multiplying e1 by a scalar if necessary, we may assume z2 = 1. The two
components of C0(φ) are C+(φ) = C0(φ)1+z

2 and C−(φ) = C0(φ)1−z
2 . Consider

similarly z′ = e′1 . . . e
′
n, with γ(z′) = z′ and assume z′2 = 1. The product zz′ also

has square 1 and generates the center of C0(φ+φ′). We denote by ε the idempotent

ε = 1+zz′

2 , so that C+(φ+ φ′) = C0(φ+ φ′)ε and C−(φ+ φ′) = C0(φ+ φ′)(1 − ε).
Let us now fix two vectors v ∈ V and v′ ∈ V ′ such that φ(v) = λ and φ′(v′) = λ′.

Since 1+z
2 v−1 = v−1 1−z

2 , we have vxv−1 ∈ C−(φ) for any x ∈ C+(φ). Using this
identification between the two components, we may diagonally embed C+(φ) in
C0(φ) by considering x ∈ C+(φ) 7→ x + vxv−1 ∈ C0(φ). Similarly, we may embed
C+(φ′) in C0(φ

′) by x′ ∈ C+(φ′) 7→ x′ + v′x′v′−1 ∈ C0(φ
′). Combining those two

maps with the morphism

C0(φ) ⊗ C0(φ
′) → C0(φ+ φ′),

and the projection

y ∈ C0(φ + φ′) 7→ yε ∈ C+(φ + φ′),

we get an algebra homomorphism

C+(φ) ⊗ C+(φ′) → C+(φ+ φ′),
x⊗ x′ 7→ (x+ vxv−1)(x′ + v′x′v′−1)ε.

One may easily check on generators that this map is not trivial; hence it is
injective. To conclude the proof, it only remains to identify the centralizer of

the image, which by dimension count has degree 2. It clearly contains z+z′

2 ε and
vv′ε. Moreover, these two elements anticommute, have square ε and −λλ′ε, and
are respectively symmetric and skew-symmetric under γ. Hence they generate a
split quaternion algebra, with orthogonal involution of discriminant −λλ′, which is
isomorphic to Ad〈〈−λλ′〉〉. �

This concludes the proof in the split étale case. Until the end of this section,
we assume L is a quadratic field extension of F , with non-trivial F -automorphism
denoted by ι. To prove the proposition in this case, we will use the following
description of the transfer of a quadratic form and its Clifford algebra.

Let ψ be any quadratic form over L, defined on the vector space V . We consider
its conjugate ιV = {ιv, v ∈ V } with the following operations ιv1 + ιv2 = ι(v1 + v2)
and λ·ιv = ι(ι(λ)·v), for any v1, v2 and v in V and λ ∈ L. Clearly, ιψ(ιv) = ι(ψ(v))
is a quadratic form on ιV . One may easily check from the definition given in [Lam05,
VII §1] that the quadratic form tr⋆(ψ) is nothing but the restriction of ψ + ιψ to
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the F -vector space of fixed points (V ⊕ ιV )s, where s is the switch semi-linear
automorphism defined on the direct sum V ⊕ ιV by s(v1 + ιv2) = v2 + ιv1.

Moreover, s induces a semi-linear automorphism of order 2 of the tensor algebra
T (V ⊕ ιV ) which preserves the ideal generated by the elements

(v1 + ιv2) ⊗ (v1 + ιv2) −
(

ψ(v1) + ιψ(ιv2)
)

.

Hence, we get a semi-linear automorphism s of order 2 on the Clifford algebra
C(ψ + ιψ), which commutes with the canonical involution. The set of fixed points
(

C(ψ + ιψ)
)s

is an F -algebra; the involution γ restricts to an F -linear involution
which we denote by γs. We then have:

Lemma 2.3. The natural embedding (V ⊕ιV ) →֒ C(ψ+ιψ), restricted to (V +ιV )s,
induces an isomorphism of graded algebras

(

C(tr⋆(ψ)), γ
)

→̃
(

(C(ψ + ιψ))s, γs).

Proof of Lemma 2.3. The natural embedding (V ⊕ ιV ) →֒ C(ψ+ ιψ) restricts to an
injective map i : (V + ιV )s →֒ C(ψ + ιψ)s, which clearly satisfies

i(w)2 = (ψ + ιψ)(w) for any w ∈ (V ⊕ ιV )s.

By the universal property of Clifford algebras, it extends to a non-trivial algebra
homomorphism C(tr⋆(ψ)) 7→ C(ψ+ ιψ)s, which clearly preserves the grading. Since
C(tr⋆(ψ)) is simple, and both algebras have the same dimension, it is an isomor-
phism. Clearly, γ coincides with γs under this isomorphism. �

Hence, we want to describe one component of C0(tr⋆(ψ)) ≃ (C0(ψ + ιψ))s. We
proceed as in the split étale case. Fix an orthogonal basis e1, . . . en of V over L
such that ψ(en) = λ. The elements ιe1, . . . ,

ιen are an orthogonal basis of ιV and
ιψ(ιen) = ι(λ). We may moreover assume that z = e1 . . . en and ιz = ιe1 . . .

ιen
have square 1. Since the idempotent ε = 1+zιz

2 ∈ C0(ψ + ιψ) satisfies s(ε) = ε,
the semilinear automorphism s preserves each factor C+(ψ + ιψ) and C−(ψ + ιψ).
Hence, the components of C0(tr⋆(ψ)) are

C0(tr⋆(ψ)) = (C+(ψ + ιψ))s × (C−(ψ + ιψ))s.

Moreover, by Lemma 2.2, we have

C+(ψ + ιψ) ≃ Ad〈〈−λι(λ)〉〉⊗(C+(ψ), γ) ⊗ (C+(ιψ), γ),

and it remains to understand the action of the switch automorphism on this tensor
product. First, one may identify C+(ιψ) with the algebra ιC+(ψ) defined by

ιC+(ψ) = {ιx, x ∈ C+(ψ)},

with the operations
ιx+ ιy = ι(x+ y), ιxιy = ι(xy) and ι(λx) = ι(λ)ιx,

for all x, y ∈ C+(ψ) and λ ∈ L. Clearly, the switch automorphism acts on the tensor
product

C+(ψ) ⊗ C+(ιψ) ≃ C+(ψ) ⊗ ιC+(ψ),

by
s(x⊗ ιy) = y ⊗ ιx,

and by definition of the corestriction (see [KMRT98, 3.B]), the F -subalgebra of
fixed points is

(

(C+(ψ), γ) ⊗ (ιC+(ψ), γ)
)s

= NL/F (C+(ψ), γ).
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It remains to understand the action of the switch on the centralizer, which is
the split quaternion algebra over L generated by x = z+ιz

2 ε and y = en
ιenε. The

element x clearly is s-symmetric, while y satisfies s(y) = −y. Let δ be a generator of
the quadratic extension L/F , so that ι(δ) = −δ and δ2 = d. Since the switch map s
is L/F semi-linear, we may replace y by δy which now satisfies s(δy) = δy. Hence,
the set of fixed points under s is the split quaternion algebra over F generated by
x and δy. Since (δy)2 = −dNL/F (λ), it is isomorphic to Ad〈〈−dNL/F (λ)〉〉. �

3. Proof of the decomposability theorem

In this section, we finish the proof of Theorem 1.1. Let (A, σ) = ⊗3
i=1(Qi, σi) be

a product of three quaternion algebras with orthogonal involution. We assume that
A has index 4, so that it is Brauer-equivalent to a biquaternion division algebra
D. We have to prove that (A, σ) is isomorphic to (D, θ) ⊗ Ad〈〈λ〉〉 for a well chosen

involution θ on D and some λ ∈ F×.
The algebraD is endowed with an orthogonal involution τ , and we may represent

(A, σ) = (EndD(M), adh),

for some 2-dimensional hermitian module (M,h) over (D, τ). Let us consider a
diagonalisation 〈a1, a2〉 of h, and define

θ = Int(a−1
1 ) ◦ τ.

With respect to this new involution, we get another representation

(A, σ) = (EndD(M), adh′),

where h′ is a hermitian form over (D, θ) which diagonalises as h′ = 〈1,−a〉 for some
θ-symmetric element a ∈ D×. The theorem now follows from the following lemma:

Lemma 3.1. The involutions θ and θ′ = Int(a−1) ◦ θ of the biquaternion algebra
D are conjugate.

Indeed, assume there exists u ∈ A× such that θ = Int(u) ◦ θ′ ◦ Int(u−1). We
then have θ = Int(ua−1) ◦ θ ◦ Int(u−1) = θ ◦ Int(θ(u)−1au−1). Hence, there exists
λ ∈ F× such that θ(u)−1au−1 = λ, that is a = λθ(u)u. This implies that the
hermitian form h′ = 〈1,−a〉 over (D, θ) is isometric to 〈1,−λ〉. Since λ ∈ F×, we
get (A, σ) = (EndD(M), ad〈1,−λ〉) = (D, θ) ⊗ Ad〈〈λ〉〉, and it only remains to prove
the lemma.

Proof of Lemma 3.1. We want to compare the orthogonal involutions θ and θ′ of
the biquaternion algebra D. By [LT99, Prop. 2], they are conjugate if and only if
their Clifford algebras C and C′ are isomorphic as F -algebras. This can be proven
as follows.

Since (A, σ) is a product of three quaternion algebras with involution, we know
from [KMRT98, (42.11)] that the discriminant of σ is 1 and its Clifford algebra has
one split component.

On the other hand, the representation (A, σ) = (EndD(M), ad〈1,−a〉) tells us that
(A, σ) is an orthogonal sum, as in [Dej95], of (D, θ) and (D, θ′). Hence its invariants
can be computed in terms of those of (D, θ) and (D, θ′). By [Dej95, Prop. 2.3.3],
the discriminant of σ is the product of the discriminants of θ and θ′. So θ and
θ′ have the same discriminant, and we may identify the centers Z and Z ′ of their
Clifford algebras in two different ways. We are in the situation described in [LT99,
p. 265], where the Clifford algebra of such an orthogonal sum is computed. In
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particular, since one component of the Clifford algebra of (A, σ) is split, it follows
from [LT99, Lem 1] that

C ≃ C′ or C ≃ ιC′,

depending on the chosen identification between Z and Z ′. In both cases, C and C′

are isomorphic as F -algebras, and this concludes the proof. �

4. A new proof of Izhboldin and Karpenko’s theorem

Let φ be an 8-dimensional quadratic form over F with trivial discriminant and
Clifford invariant of index 4. We denote by (A, σ) one component of its even Clifford
algebra, so that

(C0(φ), γ) ≃ (A, σ) × (A, σ),

where A is an index 4 central simple algebra over F , with orthogonal involution σ.
By triality [KMRT98, (42.3)], the involution σ has trivial discriminant and its

Clifford algebra is

C(A, σ) = Adφ×(A, σ).

In particular, it has a split component, so that the algebra with involution (A, σ)
is isomorphic to a tensor product of three quaternion algebras with involution (see
[KMRT98, (42.11)]). Hence we can apply our decomposability theorem 1.1, and
write (A, σ) = (D, θ) ⊗ Ad〈〈λ〉〉 for some biquaternion division algebra with orthog-

onal involution (D, θ) and some λ ∈ F×.
Let us denote by d the discriminant of θ, and let L = F [X ]/(X2 − d) be the

corresponding quadratic étale extension. Consider the image δ of X in L. By Tao’s
computation of the Clifford algebra of a tensor product [Tao95, Thm. 4.12], the
components of C(A, σ) are Brauer-equivalent to the quaternion algebra (d, λ) over
F and the tensor product (d, λ)⊗A. Since A has index 4, the split component has
to be (d, λ), so that λ is a norm of L/F , say λ = NL/F (µ).

Consider now the Clifford algebra of (D, θ). It is a quaternion algebra Q over
L, endowed with its canonical (symplectic) involution γ. Denote by nQ the norm
form of Q, that is nQ = 〈〈α, β〉〉 if Q = (α, β)L. It is a 2-fold Pfister form and for
any ℓ ∈ L⋆, (C+(〈ℓ〉nQ), γ+) ≃ (Q, γ). Moreover, by the equivalence of categories
A2

1 ≡ D2 described in [KMRT98, (15.7)], the algebra with involution (D, θ) is
canonically isomorphic to NL/F (Q, γ).

Hence we get that (A, σ) = NL/F (Q, γ) ⊗ Ad〈〈−dNL/F (δµ)〉〉. By Proposition 2.1,
this implies that

(A, σ) × (A, σ) ≃ (C0(tr⋆(ψ)), γ),

where ψ = 〈δµ〉nQ. Applying again triality [KMRT98, (42.3)], we get that the split
component Adφ of the Clifford algebra of (A, σ) also is isomorphic to Adtr⋆(ψ), so
that the quadratic forms φ and tr⋆(ψ) are similar. This concludes the proof since
ψ belongs to GP2(L).

Remark. Let φ and (A, σ) be as above, and let L = F [X ]/(X2 − d) be a fixed
quadratic étale extension of F . It follows from the proof that the quadratic form
φ is isometric to the transfer of a form ψ ∈ GP2(L) if and only if (A, σ) admits
a decomposition (A, σ) = Ad〈〈λ〉〉⊗(D, θ), with d±(θ) = d. In particular, the qua-
dratic form φ is a sum of two forms similar to 2-fold Pfister forms exactly when the
algebra with involution (A, σ) admits a decomposition as (D, θ)⊗Ad〈〈λ〉〉 with θ of
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discriminant 1, that is when it decomposes as a tensor product of three quaternion
algebras with involution, with one split factor.

Such a decomposition does not always exist, as was shown by Sivatski [Siv05,
Prop 5]. This reflects the fact that 8-dimensional quadratic forms φ with trivial
discriminant and Clifford algebra of index ≤ 4 do not always decompose as a sum of
two forms similar to two-fold Pfister forms (see [IK00, §16] and [HT98] for explicit
examples).
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