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Almost sure convergence of a stochastic approximation process in a convex set
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We consider a stochastic approximation process in a convex set K

where is the projection operator on K, A n a random matrix, a n a positive number, M n a function from K into R k and T n the sub--algebra generated by the events before time n. We prove two theorems of almost sure convergence in the case where the equation M n (x) = 0 has a set of solutions and give two applications.

Introduction

We de…ne a stochastic approximation process (X n ) in a non-empty closed convex subset K of R k , named parameter space ; we consider :

. for n 1, an observable random variable Y n in R p , named observation space ; remark that the observation space may be di¤erent from the parameter space ;

. for n 1, a (k; p) random matrix A n ;

. the projection operator on K ;

. the process (X n ) in K de…ned recursively by

X n+1 = (X n A n Y n )
All random variables are de…ned on a probability space ( ; A; P ). Denote T n the sub--algebra of A generated by the events before time n ; X 1 ; :::X n ; A 1 ; :::; A n ; Y 1 ; :::; Y n 1 are measurable with respect to T n .

Suppose that, for n 1, there exists a measurable function M n from K into R k and a positive number a n such that

E [A n Y n j T n ] = A n E [Y n j T n ] = a n M n (X n ) a:s: Let B n be a set of solutions of the equation M n (x) = 0. De…ne a distance d(x; B) from x in R k to a subset B:
We give in Section 2 two almost sure convergence theorems of d(X n ; B n ) to 0. An application of each theorem is given in Section 3, concerning the estimation of a quantile interval of an unknown probability distribution and the estimation of a linear regression parameter under convex constraints.

In the following, h:; :i and k:k are respectively the usual inner product and norm in R k ; A 0 denotes the transposed matrix of A, min (B) the smallest eigenvalue of B ; the abbreviation a:s: means almost surely.

Lemmas

Let (X n ) be a stochastic process in a subset K of R k . Let (F n ) and (' n ) be two sequences of measurable functions from K into R + and (a n ) a sequence in R + . Suppose : (H1a) There exists a random variable T in R + such that F n (X n ) ! T a:s:

(H1b) P 1 1 a n ' n (X n ) < 1 a:s: (H2a) Whatever 0 < < 1, P 1 1 a n inf fx2K; <Fn(x)< 1 g ' n (x) = +1:
Lemma 1 Assume H1a, b and H2a hold ; then

F n (X n ) ! 0 a.s.
Proof. ! 2 is …xed throughout the proof, belonging to the intersection of the de…ned a:s: convergence sets. Suppose T (!) 6 = 0 and suppress ! writing. By H1a, there exist 0 < 1 < 1 and an integer N ( 1 ) such that for n > N

( 1 ); 1 < F n (X n ) < 1 1 . This implies ' n (X n ) inf n x2K; 1 <Fn(x)< 1 1 o ' n (x) ; then by H2a, 1 X 1 a n ' n (X n ) = 1;
a contradiction with H1b. Thus T (!) = 0: Suppose now : (H1c) kX n+1 X n k ! 0 a:s: (H3a) For all 0 < 1 < 1, for all > 0, there exists > 0 such that

(kx 1 x 2 k < ) ) sup n sup n 1 <Fn(x 1 )< 1 1 o j' n (x 1 ) ' n (x 2 )j < (H3b)
There exist a positive integer r, a sequence of integers (n l ), for all 0 < < 1 an integer L( ) such that n l+1 n l + r and b

( ) = inf l>L( ) inf fx2K; <Fn l (x)< 1 g X j2I l ' j (x) > 0
with I l = fn l ; n l + 1; :::; n l+1 1g (H2b) P l min j2I l a j = 1:

Lemma 2 Assume H1a, b, c, H2b and H3a, b hold ; then F n (X n ) ! 0 a.s.

Proof. ! 2 is …xed throughout the proof, belonging to the intersection of the de…ned a:s: convergence sets. Suppose T (!) 6 = 0. Below ! is omitted. By H1a, there exist 0 < 1 < 1 and an integer N ( 1 ) such that for n > N ( 1 ); 1 < F n (X n ) < 1 1 . By H3b, there exists an integer L( 1 ) such that for l > L( 1 ),

X j2I l ' j (X n l ) > b( 1 ):
It follows that there exists m l 2 I l such that

' m l (X n l ) > b( 1 ) r :
Consider the decomposition

' m l (X m l ) = ' m l (X n l ) + ' m l (X m l ) ' m l (X n l ): ' m l (X m l ) > b( 1 ) r ' m l (X m l ) ' m l (X n l ) :
Let > 0 ; by H3a, there exists > 0 corresponding to 1 and ; by H1c, we have for l su¢ ciently large :

kX m l X n l k < ; 1 < F m l (X m l ) < 1 1 :
By H3a, this implies :

' m l (X m l ) ' m l (X n l ) < ; ' m l (X m l ) > b( 1 ) r :
Choose < b( 1 ) r : By H2b,

P l a m l ' m l (X m l ) = +1. Then X n a n ' n (X n ) = +1;
a contradiction with H1b. Thus T (!) = 0:

Theorems of almost sure convergence

Consider the process (X n ) as de…ned in section 1 :

X n+1 = (X n A n Y n ) E [A n Y n j T n ] = a n M n (X n ) a:s: Denote d(x; B) a distance from x 2 R k to a subset B:
For all n, let F n be a function from R k into R + twice continuously di¤erentiable, with gradient G n and hessian matrix H n ; by the Taylor formula, there exists 0 < n < 1 such that

F n (X n A n Y n ) = F n (X n ) hG n (X n ); A n Y n i+ 1 2 hA n Y n ; H n (X n n A n Y n )A n Y n i Denote V n = 1 2 E [hA n Y n ; H n (X n n A n Y n )A n Y n i j T n ] .
Suppose:

(H4a) For all n, F n is twice continuously di¤erentiable (H4b) For all > 0, there exists ( ) > 0 and for all n, there exists a subset B n of K such that inf V n D n F n (X n ) + E n a:s:

F 1 1n < 1 , P 1 1 n < 1 1 X 1 D n < 1 ; 1 X 1 E

 111111111 n (x) > ( ) (H4c) There exist two sequences of positive numbers ( n ) and ( n ) such that P and for all n and x,F n+1 ( x) (1 + n )F n (x) + n(H5) For all n, there exist two random variables D n and E n in R + , measurable with respect to T n , such that n < 1;

P 1 1 hG n (X n ); a n M n (X n )i < 1 a:s: (H7) For all 0 < < 1, P 1 1 a n inf fx2K; <Fn(x)< 1 g hG n (x); M n (x)i + < 1:

Remark that in the case where B n is reduced to a single element of R k not depending on n, if we take F n (x) = d 2 (x; ) = kx k 2 , then assumptions H4a, b, c hold and G n (x) = 2(x ), H n (x) = 2I (I : identity matrix),

Theorem 3 Assume H4a, b, c, H5, H6 and H7 hold ; then F n (X n ) ! 0 and d(X n ; B n ) ! 0 a:s:

We use in the proof the Robbins-Siegmund lemma [START_REF] Robbins | A convergence theorem for nonnegative almost supermartingales and some applications, Optimizing methods in Statistics[END_REF] : Lemma 4 Let ( ; A; P ) be a probability space and (T n ) an increasing sequence of sub--algebras of A. For n 1, let z n , n , n and n be non-negative

n < 1 a:s: Then lim n !1 z n exists and is …nite and

Proof. By H4a, c and H5, we have :

By H4c, H5 and H6, the assumptions of the preceding lemma hold ; then there exists a random variable T in R + such that F n (X n ) ! T a:s: and

The assumptions H1a, b and H2a of lemma 1 hold. Then F n (X n ) ! 0 a:s: By H4b, it follows that d(X n ; B n ) ! 0 a:s:

Prove now a second theorem. Suppose :

(H4d) For all 0 < < 1, sup n sup f <Fn(x)< 1 g kG n (x)k < 1 (H4e) For all > 0, there exists > 0 such that

There exist a positive integer r, a sequence of integers (n l ), for all 0 < < 1 an integer L( ) such that n l+1 n l + r and b

with I l = fn l ; n l + 1; :::; n l+1 1g (H2b) P l min j2I l a j = 1: Remark that in the case where B n = f g and F n (x) = kx k 2 , assumptions H4d, e hold.

Theorem 5 Assume H2b, H4a, b, c, d, e, H5, H6, H8a, b, c hold ; then in the set

Proof. Following the proof of theorem 3, we have by H4a, c, H5, H6 :

H1a, b and H3b hold. H1c holds in the set fA n Y n ! 0g as

As ja + b + j ja bj, we have :

By H4d, e and H8a, b, assumption H3a holds. Then F n (X n ) ! 0 a:s: By H4b, d(X n ; B n ) ! 0 a:s:

Application to the estimation of a quantile interval

Let Z be a real random variable whose distribution function F (t) = P (Z < t) is unknown. Suppose that there exists an interval (a; b), which is eventually reduced to a single point, such that :

Let m 1 be an integer and (Z nj ; n 1; j = 1; :::; m) a set of mutually independent random variables which have the same law as Z. For all x, de…ne the random variables I nj (x) and F nm (x) such that :

De…ne the stochastic approximation process (X n ) such that

If z nj is the observed value of Z nj and x n the value of X n , F nm (x n ) is the proportion of elements of fz n1 ; :::; z nm g which are smaller than x n . Suppose : 

H4a, b, c hold for

) > 0 ; H6 and H7 hold. Applying theorem 3 gives d(X n ; (a; b)) ! 0 a:s:

Application to linear regression under convex constraints

Consider a sequence (Z n ) of observable mutually independent real random variables.

Suppose that there exist an unknown vector in R k , for all n a known vector b n in R k and a real random variable R n with E [R n ] = 0 such that Z n = b 0 n + R n : Suppose moreover that belongs to a non-empty closed convex set K of R k . For instance :

1) k k is bounded ; 2) the components of are non-negative. Consider the stochastic approximation process (X n ) such that :

Theorem 7 Assume H2b, c, d and H9 hold ; then X n ! a:s:

This theorem completes in the case of linear regression results of Albert and Gardner [START_REF] Albert | Stochastic Approximation and Nonlinear Regression[END_REF] (p. 103, conjectured theorem).

) a:s: Remark that, for …xed n, equation M n (x) = 0 has an in…nity of solutions. Denote I an identity matrix. De…ne F n (x) = kx k 2 ; then :

Assumptions H4a, b, c, d, e, H6, H8a, b hold.

By H2d, assumption H5 holds. By H9, assumption H8c holds as

Furthermore, as E [R n j T n ] = 0 :

By H2c, d, there exists t 0 such that E kX n k 2 ! t: Then :

n kY n k 2 < 1 a:s: ; a n Y n ! 0 a:s:

Applying theorem 5 gives X n ! a:s: