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Abstract : We consider a stochastic approximation process in a convex set K
of Rk : Xn+1 = �(Xn � AnYn), with E [AnYn j Tn] = anMn(Xn), where � is
the projection operator on K, An a random matrix, an a positive number, Mn

a function from K into Rk and Tn the sub-�-algebra generated by the events
before time n. We prove two theorems of almost sure convergence in the case
where the equationMn(x) = 0 has a set of solutions and give two applications.
AMS Subj. Classi�cation : 62L20
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1. Introduction

We de�ne a stochastic approximation process (Xn) in a non-empty closed
convex subset K of Rk, named parameter space ; we consider :
. for n � 1, an observable random variable Yn in Rp, named observation

space ; remark that the observation space may be di¤erent from the parameter
space ;
. for n � 1, a (k; p) random matrix An ;
. the projection operator � on K ;
. the process (Xn) in K de�ned recursively by

Xn+1 = �(Xn � AnYn)



All random variables are de�ned on a probability space (
;A; P ). Denote
Tn the sub-�-algebra of A generated by the events before time n ; X1; :::Xn;
A1; :::; An; Y1; :::; Yn�1 are measurable with respect to Tn.
Suppose that, for n � 1, there exists a measurable function Mn from K

into Rk and a positive number an such that

E [AnYn j Tn] = AnE [Yn j Tn] = anMn(Xn) a:s:

Let Bn be a set of solutions of the equation Mn(x) = 0. De�ne a distance
d(x;B) from x in Rk to a subset B:
We give in Section 2 two almost sure convergence theorems of d(Xn; Bn)

to 0. An application of each theorem is given in Section 3, concerning the
estimation of a quantile interval of an unknown probability distribution and
the estimation of a linear regression parameter under convex constraints.
In the following, h:; :i and k:k are respectively the usual inner product and

norm in Rk ; A0 denotes the transposed matrix of A, �min (B) the smallest
eigenvalue of B ; the abbreviation a:s: means almost surely.

2. Lemmas

Let (Xn) be a stochastic process in a subset K of Rk. Let (Fn) and ('n) be
two sequences of measurable functions from K into R+ and (an) a sequence in
R+. Suppose :

(H1a) There exists a random variable T in R+ such that Fn(Xn) �! T
a:s:

(H1b)
P1

1 an'n(Xn) <1 a:s:

(H2a) Whatever 0 < � < 1,
P1

1 an inffx2K;�<Fn(x)< 1
�g 'n(x) = +1:

Lemma 1 Assume H1a, b and H2a hold ; then Fn(Xn) �! 0 a.s.

Proof. ! 2 
 is �xed throughout the proof, belonging to the intersection of
the de�ned a:s: convergence sets. Suppose T (!) 6= 0 and suppress ! writing.
By H1a, there exist 0 < �1 < 1 and an integer N(�1) such that for n >

N(�1); �1 < Fn(Xn) <
1
�1
.

This implies 'n(Xn) � infnx2K;�1<Fn(x)< 1
�1

o 'n(x) ; then by H2a,
1X
1

an'n(Xn) =1;

a contradiction with H1b. Thus T (!) = 0:



Suppose now :

(H1c) kXn+1 �Xnk �! 0 a:s:

(H3a) For all 0 < �1 < 1, for all � > 0, there exists � > 0 such that

(kx1 � x2k < �))
�
supn sup

n
�1<Fn(x1)<

1
�1

o j'n(x1)� 'n(x2)j < �
�

(H3b) There exist a positive integer r, a sequence of integers (nl), for all
0 < � < 1 an integer L(�) such that nl+1 � nl + r and

b(�) = inf
l>L(�)

inf
fx2K; �<Fnl (x)< 1

�g

X
j2Il

'j(x) > 0

with Il = fnl; nl + 1; :::; nl+1 � 1g
(H2b)

P
lminj2Il aj =1:

Lemma 2 Assume H1a, b, c, H2b and H3a, b hold ; then Fn(Xn) �! 0 a.s.

Proof. ! 2 
 is �xed throughout the proof, belonging to the intersection of
the de�ned a:s: convergence sets. Suppose T (!) 6= 0. Below ! is omitted.
By H1a, there exist 0 < �1 < 1 and an integer N(�1) such that for n >

N(�1); �1 < Fn(Xn) <
1
�1
.

By H3b, there exists an integer L(�1) such that for l > L(�1),X
j2Il

'j(Xnl) > b(�1):

It follows that there exists ml 2 Il such that

'ml
(Xnl) >

b(�1)

r
:

Consider the decomposition

'ml
(Xml

) = 'ml
(Xnl) + 'ml

(Xml
)� 'ml

(Xnl):

'ml
(Xml

) >
b(�1)

r
�
��'ml

(Xml
)� 'ml

(Xnl)
�� :

Let � > 0 ; by H3a, there exists � > 0 corresponding to �1 and � ; by H1c,
we have for l su¢ ciently large :

kXml
�Xnlk < � ; �1 < Fml

(Xml
) <

1

�1
:

By H3a, this implies :��'ml
(Xml

)� 'ml
(Xnl)

�� < � ;



'ml
(Xml

) >
b(�1)

r
� �:

Choose � < b(�1)
r
: By H2b,

P
l aml

'ml
(Xml

) = +1. ThenX
n

an'n(Xn) = +1;

a contradiction with H1b. Thus T (!) = 0:

3. Theorems of almost sure convergence

Consider the process (Xn) as de�ned in section 1 :

Xn+1 = �(Xn � AnYn)
E [AnYn j Tn] = anMn(Xn) a:s:

Denote d(x;B) a distance from x 2 Rk to a subset B:
For all n, let Fn be a function from Rk into R+ twice continuously di¤eren-

tiable, with gradient Gn and hessian matrix Hn ; by the Taylor formula, there
exists 0 < �n < 1 such that

Fn(Xn�AnYn) = Fn(Xn)�hGn(Xn); AnYni+
1

2
hAnYn; Hn(Xn � �nAnYn)AnYni

Denote Vn = 1
2
E [hAnYn; Hn(Xn � �nAnYn)AnYni j Tn] .

Suppose:

(H4a) For all n, Fn is twice continuously di¤erentiable

(H4b) For all � > 0, there exists �(�) > 0 and for all n, there exists a subset
Bn of K such that

inf
n

inf
fd(x;Bn)>�g

Fn(x) > �(�)

(H4c) There exist two sequences of positive numbers (n) and (�n) such
that

P1
1 n <1,

P1
1 �n <1 and for all n and x,

Fn+1(�x) � (1 + �n)Fn(x) + n

(H5) For all n, there exist two random variables Dn and En in R+, mea-
surable with respect to Tn, such that

1X
1

Dn < 1;
1X
1

En < 1;

Vn � DnFn(Xn) + En a:s:



(H6)
P1

1 hGn(Xn); anMn(Xn)i� <1 a:s:

(H7) For all 0 < � < 1,
P1

1 an inffx2K;�<Fn(x)< 1
�g hGn(x);Mn(x)i+ <1:

Remark that in the case where Bn is reduced to a single element � of Rk
not depending on n, if we take Fn(x) = d2(x; �) = kx� �k2, then assumptions
H4a, b, c hold and Gn(x) = 2(x � �), Hn(x) = 2I (I : identity matrix),
Vn = E

�
kAnYnk2 j Tn

�
:

Theorem 3 Assume H4a, b, c, H5, H6 and H7 hold ; then Fn(Xn) �! 0 and
d(Xn; Bn) �! 0 a:s:

We use in the proof the Robbins-Siegmund lemma [4] :

Lemma 4 Let (
;A; P ) be a probability space and (Tn) an increasing sequence
of sub-�-algebras of A. For n � 1, let zn, �n, �n and �n be non-negative Tn-
measurable random variables such that E [zn+1 j Tn] � zn(1 + �n) + �n � �n.
Suppose

P1
1 �n < 1,

P1
1 �n < 1 a:s: Then limn�!1 zn exists and is �nite

and
P1

1 �n <1 a:s:

Proof. By H4a, c and H5, we have :

Fn+1(Xn+1) � (1 + �n)Fn(Xn � AnYn) + n:
E [Fn+1(Xn+1) j Tn] � (1 + �n)(Fn(Xn)� hGn(Xn); anMn(Xn)i+ Vn) + n

� (1 + �n)(1 +Dn)Fn(Xn) + (1 + �n)En

+(1 + �n) hGn(Xn); anMn(Xn)i� + n
�(1 + �n) hGn(Xn); anMn(Xn)i+ a:s:

By H4c, H5 and H6, the assumptions of the preceding lemma hold ; then
there exists a random variable T in R+ such that Fn(Xn) �! T a:s: andP1

1 hGn(Xn); anMn(Xn)i+ <1 a:s:
Let 'n(x) = hGn(x);Mn(x)i+ : The assumptions H1a, b and H2a of lemma

1 hold. Then Fn(Xn) �! 0 a:s:
By H4b, it follows that d(Xn; Bn) �! 0 a:s:

Prove now a second theorem.
Suppose :

(H4d) For all 0 < � < 1, supn supf�<Fn(x)< 1
�g kGn(x)k <1

(H4e) For all � > 0, there exists � > 0 such that
(kx1 � x2k < �)) (supn kGn(x1)�Gn(x2)k < �)
(H8a) For all 0 < � < 1, supn supf�<Fn(x)< 1

�g kMn(x)k <1



(H8b) For all � > 0, there exists � > 0 such that
(kx1 � x2k < �)) (supn kMn(x1)�Mn(x2)k < �)
(H8c) There exist a positive integer r, a sequence of integers (nl), for all

0 < � < 1 an integer L(�) such that nl+1 � nl + r and

b(�) = inf
l>L(�)

inf
fx2K; �<Fnl (x)< 1

�g

X
j2Il

hGj(x);Mj(x)i+ > 0

with Il = fnl; nl + 1; :::; nl+1 � 1g
(H2b)

P
lminj2Il aj =1:

Remark that in the case where Bn = f�g and Fn(x) = kx� �k2, assump-
tions H4d, e hold.

Theorem 5 Assume H2b, H4a, b, c, d, e, H5, H6, H8a, b, c hold ; then in
the set fAnYn �! 0g, Fn(Xn) �! 0 and d(Xn; Bn) �! 0 a:s:

Proof. Following the proof of theorem 3, we have by H4a, c, H5, H6 :
Fn(Xn) �! T and

P1
1 hGn(Xn); anMn(Xn)i+ <1 a:s:

Apply lemma 2 with 'n(x) = hGn(x);Mn(x)i+ :
H1a, b and H3b hold. H1c holds in the set fAnYn �! 0g as

kXn+1 �Xnk = k�(Xn � AnYn)� �Xnk � kXn � AnYn �Xnk = kAnYnk

As ja+ � b+j � ja� bj, we have :

j'n(x1)� 'n(x2)j � jhGn(x1);Mn(x1)i � hGn(x2);Mn(x2)ij
� jhGn(x1);Mn(x1)�Mn(x2)ij

+ jhGn(x1)�Gn(x2);Mn(x2)�Mn(x1)ij
+ jhGn(x1)�Gn(x2);Mn(x1)ij :

By H4d, e and H8a, b, assumption H3a holds.
Then Fn(Xn) �! 0 a:s: By H4b, d(Xn; Bn) �! 0 a:s:

4. Application to the estimation of a quantile interval

Let Z be a real random variable whose distribution function F (t) = P (Z < t)
is unknown. Suppose that there exists an interval (a; b), which is eventually
reduced to a single point, such that : F (t) = �, t 2 (a; b).



Let m � 1 be an integer and (Znj; n � 1; j = 1; :::;m) a set of mutually
independent random variables which have the same law as Z. For all x, de�ne
the random variables Inj(x) and Fnm(x) such that :

Inj(x) = 1 if Znj < x, Inj(x) = 0 otherwise

Fnm(x) =
1

m

mX
j=1

Inj(x):

Then E [Fnm(x)] = E [Inj(x)] = F (x):
De�ne the stochastic approximation process (Xn) such that

Xn+1 = Xn � an(Fnm(Xn)� �):

If znj is the observed value of Znj and xn the value of Xn, Fnm(xn) is the
proportion of elements of fzn1; :::; znmg which are smaller than xn.
Suppose :

(H2b�)
P1

1 an =1
(H2c)

P1
1 a

2
n <1:

Theorem 6 Let d(x; (a; b)) = inffy2(a;b)g jx� yj : Assume H2b�, c hold ; then
d(Xn; (a; b)) �! 0 a:s:

Proof. De�ne the function f such that

f(x) = (x� a)2 if x < a
f(x) = 0 if a � x � b
f(x) = (x� b)2 if x > b:

H4a, b, c hold for Fn = f and Bn = (a; b).
jf 00(x)j � 2, jFnm(x)� �j � 1 ; then Vn � a2n ; H5 holds.
Mn(Xn) = E [Fnm(Xn)� � j Tn] = F (Xn)� � ;
f 0(x)(F (x)� �) � 0, inff�<f(x)< 1

�g f
0(x)(F (x)� �) > 0 ; H6 and H7 hold.

Applying theorem 3 gives d(Xn; (a; b)) �! 0 a:s:

5. Application to linear regression under convex constraints

Consider a sequence (Zn) of observable mutually independent real random
variables.
Suppose that there exist an unknown vector � in Rk, for all n a known

vector bn in Rk and a real random variable Rn with E [Rn] = 0 such that



Zn = b
0
n� +Rn:

Suppose moreover that � belongs to a non-empty closed convex set K of
Rk. For instance :
1) k�k is bounded ;
2) the components of � are non-negative.
Consider the stochastic approximation process (Xn) such that :

Xn+1 = �

�
Xn � an

bn

kbnk2
(b0nXn � Zn)

�
:

Suppose :

(H2b)
P1

1 minj2Il aj =1
(H2c)

P1
1 a

2
n <1

(H2d)
P1

1 a
2
n

E[R2n]
kbnk2

<1

(H9) � = inf l �min
�P

j2Il
bjb

0
j

kbjk2

�
> 0:

Theorem 7 Assume H2b, c, d and H9 hold ; then Xn �! � a:s:

This theorem completes in the case of linear regression results of Albert
and Gardner [1] (p. 103, conjectured theorem).

Proof. Let Yn = b0nXn � Zn = b0n(Xn � �)�Rn and An = an bn
kbnk2

:

As E [Rn j Tn] = E [Rn] = 0, Mn(Xn) =
bnb0n
kbnk2

(Xn � �) a:s:
Remark that, for �xed n, equation Mn(x) = 0 has an in�nity of solutions.
Denote I an identity matrix. De�ne Fn(x) = kx� �k2 ; then :

Gn(x) = 2(x� �); Hn(x) = 2I; Vn = E
�
a2n kYnk

2 j Tn
�
:

Assumptions H4a, b, c, d, e, H6, H8a, b hold.

Vn = E
�
a2n kYnk

2 j Tn
�
= a2n kXn � �k2 + a2n

E [R2n]

kbnk2
:

By H2d, assumption H5 holds.
By H9, assumption H8c holds as

X
j2Il

hGj(x);Mj(x)i+ = 2
X
j2Il

*
x� �;

bjb
0
j

kbjk2
(x� �)

+
� 2� kx� �k2 :



Furthermore, as E [Rn j Tn] = 0 :

E
�
kXn+1 � �k2 j Tn

�
= kXn � �k2 + a2nE

�
kYnk2 j Tn

�
�2an

�
Xn � �;

bnb
0
n

kbnk2
(Xn � �)

�
� (1 + a2n) kXn � �k2 + a2n

E [R2n]

kbnk2
:

E
�
kXn+1 � �k2

�
� (1 + a2n)E

�
kXn � �k2

�
+ a2n

E [R2n]

kbnk2
:

By H2c, d, there exists t � 0 such that E
�
kXn � �k2

�
�! t: Then :

1X
1

E
�
a2n kYnk

2� =
1X
1

�
a2nE

�
kXn � �k2

�
+ a2n

E [R2n]

kbnk2
�
<1 ;

1X
1

a2n kYnk
2 < 1 a:s: ; anYn �! 0 a:s:

Applying theorem 5 gives Xn �! � a:s:
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