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A CONVERGENT FINITE ELEMENT-FINITE VOLUME

SCHEME FOR THE COMPRESSIBLE STOKES PROBLEM

PART II – THE ISENTROPIC CASE

R. EYMARD, T. GALLOUËT, R. HERBIN, AND J.C. LATCHÉ

Abstract. In this paper, we propose a discretization for the (nonlinearized)
compressible Stokes problem with an equation of state of the form p = ρ

γ

(where p stands for the pressure and ρ for the density). This scheme is based
on Crouzeix-Raviart approximation spaces. The discretization of the momen-
tum balance is obtained by the usual finite element technique. The discrete
mass balance is obtained by a finite volume scheme, with an upwinding of the
density, and two additional stabilization terms. We prove a priori estimates
for the discrete solution, which yield its existence. Then the convergence of the
scheme to a solution of the continuous problem is established. The passage to
the limit in the equation of state requires the a.e. convergence of the density.
It is obtained by adapting at the discrete level the ”effective viscous pressure
lemma” of the theory of compressible Navier-Stokes equations.

1. introduction

Let Ω be a bounded open set of R
d, d = 2 or 3, with a Lipschitz continuous

boundary, and γ > 1. For f ∈ L2(Ω)d and M > 0, we consider the following
problem:

− ∆u + ∇p = f in Ω, u = 0 on ∂Ω,(1.1a)

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫

Ω

ρ(x) dx = M,(1.1b)

p = ργ in Ω.(1.1c)

Definition 1.1. Let f ∈ L2(Ω)d and M > 0. A weak solution of Problem (1.1) is
a function (u, p, ρ) ∈ H1

0(Ω)d × L2(Ω) × L2γ(Ω) satisfying:
∫

Ω

∇u : ∇v dx −

∫

Ω

p div(v) dx =

∫

Ω

f · v dx for all v ∈ (H1
0(Ω))d,(1.2a)

∫

ρu · ∇ϕdx = 0 for all ϕ ∈ W1,∞(Ω),(1.2b)

ρ ≥ 0 a.e. in Ω,

∫

Ω

ρ dx = M, p = ργ a.e. in Ω.(1.2c)
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The main objective of this paper is to present a numerical scheme for the com-
putation of an approximate solution of Problem (1.1) and to prove the convergence
(up to a subsequence, since, up to now, no uniqueness result is available for the
solution of (1.1)) of this approximate solution towards a weak solution of (1.1) (i.e.
a solution of (1.2)) as the mesh size goes to 0.

The proposed numerical scheme combines low order finite element and finite
volume techniques, and is very close to a scheme which was implemented for the
solution of barotropic Navier-Stokes equations in [6] and further extended to two-
phase flows in [8]; the resulting code is today currently used at the French Institut
de Radioprotection et de Sûreté Nucléaire (IRSN) for ”real-life” studies in the nu-
clear safety field. Up to now, stability (in the sense of conservation of the entropy)
is known for these schemes, and numerical experiments show convergence rates
close to one in natural energy norms. Our goal is now to prove their convergence.
This work is a step in this direction, and follows a previous analysis ([7], part I of
the present paper) restricted to the linear equation of state p = ρ. The additional
difficulty tackled here is to prove the a.e. convergence for the density, which necessi-
tates to adapt P.L. Lions’ ”effective viscous pressure trick” [9] at the discrete level.
Finally, for the sake of simplicity, we use here a simplified form of the diffusion
term (−∆u) but it is clear from the subsequent developements that the presented
theory holds for any linear elliptic operator (and in particular for the usual form of
the viscous term for compressible constant viscosities flows).

This paper is organized as follows. In Section 2, we present a simple way to
prove a known preliminary result, namely the convergence (up to a subsequence) of
the weak solution of (1.1) with fn and Mn (instead of f and M) towards a weak
solution of (1.1) as n→ ∞, assuming that fn weakly converges to f in (L2(Ω))d

and Mn converges to M in R. Then, after introducing the discretization (Section 3)
and the proposed scheme (Section 4), we adapt this proof in Section 5 to prove the
convergence of the scheme to a weak solution of Problem (1.1). Finally, for the sake
of completeness, Sections A and B gathers some simple proofs of known lemmas.

Remark 1.2 (Forcing term involving the density). Instead of taking a given function
f in (1.1a), it is possible, in order to take the gravity effects into account, to take
f = ρ g with g ∈ L∞(Ω)d. The convergence results given below are still true.

In this paper, we use the following notations:

if d = 2, curl(v) =
∂v2

∂x1
−
∂v1

∂x2
, and, if d = 3, curl(v) =

















∂v3

∂x2
−
∂v2

∂x3

∂v1

∂x3
−
∂v3

∂x1

∂v2

∂x1
−
∂v1

∂x2

















.

where v is a vector valued function. With these notations, if v ∈ H2(Ω)d and
w ∈ H1(Ω)d, the following identity holds:

(1.3)

∫

Ω

∇v : ∇w dx =

∫

Ω

curl(v) · curl(w) dx +

∫

Ω

div(v) div(w) dx

+

∫

∂Ω

(∇v · n) · w dγ +

∫

∂Ω

curl(v) · (w ∧ n) dγ −

∫

∂Ω

div(v) (w · n) dγ



A FE-FV SCHEME FOR THE ISOTHERMAL COMPRESSIBLE STOKES PROBLEM 3

where, for any vector w and n, we denote by w ∧ n:

if d = 2, w ∧ n = w1 n2 − w2 n1, and, if d = 3, w ∧ n =











w2 n3 − w3 n2

w3 n1 − w1 n3

w1 n2 − w2 n1











.

If v ∈ H1(Ω)d and w ∈ H1
0(Ω)d, this identity boils down to:

(1.4)

∫

Ω

∇v : ∇w dx =

∫

Ω

curl(v) · curl(w) dx +

∫

Ω

div(v) div(w) dx.

2. Continuity with respect to the data

We begin this section by a preliminary lemma, which is a simplified version of
the results of the theory of renormalized solution of the transport equation [9]. The
proof of this lemma is given in section A.

Lemma 2.1. Let Ω be a bounded open set of R
d and γ > 1. Let ρ ∈ L2γ(Ω), ρ ≥ 0

a.e. in Ω and u ∈ H1
0(Ω)d. Assume that (ρ,u) satisfies (1.2b) (which is the weak

form of div(ρu) = 0). Then, for all β ∈ [1, γ],

(2.1)

∫

Ω

ρβdiv(u) dx = 0

We are now in position to prove the following result (which gives the continuity,
up to a subsequence, of the weak solution of (1.1) with respect to the data).

Theorem 2.2. Let f ∈ L2(Ω)d, M > 0 and (fn)n∈N ⊂ L2(Ω)d, (Mn)n∈N ⊂ R
⋆
+

be two sequences satisfying fn → f weakly in L2(Ω)d and Mn → M . For n ∈ N,
let (un, pn, ρn) be a weak solution of (1.1) with fn and Mn (instead of f and M).
Then there exists (u, p, ρ) weak solution of (1.1) such that, up to a subsequence, as
n→ ∞,

• un → u in L2(Ω)d and weakly in H1
0(Ω)d,

• pn → p in Lq(Ω) for any 1 ≤ q < 2 and weakly in L2(Ω),
• ρn → ρ in Lq(Ω) for any 1 ≤ q < 2γ and weakly in L2γ(Ω).

Remark 2.3. Theorem 2.2 is also true for γ = 1, at least with only a weak conver-
gence of pn and ρn. The proof of this result is simpler than the proof given below,
since Step 4 is useless if γ = 1 for the passage to the limit in the equation of state.

Remark 2.4 (Forcing term involving the density). Theorem 2.2 is also true with
fn = ρng and g ∈ L∞(Ω)d given (which correspond to gravity effect). Then, the
limit of fn is f = ρg and the fact that fn converges to f in L2(Ω)d is not a
hypothesis but is proven. The difference in the proof is essentially in the derivation
of the estimates, see Remark 2.5 below.

Proof. The proof of Theorem 2.2 is composed of four steps. In the first one, we
obtain some estimates on (un, pn, ρn). With these estimates we can assume the
convergence, up to a subsequence, of (un, pn, ρn) to some (u, p, ρ). Then, it is quite
easy (Step 2) to prove that (u, p, ρ) satisfies (1.2a)-(1.2b) but it is not easy to prove
that p = ργ (except for γ = 1) since, using the estimates of Step 1, the convergence
of pn and ρn is only weak. In Step 3, we prove the convergence of the integral of
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pnρn to the integral of pρ. This allows in Step 4 to obtain the “strong” convergence
of ρn (or pn) and to conclude the proof.

Step 1. Estimates.

The following equation is satisfied by un and pn:

(2.2)

∫

Ω

∇un : ∇v dx −

∫

Ω

pndiv(v) dx =

∫

Ω

fn · v dx for all v ∈ (H1
0(Ω))d.

Taking v = un in this relation and noting that pn = ργ
n a.e., we may use Lemma

2.1 (with ρn, un and β = γ) to obtain an estimate on un in (H1
0(Ω))d. Precisely

speaking, there exists c1, only depending on the L2−bound of (fn)n∈N and on Ω,
such that:

(2.3) ||un||H1(Ω)d ≤ c1.

In order to obtain a bound for pn in L2(Ω), we now choose vn given by Lemma B.7
with q = pn −m(pn), where m(pn) is the mean value of pn. Taking v = vn in (2.2)
and using

∫

Ω
div(vn) dx = 0 gives:
∫

Ω

(

pn −m(pn)
)2

dx =

∫

Ω

(fn · vn − ∇un : ∇vn) dx.

Since ||vn||H1(Ω)d ≤ c2 ||pn − m(pn)||L2(Ω) and ||un||H1(Ω)d ≤ c1, the preceding
inequality leads to an estimate on ||pn−m(pn)||L2(Ω) , that is the existence of c3, only

depending on the L2−bound of (fn)n∈N and on Ω, such that ||pn −m(pn)||L2(Ω) ≤
c3. We now remark that:

∫

Ω

p
1
γ
n dx =

∫

Ω

ρn dx ≤ sup{Mk, k ∈ N}.

Then, using Lemma B.6 (with q = 2), there exists c4, only depending on the
L2−bound of (fn)n∈N, the bound of (Mn)n∈N, γ and Ω such that:

(2.4) ||pn||L2(Ω) ≤ c4.

Finally, thanks to pn = ργ
n a.e. in Ω, we also have an estimate on ρn in L2γ , namely:

(2.5) ||ρn||L2γ(Ω) ≤ c5 = c
1/γ
4 .

This concludes Step 1.

Remark 2.5 (Forcing term involving the density). In the case where fn = ρn g, with
g ∈ L∞(Ω)d, the estimates on un, pn and ρn are not obtained with the preceding
proof, since the hypotheses of the theorem do not give a direct bound in L2(Ω)d

of the sequence (fn)n∈N. In order to obtain the estimates on un, pn and ρn, we
proceed as follows. We first remark that:

||un||
2
H1(Ω)d =

∫

Ω

ρn g · un dx ≤ ||un||L2(Ω)d ||g||L∞(Ω) ||ρn||L2(Ω) .

Hölder’s Inequality gives:

||ρn||L2(Ω) ≤ ||ρn||
1−α
L1(Ω) ||ρn||

α
L2γ(Ω) ≤M1−α

n ||ρn||
α
L2γ(Ω)

with α = γ/(2γ − 1). Then, there exists c6 only depending on g, γ, Ω and on the
bound of (Mn)n∈N such that:

(2.6) ||un||H1(Ω)d ≤ c6

(∫

Ω

ρ2γ
n dx

)1/(2(2γ−1))

≤ c6 ||pn||
1/(2γ−1)
L2(Ω) .
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Taking v = vn in (2.2) with vn given by Lemma B.7 with q = pn − m(pn) and
using

∫

Ω div(vn) dx = 0 gives:
∫

Ω

(

pn −m(pn)
)2

dx =

∫

Ω

(ρng · vn − ∇un : ∇vn) dx.

Then, we deduce, using (2.6):
∫

Ω

(

pn −m(pn)
)2

dx ≤ c7 ||pn||
1+1/(2γ−1)
L2(Ω) ,

with c7 only depending on g, γ, Ω and on the bound of (Mn)n∈N. This inequality,

together with the fact that (2γ− 1) > 1 and that
∫

Ω
p
1/γ
n dx = Mn, leads to an L2-

bound on pn and therefore to an L2γ-bound on ρn and, with (2.6), to an H1
0-bound

on un.

Step 2. Passing to the limit on the equations (1.1a) and (1.1b).

Thanks to the estimates obtained in Step 1, it is possible to assume (up to a
subsequence) that, as n→ ∞:

un → u in L2(Ω)d and weakly in H1
0(Ω)d,

pn → p weakly in L2(Ω),
ρn → ρ weakly in L2γ(Ω).

Passing to the limit in the first equation satisfied by (un, pn), we obtain that (u, p)
is a solution to (1.2a).
Since un → u in L2(Ω)d and ρn → ρ weakly in L2(Ω), we have ρnun → ρu weakly
in L1(Ω)d. Then (ρ, u) is solution of (1.2b).
The weak convergence of ρn to ρ and the fact that ρn ≥ 0 a.e. in Ω gives that
ρ ≥ 0 a.e. in Ω (indeed, taking ψ = 1ρ<0 as test function gives

∫

Ω
ρψ dx =

limn→∞

∫

Ω
ρnψ dx ≥ 0, which proves that ρψ = 0 a.e.). The weak convergence of

ρn to ρ also gives (taking now ψ = 1 as test function) that
∫

Ω ρ dx = M .
Then (1.2c) is proven except for the fact that p = ργ a.e. in Ω. This is the objective
of the last two steps, where we also prove the strong convergence of ρn and pn.

Step 3. Proving

∫

Ω

ρnpn dx →

∫

Ω

ρp dx.

Since the sequence (ρn)n∈N is bounded in L2(Ω), Lemma B.8 gives the existence of
a bounded sequence (vn)n∈N in H1(Ω)d such that div(vn) = ρn and curl(vn) = 0.
It is possible to assume (up to a subsequence) that vn → v in L2(Ω)d and weakly
in H1(Ω)d. Passing to the limit gives div(v) = ρ and curl(v) = 0.

Let ϕ ∈ C∞
c (Ω) (so that vnϕ ∈ H1

0(Ω)d). Taking v = vnϕ in (2.2) leads to:
∫

Ω

∇un : ∇(vnϕ) dx −

∫

Ω

pn div(vnϕ) dx =

∫

Ω

fn · (vnϕ) dx.

From identity (1.4), we thus get:
∫

Ω

div(un) div(vnϕ) dx +

∫

Ω

curl(un) · curl(vnϕ) dx

−

∫

Ω

pn div(vnϕ) dx =

∫

Ω

fn · (vnϕ) dx.
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The choice of vn gives div(vnϕ) = ρnϕ+ vn ·∇ϕ and curl(vnϕ) = L(ϕ)vn, where
L(ϕ) is a matrix with entries involving the first order derivatives of ϕ. Then, the
preceding equality yields:

∫

Ω

(

div(un) − pn

)

ρn ϕdx +

∫

Ω

div(un)vn · ∇ϕdx

+

∫

curl(un) · L(ϕ)vn dx −

∫

Ω

pnvn · ∇ϕdx =

∫

Ω

fn · (vnϕ) dx.

Thanks to the weak convergence of un in H1
0(Ω)d to u, the weak convergence of pn

in L2(Ω) to p, the weak convergence of fn in L2(Ω)d to f and the convergence of
vn in L2(Ω)d to v, we obtain:

(2.7)

lim
n→∞

∫

Ω

(

div(un) − pn

)

ρn ϕdx =

∫

Ω

f · (vϕ) dx −

∫

Ω

div(u)v · ∇ϕdx

−

∫

Ω

curl(u) · L(ϕ)v dx +

∫

Ω

p v · ∇ϕdx.

But, thanks to Step 2, (u, p) satisfies (1.2a), and thus:
∫

Ω

∇u : ∇(vϕ) dx −

∫

Ω

p div(vϕ) dx =

∫

Ω

f · (vϕ) dx,

or equivalently:
∫

Ω

div(u) div(vϕ) dx+

∫

Ω

curl(u) ·curl(vϕ) dx−

∫

Ω

p div(vϕ) dx =

∫

Ω

f · (vϕ) dx,

which gives (using div(v) = ρ and curl(v) = 0):
∫

Ω

(div(u) − p) ρϕdx +

∫

Ω

div(u)v · ∇ϕdx +

∫

Ω

curl(u) · L(ϕ)v dx

−

∫

Ω

p v · ∇ϕdx =

∫

Ω

f · (vϕ) dx.

Then, with (2.7), we obtain:

(2.8) lim
n→∞

∫

Ω

(

pn − div(un)
)

ρn ϕdx =

∫

Ω

(

p− div(u)
)

ρϕdx.

In (2.8), the function ϕ is an arbitrary element of C∞
c (Ω). We are going to prove

now that it is possible to take ϕ = 1 in this relation. To this goal, we first remark
that, thanks to γ > 1, the sequence ((pn − div(un)) ρn)n∈N is equi-integrable (see
Definition B.1). A simple proof of this assertion is obtained using the fact that
(pn − div(un))n∈N is bounded in L2(Ω), (ρn)n∈N is bounded in L2γ(Ω) and the
following inequality holds for any Borelian subset A of Ω:

∫

A

|
(

pn − div(un)
)

ρn| dx ≤ ||pn − div(un)||L2(Ω) ||ρn||L2γ(Ω) |A|
1/r,

with
1

2
+

1

2γ
+

1

r
= 1 and where |A| stands for the measure of A.

Then, using Lemma B.2, we get:

(2.9) lim
n→∞

∫

Ω

(

pn − div(un)
)

ρn dx =

∫

Ω

(

p− div(u)
)

ρ dx.
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In order to conclude Step 3, it remains to use Lemma 2.1 (with β = 1), which is
possible since div(ρnun) = div(ρu) = 0. It gives:

∫

Ω

ρn div(un) dx =

∫

Ω

ρ div(u) dx = 0.

Then, (2.9) yields:

(2.10) lim
n→∞

∫

Ω

pn ρn dx =

∫

Ω

p ρ dx.

Remark 2.6. For Step 4, the equality in (2.10) is not necessary. It would be sufficient
to have:

lim inf
n→∞

∫

Ω

pn ρn dx ≤

∫

Ω

p ρ dx,

and thus, instead of

∫

Ω

ρn div(un) dx = 0:

lim inf
n→∞

∫

Ω

ρn div(un) dx ≤ 0.

Step 4. Passing to the limit on the EOS and strong convergence of ρn

and pn.

For n ∈ N, let Gn = (ργ
n − ργ)(ρn − ρ). For all n ∈ N, the function Gn belongs to

L1(Ω) and Gn ≥ 0 a.e. in Ω. Futhermore Gn = (pn − ργ)(ρn − ρ) = pnρn − pnρ−
ργρn + ργρ and:

∫

Ω

Gn dx =

∫

Ω

pnρn dx −

∫

Ω

pnρ dx −

∫

Ω

ργρn dx +

∫

Ω

ργρ dx.

Using the weak convergence in L2(Ω) of pn to p and of ρn to ρ, the fact that
ρ, ργ ∈ L2(Ω) and (2.10) gives:

lim
n→∞

∫

Ω

Gn dx = 0,

that is Gn → 0 in L1(Ω). Then, up to a subsequence, we have Gn → 0 a.e. in Ω.
Since y 7→ yγ is an increasing function on R+, we then deduce that ρn → ρ a.e.,
as n→ ∞. Then, we also have pn = ργ

n → ργ a.e.. Since (ρn)n∈N is bounded in
L2γ(Ω) and (pn)n∈N is bounded in L2(Ω), Lemma B.9 (which is classical) gives, as
n→ ∞:

ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

pn → ργ in Lq(Ω) for all 1 ≤ q < 2.

Since we already know that pn → p weakly in L2(Ω), we necessarily have (by
uniqueness of the weak limit in Lq(Ω)) that p = ργ a.e. in Ω. The proof of
Theorem 2.2 is now complete. �
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3. Discrete spaces and relevant lemmata

Let T be a decomposition of the domain Ω in simplices. By E(K), we denote
the set of the edges (d = 2) or faces (d = 3) σ of the element K ∈ T ; for short,
each edge or face will be called an edge hereafter. The set of all edges of the mesh
is denoted by E ; the set of edges included in the boundary of Ω is denoted by Eext

and the set of internal edges (i.e. E \Eext) is denoted by Eint. The decomposition T
is assumed to be regular in the usual sense of the finite element literature (e.g. [2]),
and, in particular, T satisfies the following properties: Ω̄ =

⋃

K∈T K̄; if K, L ∈ T ,
then K̄ ∩ L̄ = ∅, K̄ ∩ L̄ is a vertex or K̄ ∩ L̄ is a common face of K and L, which
is denoted by K|L. For each internal edge of the mesh σ = K|L, nKL stands for
the normal vector of σ, oriented from K to L (so that nKL = −nLK). By |K| and
|σ| we denote the measure, respectively, of an element K and of an edge σ, and hK

and hσ stand for the diameter of K and σ, respectively. We measure the regularity
of the mesh through the parameter θ defined by:

(3.1) θ = inf {
ξK
hK

, K ∈ T } ∪ {
hL

hK
,
hK

hL
, σ = K|L ∈ Eint}

where ξK stands for the diameter of the largest ball included in K. Note that,
∀K ∈ T , ∀σ ∈ E(K), the inequality hσ |σ| ≤ 2 θ−d |K| holds [7, relation (2.2)]; this
relation will be used throughout this paper. Finally, as usual, we denote by h the
quantity maxK∈T hK .

The space discretization relies on the Crouzeix-Raviart element (see [3] for the
seminal paper and, for instance, [4, p. 199–201] for a synthetic presentation). The
reference element is the unit d-simplex and the discrete functional space is the space
P1 of affine polynomials. The degrees of freedom are determined by the following
set of nodal functionals:

(3.2) {Fσ , σ ∈ E(K)} , Fσ(v) = |σ|−1

∫

σ

v dγ

The mapping from the reference element to the actual one is the standard affine
mapping. Finally, the continuity of the average value of the discrete functions (i.e.
Fσ(v) for a discrete function v) across each face of the mesh is required, thus the
discrete space Vh is defined as follows:

(3.3)
Vh = {v ∈ L2(Ω) : ∀K ∈ T , v|K ∈ P1(K), ;

∀σ ∈ Eint, σ = K|L, Fσ(v|K) = Fσ(v|L); ∀σ ∈ Eext, Fσ(v) = 0}.

The space of approximation for the velocity is the space Wh of vector valued func-
tions each component of which belongs to Vh: Wh = (Vh)d. The pressure is ap-
proximated by the space Lh of piecewise constant functions:

Lh =
{

q ∈ L2(Ω) : q|K = constant, ∀K ∈ T
}

Since only the continuity of the integral over each edge of the mesh is imposed,
the functions of Vh are discontinuous through each edge; the discretization is thus
nonconforming in H1(Ω)d. We then define, for 1 ≤ i ≤ d and u ∈ Vh, ∂h,i u as the
function of L2(Ω) which is equal to the derivative of u with respect to the ith space
variable almost everywhere. This notation allows to define the discrete gradient,
denoted by ∇h, for both scalar and vector valued discrete functions and the discrete
divergence of vector valued discrete functions, denoted by divh.
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The Crouzeix-Raviart pair of approximation spaces for the velocity and the pres-
sure is inf-sup stable, in the usual sense for ”piecewise H1” discrete velocities, i.e.
there exists ci > 0 independent of the mesh such that:

∀p ∈ Lh, sup
v∈Wh

∫

Ω

p divh(v) dx

||v||1,b
≥ ci ||p−m(p)||L2(Ω)

where m(p) is the mean value of p over Ω and || · ||1,b stands for the broken Sobolev
H1 semi-norm, which is defined for scalar as well as for vector-valued functions by:

||v||21,b =
∑

K∈T

∫

K

|∇v|2 dx =

∫

Ω

|∇hv|
2 dx

We also define a discrete semi-norm on Lh, similar to the usual H1 semi-norm used
in the finite volume context:

∀p ∈ Lh, |p|2T =
∑

σ∈Eint,
σ=K|L

|σ|

hσ
(pK − pL)2

From the definition (3.2), each velocity degree of freedom can be associated to
an element edge. Consequently, the velocity degrees of freedom are indexed by the
number of the component and the associated edge, thus the set of velocity degrees
of freedom reads:

{vσ,i, σ ∈ Eint, 1 ≤ i ≤ d}

We denote by ϕσ the usual Crouzeix-Raviart shape function associated to σ, i.e.
the scalar function of Vh such that Fσ(ϕσ) = 1 and Fσ′ (ϕσ) = 0, ∀σ′ ∈ E \ {σ}.

Similarly, each degree of freedom for the pressure is associated to a cell K, and
the set of pressure degrees of freedom is denoted by {pK , K ∈ T }.

We define by rh the following interpolation operator:

(3.4)

rh : H1
0(Ω) −→ Vh

u 7→ rhu =
∑

σ∈E

Fσ(u)ϕσ =
∑

σ∈E

|σ|−1

(∫

σ

v dγ

)

ϕσ

This operator naturally extends to vector-valued functions (i.e. to perform the
interpolation from H1

0(Ω)d to Wh), and we keep the same notation rh for both the
scalar and vector case. The properties of rh are gathered in the following lemma.
They are proven in [3].

Theorem 3.1. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (3.1). The interpolation operator rh enjoys
the following properties:

(1) preservation of the divergence:

∀v ∈ H1
0(Ω)d, ∀q ∈ Lh,

∫

Ω

q divh(rhv) dx =

∫

Ω

q div(v) dx

(2) stability:

∀v ∈ H1
0(Ω), ||rhv||1,b ≤ c1(θ0) |v|H1(Ω)
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(3) approximation properties:

∀v ∈ H2(Ω) ∩ H1
0(Ω), ∀K ∈ T ,

||v − rhv||L2(K) + hK ||∇h(v − rhv)||L2(K) ≤ c2(θ0)h
2
K |v|H2(K)

In both above inequalities, the notation ci(θ0) means that the real number ci
only depends on θ0, and, in particular, does not depend on the parameter h char-
acterizing the size of the cells; this notation will be kept throughout the paper.

The following compactness result was proven in [7, Theorem 3.3].

Theorem 3.2. Let (v(n))n∈N be a sequence of functions satisfying the following
assumptions:

(1) ∀n ∈ N, there exists a triangulation of the domain T (n) such that v(n) ∈

V
(n)
h , where V

(n)
h is the space of Crouzeix-Raviart discrete functions asso-

ciated to T (n), as defined by (3.3), and the parameter θ(n) characterizing
the regularity of T (n) is bounded away from zero independently of n,

(2) the sequence (v(n))n∈N is uniformly bounded with respect to the broken
Sobolev H1 semi-norm, i.e.:

∀n ∈ N, ||v(n)||1,b ≤ C

where C is a constant real number and || · ||1,b stands for the broken Sobolev

H1 semi-norm associated to T (n) (with a slight abuse of notation, namely
dropping, for short, the index (n) pointing the dependence of the norm with
respect to the mesh).

Then, when n→ ∞, possibly up to the extraction of a subsequence, the sequence
(v(n))n∈N converges strongly in L2(Ω) to a limit v̄ such that v̄ ∈ H1

0(Ω).

Finally, the following technical lemma, together with its proof, can be found in
[7, lemma 2.4].

Lemma 3.3. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (3.1); let (aσ)σ∈Eint

be a family of real
numbers such that ∀σ ∈ Eint, aσ ≤ 1 and let v be a function of the Crouzeix-Raviart
space Vh associated to T . Then the following bound holds:

∑

σ∈Eint

∣

∣

∣

∣

∫

σ

aσ [v] f dγ

∣

∣

∣

∣

≤ c(θ0)h ||v||1,b |f |H1(Ω) , ∀f ∈ H1
0(Ω).

where [v] stands for the jump of the function v across the edge and the real number
c(θ0) only depends on θ0 and on the domain Ω.

4. The numerical scheme

Let ρ∗ be the mean density, i.e. ρ∗ = M/|Ω| where |Ω| stands for the measure of
the domain Ω. We consider the following numerical scheme for the discretization
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of Problem (1.1):

∀v ∈ Wh,

∫

Ω

∇hu : ∇hv dx −

∫

Ω

p divh(v) dx =

∫

Ω

f · v dx,(4.1a)

∀K ∈ T ,
∑

σ=K|L

v+
σ,K ρK − v−

σ,K ρL + (Tstab,1)K + (Tstab,2)K = 0,(4.1b)

∀K ∈ T , ρK = ̺(pK),(4.1c)

where:

• vσ,K , v+
σ,K and v−

σ,K stands respectively for:

(4.2) vσ,K = |σ|uσ · nKL, v+
σ,K = max(vσ,K , 0), v−

σ,K = −min(vσ,K , 0),

so that vσ,K = v+
σ,K − v−

σ,K ;

• the function ̺ stands for the equation of state: ∀s > 0, ̺(s) = s1/γ ;
• the stabilization terms read, ∀K ∈ T :

(Tstab,1)K = hα |K| (ρK − ρ∗) ,(4.3a)

(Tstab,2)K =
∑

σ=K|L

(hK + hL)ξ |σ|

hσ
(|ρK | + |ρL|)

ζ
(ρK − ρL) ,(4.3b)

with ζ = max(0, 2 − γ).

Equation (4.1a) may be considered as the standard finite element discretization
of Equation (1.2a). Since the pressure is piecewise constant, the finite element
discretization of Relation (1.2b), i.e. the mass balance, is similar to a finite volume
formulation, in which we introduce in (4.1b) the standard first-order upwinding
and two stabilizing terms. The first one, i.e. Tstab,1, guarantees that the integral of
the density over the computational domain is always M (this can easily be seen by
summing (4.1b) for K ∈ T ). The second one, i.e. Tstab,2, seems to be necessary in
the convergence analysis. It may be seen as a finite volume analogue of a continuous
term of the form div(|ρ|ζ∇ρ) weighted by a mesh-dependent coefficient tending to
zero as hξ; note, however, that hσ is not the distance which is usually encountered in
the finite volume discretization of diffusion terms; consequently, the usual restriction
for the mesh when diffusive terms are to be approximated by the two-points finite
volume method (namely, the Delaunay condition) is not required here. We assume
that α ≥ 1 and the convergence analysis uses 0 < ξ < 2.

Remark 4.1 (Forcing term involving the density). To deal with a right hand side
in the first equation of the continuous problem (Equation (1.1a))reading ρ g with
g ∈ L∞(Ω)d, Equation (4.1a) must simply be changed to:

(4.4) ∀v ∈ Wh,

∫

Ω

∇hu : ∇hv dx −

∫

Ω

p divh(v) dx =

∫

Ω

ρ g · v dx.

5. Existence and convergence of approximate solutions

5.1. Existence of a solution and a priori estimates. We begin this section
by a preliminary lemma, the proof of which can be found in [6, section 2]. This
result may be seen as a discrete version of the identity introduced in the theory of
renormalized solution of the transport equation [9, 10].
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Lemma 5.1. Let ρ and ρ̃ be two non-negative functions of Lh, u be a function of
Wh and vσ,K , v+

σ,K and v−
σ,K be given by Equation (4.2). Let φ : [0,+∞) −→ R

be a once continuously differentiable convex function. Then the following estimate
holds:

∑

K∈T

φ′(ρK)





∑

σ=K|L

v+
σ,K ρK − v−

σ,K ρL



 ≥

∫

Ω

(

ρφ′(ρ) − φ(ρ)
)

divh(u) dx.

We are now in position to prove the following result, which is a discrete analog
of Lemma 2.1.

Lemma 5.2. Let T be a triangulation of the computational domain Ω and (u, ρ) ∈
Wh×Lh satisfy the second equation of the scheme, i.e. Equation (4.1b). We assume
ρ ≥ 0. Then, for all β ≥ 1:

∫

Ω

ρβdivh(u) dx ≤ chα,

where the real number c only depends on β, the domain Ω and M .

Proof. Let us first consider the case β > 1. Let the function φ be defined by φ(s) =
sβ (φ is indeed a continuously differentiable convex function). Multiplying (4.1b)
by φ′(ρK), summing over K ∈ T and applying Lemma 5.1 yields T1 + T2 + T3 ≤ 0
with:

T1 = (β − 1)

∫

Ω

ρβdivh(u) dx,

T2 = β
∑

K∈T

hα |K| ρβ−1
K (ρK − ρ∗) ,

T3 = β
∑

K∈T

ρβ−1
K

∑

σ=K|L

(hK + hL)ξ |σ|

hσ
(ρK + ρL)ζ (ρK − ρL) .

By convexity of the function φ, we have:

T2 ≥ hα
∑

K∈T

|K|
(

ρβ
K − (ρ∗)β

)

≥ −|Ω| (ρ∗)β hα.

Reordering the sums in T3, we get:

T3 = β
∑

E∈Eint, σ=K|L

(hK + hL)ξ |σ|

hσ
(ρK + ρL)ζ (ρK − ρL)

(

ρβ−1
K − ρβ−1

L

)

,

and so T3 ≥ 0. Finally, we thus get:
∫

Ω

ρβdivh(u) dx ≤
1

β − 1
|Ω| (ρ∗)β hα,

which concludes the proof for β > 1.

We now turn to the case β = 1. Let ǫ be a positive real number. Choosing now
φ(s) = s log(s+ ǫ) (so sφ′(s) − φ(s) = s2/(s+ ǫ)) yields by the same arguments:

∫

Ω

ρ2

ρ+ ǫ
divh(u) dx ≤ ρ∗ log(ρ∗ + ǫ) |Ω| hα,
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thus, since for any non-negative real number s, |s−
s2

s+ ǫ
| = ǫ

s

s+ ǫ
≤ ǫ:

∫

Ω

ρ divh(u) dx ≤ ρ∗ log(ρ∗ + ǫ) |Ω| hα + ǫ

∫

Ω

|divh(u)| dx.

Since divh(u) is bounded in L1(Ω) (u is a discrete function) and ρ∗ > 0, letting ǫ
tend to zero yields the conclusion. �

The existence of a solution to (4.1) follows, with minor changes to cope with the
diffusion stabilization term Tstab,2, from the theory developed in [6, section 2]. In
this latter paper, it is obtained for fairly general equations of state by a topological
degree argument. We only give here the obtained result, together with a proof of
the a priori estimates verified by the solution, and we refer to [6] for the proof of
existence. The following estimate may be seen as an equivalent for the discrete case
of Step 1 of the proof of theorem 2.2.

Theorem 5.3. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (3.1). The problem (4.1) admits at least
one solution (u, p, ρ) ∈ Wh×Lh×Lh, and any possible solution is such that pK > 0
and ρK > 0, ∀K ∈ T , and satisfies:

(5.1) ||u||1,b + ||p||L2(Ω) + ||ρ||L2γ(Ω) + hξ/2 |ρ|T ≤ C,

where the real number C only depends on the data of the problem Ω, f , M and θ0.

Proof. From [6, section 2], we know that (4.1) admits at least a solution and that, for
any solution, the pressure and the density are positive. Let (u, p, ρ) ∈ Wh×Lh×Lh

be such a solution. On one hand, taking v as test function in (4.1a) yields:

||u||21,b −

∫

Ω

p divh(u) dx =

∫

Ω

f · udx.

On the other hand, multiplying (4.1b) by γ ργ−1
K /(γ − 1), summing over K ∈ T

and invoking Lemma 5.2 yields:
∫

Ω

p divh(u) dx +
hα

γ − 1

∑

K∈T

|K|
(

ργ
K − (ρ∗)γ

)

+
γ

γ − 1

∑

K∈T

ργ−1
K (Tstab,2)K ≤ 0.

Summing these two relations yields:

(5.2) ||u||21,b +
γ

γ − 1

∑

K∈T

ργ−1
K (Tstab,2)K ≤

∫

Ω

f · udx +
1

γ − 1
|Ω| (ρ∗)γ hα.

As in the proof of Lemma 5.2, the last term in the left hand side is easily seen
to be non-negative. By Young’s inequality, we thus obtain a control on ||u||1,b .
Using the inf-sup stability of the discretization, we hence get from (4.1a) a control
of ||p−m(p)||L2(Ω) (where m(p) stands for the mean value of p over Ω). Finally, by
summing equation (4.1b) for K ∈ T , we obtain that the integral of ρ over Ω is M ,
and, as in the continuous case, this yields an estimate for ||p||L2(Ω) (or ||ρ||L2γ(Ω) )
by lemma B.6.
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To conclude the proof, we now need to estimate |ρ|T . Let us first suppose that
γ < 2. By reordering the summations, we get in this case:

∑

K∈T

ργ−1
K (Tstab,2)K =

∑

σ∈Eint,
σ=K|L

(hK + hL)ξ |σ|

hσ
(ρK + ρL)2−γ (ρK − ρL)

(

ργ−1
K − ργ−1

L

)

,

where, without loss of generality, we can assume that ρK ≥ ρL. Since, for γ < 2,
the function s 7→ sγ−1 is concave, we have:

(

ργ−1
K − ργ−1

L

)

≥ (γ − 1) ργ−2
K (ρK − ρL),

and thus:
∑

K∈T

ργ−1
K (Tstab,2)K ≥ (γ − 1)

∑

σ∈Eint,
σ=K|L

(hK + hL)ξ |σ|

hσ
(ρK − ρL)

2
.

Using this inequality in (5.2) concludes the proof for γ < 2. If γ ≥ 2, multiplying
Equation (4.1b) by ρK , sumning over K ∈ T and using Lemma 5.2 yields:

1

2

∫

Ω

ρ2 divh(u) dx +
1

2
hα

∑

K∈T

|K|
(

ρ2
K − (ρ∗)2

)

+
∑

σ∈Eint,
σ=K|L

(hK + hL)ξ |σ|

hσ
(ρK − ρL)

2 ≤ 0,

which concludes the proof since, for γ ≥ 2, ρ is bounded in L4(Ω). �

Remark 5.4 (Forcing term involving the density). This estimate also holds in the
case where f = ρ g, replacing Equation (4.1a) by Equation (4.4). It is proved by
modifying the above aguments as in the continuous case (see remark 2.5).

5.2. Passing to the limit in the mass and momentum balance equations.

The following result may be seen as the equivalent for the discrete case of Step 2
of the proof of theorem 2.2.

Proposition 5.5. Let (T (n))n∈N be a given a sequence of triangulations of Ω.
We assume that hn tends to zero when n→ ∞. In addition, we assume that the
sequence of discretizations is regular, in the sense that there exists θ0 > 0 such

that θn ≥ θ0, ∀n ∈ N. For n ∈ N, we denote by W
(n)
h and L

(n)
h respectively the

discrete spaces for the velocity and the pressure or the density associated to T (n)

and by (un, pn, ρn) ∈ W
(n)
h ×L

(n)
h ×L

(n)
h the corresponding solution to the discrete

problem (4.1), with α ≥ 1 and 0 < ξ < 2. Then:

(1) up to the extraction of a subsequence, the sequence (un)n∈N strongly con-
verges in L2(Ω)d to a limit u ∈ H1

0(Ω)d when n→ ∞, (pn)n∈N converges to
p weakly in L2(Ω) and ρn converges to ρ weakly in L2γ(Ω);

(2) (u, p, ρ) satisfies the equations (1.2a) and (1.2b) of the weak continuous
problem, ρ ≥ 0 a.e. in Ω and

∫

Ω ρ dx = M .

Remark 5.6 (Forcing term involving the density). This convergence result also
holds, without any additional difficulty, in the case where f = ρ g, replacing Equa-
tion (4.1a) by Equation (4.4).
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Proof. The convergence (up to the extraction of a subsequence) of the sequence
(un, pn, ρn) is a consequence of the uniform (with respect to n) estimate of Theorem

5.3, applying Theorem 3.2 to each component u
(m)
i , 1 ≤ i ≤ d. The proof that

the limit satisfies ρ ≥ 0 a.e. in Ω,
∫

Ω
ρ dx = M and Equation (1.2a) is strictly the

same than the proof of the same result for a linear equation of state, i.e. Theorem
6.1 in [7]. For Equation (1.2b), it only differs from this latter by the treatment of
the (slightly) different second stabilization term Tstab,2, but, once again, following
the same arguments shows the convergence of the corresponding term to zero. This
computation is not reproduced here. �

5.3. Passing to the limit in the equation of state. This section gathers the
analogues for the discrete case of Step 3 and Step 4 of the proof of theorem 2.2. It
begins with some technical preliminaries.

Definition 5.7. Let T be a triangulation of the domain Ω and A be the set of
the vertices of the mesh. For a ∈ A, we denote by Na ⊂ T the set of the elements
K ∈ T of which a is a vertex. Let q be a function of Lh. We denote by ihq the
function defined as follows:

(5.3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ihq ∈ C0(Ω),

∀K ∈ T , the restriction to K of ihq is linear,

∀a ∈ A, ihq(a) =
1

card(Na)

∑

K∈Na

qK .

In other words, the function ihq belongs to the usual space of piecewise linear
continuous finite element functions (often called the P1 finite element space), and
corresponds to some regularization of q. The operator ih satisfies the following
stability and approximation results.

Lemma 5.8. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (3.1). Let q ∈ Lh be given. Then:

|ihq|H1(Ω) ≤ cs |q|T(5.4)

||ihq − q||L2(Ω) ≤ ca h |q|T(5.5)

where the real numbers cs and ca only depends on θ0.

Proof. Let q be a function of Lh. For K ∈ T , we denote by AK the set of the
vertices of K and, for a ∈ A, we denote by ψa the P1 shape function associated to
a. By definition of the operator ih, we get:

|ihq|
2
H1(Ω) =

∑

K∈T

∫

K

∣

∣

∣

∣

∣

∑

a∈AK

ihq(a)∇ψa(x)

∣

∣

∣

∣

∣

2

dx.

Since, over each cell K, we have
∑

a∈AK
ψa(x) = 1, the preceding relation yields:

|ihq|
2
H1(Ω) =

∑

K∈T

∫

K

∣

∣

∣

∣

∣

∑

a∈AK

(

ihq(a) − qK
)

∇ψa(x)

∣

∣

∣

∣

∣

2

dx

=
∑

K∈T

∫

K

∣

∣

∣

∣

∣

∑

a∈AK

1

card(Na)

∑

L∈Na

(qL − qK) ∇ψa(x)

∣

∣

∣

∣

∣

2

dx
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and so:

|ihq|
2
H1(Ω) ≤ c1

∑

K∈T

|K|

h2
K

∑

a∈AK

∑

L∈Na

(qL − qK)2,

where the real number c1 only depends on the regularity of the mesh (i.e. the
parameter θ0). Since, still by regularity of the mesh, a vertex belongs to a bounded
number of cells, the quantity ihq(a)− qK can be developped as a sum of differences
qL − qM involving a bounded number of terms and such that L and M are two
neighbouring control volumes. Invoking once again the regularity of the mesh
(and, in particular, the fact that, for two neighbouring control volumes K and
L, the ratio hK/hL is bounded), we obtain, for each edge σ separating two cells
involved in one of the terms of this sum, the inequality |K|/h2

K ≤ c2 |σ|/dσ. This
yields the estimate (5.4) of this lemma.

We now turn to the bound (5.5). We have:

||ihq − q||2L2(Ω) =
∑

K∈T

∫

K

(

qK −
∑

a∈AK

ihq(a) ψa(x)
)2

dx,

and so, once again since ∀x ∈ K,
∑

a∈AK
ψa(x) = 1:

||ihq − q||2L2(Ω) =
∑

K∈T

∫

K

(

∑

a∈AK

(qK − ihq(a)) ψa(x)
)2

dx

=
∑

K∈T

∫

K

(

∑

a∈AK

1

card(Na)

∑

L∈Na

(qK − qL) ψa(x)
)2

dx

≤ c3
∑

K∈T

|K|
∑

a∈AK

∑

L∈Na

(qK − qL)2,

where c3 only depends on the regularity of the mesh. The result then follows by
the same arguments as previously (developping the difference qK − qL as a a sum
of differences between the values of q over two neighbouring cells and invoking the
regularity of the mesh). �

Proposition 5.9. Let (T (n))n∈N be a sequence of discretizations satisfying the the
same assumptions that in Proposition 5.5, and (un, pn, ρn)n∈N be the corresponding
sequence of discrete solutions. Let (u, p, ρ) ∈ H1

0(Ω)d ×L2(Ω)×L2γ(Ω) be the limit
(up to the extraction of a subsequence and in the sense of Proposition 5.5) of this
sequence of solutions when n→ ∞. Let (qn)n∈N be a sequence of functions such

that, ∀n ∈ N, qn ∈ L
(n)
h and:

|qn|T ≤ c h−ξ
n ,

where c is a positive real number and ξ is such that ξ < 1. We assume in addition
that the sequence (qn)n∈N is bounded in L2(Ω) and weakly converges in L2(Ω) to
q ∈ L2(Ω). Then:

∀ϕ ∈ C∞
c (Ω), lim

n→∞

∫

Ω

(

divh(un) − pn

)

qnϕdx =

∫

Ω

(

div(u) − p
)

qϕdx.

Proof. Throughout this proof, we denote by ci, i ∈ N a positive real number possibly
depending on θ0, Ω and the data of the problem, but independent on n.

Let us consider the sequence (ihqn)n∈N of functions of H1(Ω), where ih is the op-
erator given by Definition 5.7. Since qn is bounded in L2(Ω) and |qn|T ≤ Ch−ξ,
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thanks to properties (5.4)–(5.5) and the regularity of the sequence of discretizations
(∀n ∈ N, θn ≥ θ), we have:

(5.6) ||ihqn||L2(Ω) ≤ c1, ||ihqn||H1(Ω) ≤ c2 h
−ξ
n and ||ihqn − qn||L2(Ω) ≤ c3 h

1−ξ
n .

Let (wn)n∈N be the sequence of functions of H1(Ω)d defined from (ihqn)n∈N by
Lemma B.8. We thus have:

wn ∈ H2(Ω)d, curl(wn) = 0 and div(wn) = ihqn a.e. in Ω.

In addition, Inequalities (5.6) yield:

||wn||H1(Ω)d ≤ c4 and ||wn||H2(Ω)d ≤ c5 h
−ξ
n ,

and thus, up to the extraction of a subsequence, the sequence (wn)n∈N converges
to w ∈ H1(Ω)d strongly in L2(Ω)d and weakly in H1(Ω)d; in addition, it is easy to
see that the function w satisfies curl(w) = 0 and div(w) = q a.e. in Ω.

Let ϕ be a function of C∞
c (Ω), and let us take r

(n)
h (ϕwn) as test function in the

first relation of the discrete problem (4.1a) associated to T (n):
∫

Ω

∇hun : ∇h(r
(n)
h (ϕwn)) dx−

∫

Ω

pn divh(r
(n)
h (ϕwn)) dx =

∫

Ω

f · (r
(n)
h (ϕwn)) dx.

We thus get:

(5.7)

∫

Ω

∇hun : ∇(ϕwn) dx −

∫

Ω

pn div(ϕwn) dx =

∫

Ω

f · (ϕwn) dx +RΩ,n,

where:

RΩ,n = −

∫

Ω

∇hun : ∇hδn dx +

∫

Ω

pn divh(δn) dx +

∫

Ω

f · δn dx,

with δn = r
(n)
h (ϕwn)− ϕwn. Thanks to the approximation properties of the oper-

ator r
(n)
h (Theorem 3.1), we get:

||δn||H1(Ω)d ≤ c6 hn ||ϕwn||H2(Ω)d ≤ c7 h
1−ξ
n ,

and thus, since the sequences (∇hun)n∈N and (pn)n∈N are bounded in L2(Ω)d×d

and L2(Ω) respectively:

(5.8) |RΩ,n| ≤ c8 h
1−ξ
n .

Returning now to Equation (5.7) and applying the identity (1.3) over each control
volume, we get:

∫

Ω

curlh(un) · curl(ϕwn) dx +

∫

Ω

divh(un) div(ϕwn) dx

−

∫

Ω

pn div(ϕwn) dx =

∫

Ω

f · (ϕwn) dx +RΩ,n +R∂T ,n,

where the term R∂T ,n gathering the boundary terms appearing in (1.3) has the
following structure:

R∂T ,n =
∑

σ∈Eint

∫

σ

∑

1≤i,j,k≤d

cσ,i,j,k [un]i (∇(ϕwn))j,k dγ,

and the family of real numbers cσ,i,j,k is uniformly bounded. Applying lemma 3.3,
we thus get:

(5.9) |R∂T ,n| ≤ c9 hn ||un||1,b ||ϕwn||H2(Ω)d ≤ c10 h
1−ξ
n .
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The choice of wn gives div(ϕwn) = ihqn ϕ + wn · ∇ϕ and curl(ϕwn) = L(ϕ)wn,
where L(ϕ) is a matrix with entries involving some first order derivatives of ϕ.
Thus, we get:
∫

Ω

curlh(un) · L(ϕ)wn dx +

∫

Ω

divh(un) (qnϕ+ wn · ∇ϕ) dx

−

∫

Ω

pn (qnϕ+ wn · ∇ϕ) dx =

∫

Ω

f · (ϕwn) dx +RΩ,n +R∂T ,n +Rih,n,

where Rih,n reads:

Rih,n =

∫

Ω

(

divh(un) − pn

)

(ihqn − qn) ϕdx.

Thanks to the fact that both divh(un) and pn are bounded in L2(Ω), the third
inequality in (5.6) yields:

(5.10) |Rih,n| ≤ c11 h
1−ξ
n .

Using the estimates (5.8), (5.9) and (5.10), together with the convergence properties
of the sequences (un)n∈N, (wn)n∈N and (pn)n∈N to pass to the limit when n→ ∞
in the preceding equation, we get:

lim
n→∞

∫

Ω

(

divh(un) − pn

)

qnϕdx = −

∫

Ω

curl(u) · L(ϕ)w dx

−

∫

Ω

div(u) (w · ∇ϕ) dx +

∫

Ω

p w · ∇ϕdx +

∫

Ω

f · (ϕw) dx.

But, from Proposition 5.5, we know that u and p satisfies Equation (1.2a). Taking
v = ϕw in this last relation and using curl(w) = 0 and div(w) = q yields:

∫

Ω

(

div(u) − p
)

qϕdx = −

∫

Ω

curl(u) · L(ϕ)w dx

−

∫

Ω

div(u) (w · ∇ϕdx +

∫

Ω

p w · ∇ϕ) dx +

∫

Ω

f · (ϕw) dx,

which concludes the proof. �

Proposition 5.10. Let (T (n))n∈N be a sequence of discretizations satisfying the the
same assumptions that in Proposition 5.5, and (un, pn, ρn)n∈N be the corresponding
sequence of discrete solutions. Let (u, p, ρ) ∈ H1

0(Ω)d ×L2(Ω)×L2γ(Ω) be the limit
(up to the extraction of a subsequence and in the sense of Proposition 5.5) of this
sequence of solutions when n→ ∞. Then we have:

(5.11) lim
n→∞

∫

Ω

(

divh(un) − pn

)

ρn dx =

∫

Ω

(div(u) − p) ρ dx

Proof. By the stability result of Theorem 5.3, the sequence (ρn)n∈N satisfies:

∀n ∈ N, ||ρn||L2γ(Ω) + hξ |ρn|T ≤ C.

Hence Proposition 5.9 with qn = ρn and q = ρ applies and thus:

∀η ∈ C∞
c (Ω), lim

n→∞

∫

Ω

(

divh(un) − pn

)

ρnη dx =

∫

Ω

(

div(u) − p
)

ρη dx.

As in Step 3 of the proof of Theorem 2.2, since the sequence (divh(un) − pn)n∈N

is bounded in L2(Ω) and (ρn)n∈N is bounded in L2γ(Ω), the sequence ((divh(un)−
pn) ρn)n∈N is equi-integrable, and thus, Lemma B.2 yields the conclusion. �
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This result concludes the analogue at the discrete level of Step 3 in the proof
of theorem 2.2. Let us now state the final convergence result, the proof of which
closely follows Step 4.

Theorem 5.11. Let a sequence of triangulations (T (n))n∈N of Ω be given. We
assume that hn tends to zero when n→ ∞. In addition, we assume that the se-
quence of discretizations is regular, in the sense that there exists θ0 > 0 such

that θn ≥ θ0, ∀n ∈ N. For n ∈ N, we denote by W
(n)
h and L

(n)
h respectively

the discrete spaces for the velocity and the pressure associated to T (n) and by

(un, pn, ρn) ∈ W
(n)
h ×L

(n)
h ×L

(n)
h the corresponding solution to the discrete problem

(4.1), with α ≥ 1 and 1 < ξ < 2. Then, up to the extraction of a subsequence, when
n→ ∞:

(1) the sequence (un)n∈N strongly converges in L2(Ω)d to a limit u ∈ H1
0(Ω)d,

(2) the sequence (pn)n∈N converges weakly in L2(Ω) and strongly in Lp(Ω), 1 ≤
p < 2 to p ∈ L2(Ω),

(3) the sequence (ρn)n∈N converges weakly in L2γ(Ω) and strongly in Lp(Ω), 1 ≤
p < 2γ to ρ ∈ L2γ(Ω),

(4) (u, p, ρ) are solution to Problem (1.2a)–(1.2c).

Remark 5.12 (Forcing term involving the density). This convergence result also
holds in the case where f = ρ g, replacing for the scheme Equation (4.1a) by
Equation (4.4). The only additional difficulty lies in the solution estimates, and
the modification of their proof is explained in remark 2.5.

Proof. Since, by Proposition 5.5, we know that the weak limit (u, p, ρ) exists and
satisfies the weak momentum and mass balance equations (1.2a)–(1.2b), together
with ρ ≥ 0 a.e. in Ω and

∫

Ω
ρ dx = M , we only need here to prove the strong

convergence of (pn)n∈N and (ρn)n∈N, together with the fact that the equation of
state is satisfied:

p = ργ a.e. in Ω.

To this purpose, we mimic in this proof Step 4 of theorem 2.2.

Thanks to the fact that ρ ∈ L2γ(Ω), ρ ≥ 0 a.e. in Ω, u ∈ (H1
0(Ω))d and that (ρ,u)

satisfies (1.2b) (which is the weak form of div(ρu) = 0), we may apply Lemma 2.1
to obtain:

(5.12)

∫

Ω

ρ div(u) dx = 0.

As in the proof of Theorem 2.2, we now consider the sequence (Gn)n∈N with Gn =
(ργ

n −ργ)(ρn −ρ). For all n ∈ N, the function Gn belongs to L1(Ω) and Gn ≥ 0 a.e.
in Ω. Futhermore, expanding the product in Gn, we get:

∫

Ω

Gn dx = T1,n + T2,n + T3,n

with:

T1,n =

∫

Ω

pnρn dx −

∫

Ω

pρ dx

T2,n =

∫

Ω

pρ dx−

∫

Ω

pnρ dx

T3,n =

∫

Ω

ργρ dx −

∫

Ω

ργρn dx.
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Using the weak convergence in L2(Ω) of pn to p and of ρn to ρ, we see that both
T2,n and T3,n tends to zero. In addition, from (5.11) and using (5.12), we have:

lim
n→∞

∫

Ω

(

pn − divh(un)
)

ρn dx −

∫

Ω

p ρ dx = 0.

Lemma 5.2 yields:

lim sup
n→∞

∫

Ω

divh(un) ρn dx ≤ 0.

Hence:

lim sup
n→∞

∫

Ω

pn ρn dx ≤

∫

Ω

p ρ dx.

Thus, lim supn→∞

∫

Ω
Gn dx ≤ 0 and, since Gn ≥ 0 a.e., Gn → 0 in L1(Ω). By

strictly the same arguments as in the end of the proof of Theorem 2.2, we thus
obtain that p = ργ a.e. in Ω. Using Proposition 5.5, the proof of the theorem is
complete. �

6. Discussion

This paper extends to the case where the equation of state reads p = ργ the
convergence results proven in [7] for the linear law p = ρ. To our knowledge, these
convergence analyses seem to be the first results of this kind for the compress-
ible Stokes problem. Beside the convergence of the scheme, they also provide an
existence result for solutions of the continuous problem (which could also be de-
rived from the continuous existence theory ingredients for the steady Navier-Stokes
equations, as stated in [9, p. 162]).

A puzzling fact is that the present theory relies on two ingredients which are usu-
ally not present in actual implementations. Firstly, the stabilization term Tstab,2 is
used in two of our proofs: first to ensure the convergence of the discretization of
the mass convection flux div(ρu) and, second, for the proof of the discrete ”effec-
tive viscous pressure” lemma (Proposition 5.9). To our knowledge, this term has
never been introduced elsewhere, and in particular never appears in the schemes
implemented in ”real-life” computer codes. Secondly, the control of the pressure in
some Lq(Ω) space with q > 1 (here in L2(Ω)) relies on the stability of the discrete
gradient (i.e. the satisfaction of the so-called discrete inf-sup condition), which is
not verified by colocated discretizations; note that this argument is not needed for
the stability of the scheme (see the proof of a priori estimates here and [6, 5] for
stability studies of schemes for the Navier-Stokes equations). Assessing the effective
relevance of these requirements for the discretization should deserve more work in
the future.

An easy extension of this work consists in replacing the diffusive term −∆u in
(1.1) by its complete expression −µ∆u − µ/3 ∇(divu) with µ > 0 (i.e. the usual
form of the divergence of the shear stress tensor in a constant viscosity compressible
flow). Concerning higher order approximation issues, let us note that the fact that
the pressure is approximated by a piecewise constant function appears crucial in
both stability and convergence proofs: extending this study to higher degree finite
element discretizations thus certainly represents a difficult task. Finally, let us
mention that an extension of the present work to the MAC scheme is underway.
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Appendix A. Proof of lemma 2.1

Proof. We handle the proof of this lemma in two steps.

Step 1. We assume in this step that there exists some α > 0 such that ρ ≥ α
a.e. in Ω.

Let us first consider the case of a regular function ρ, say ρ ∈ C1(Ω̄). In this case, if
1 < β ≤ γ, we take ϕ = ρβ−1 in (1.2b) which yields:

∫

Ω

ρβ−1u · ∇ρ dx = 0,

or, equivalently:

0 =

∫

Ω

u · ∇ρβ dx

and thus (2.1), using the boundary condition on u. Assume now that β = 1. A
first way to prove (2.1) in this case is to pass to the limit, as n→ ∞, on (2.1) with
β = 1 + 1/n (and n ≥ n0, 1/n0 ≤ γ − 1). A second way (which is also valid if
γ = 1) is to take ϕ = ln(ρ) in (1.2b). We obtain:

0 =

∫

Ω

u · ∇ρ dx =

∫

Ω

ρ div(u) dx.

This simple proof, which works for a regular function ρ, is adapted in Section 5 in
a discrete setting, the discretization playing a similar role to the regularization.

We now have to prove (2.1) without assuming regularity of ρ. Let B be an open
ball containing Ω̄. Taking u = 0 in R

d \ Ω, ρ = α in B \ Ω and ρ = 0 in R
d \ B,

we have ρ ∈ L2γ(Rd), ρ ≥ 0 a.e. in R
d, ρ ≥ α a.e. in B and u ∈ H1(Rd)d. We also

deduce from (1.2b):

(A.1)

∫

Rd

ρu · ∇ϕdx = 0 for all ϕ ∈ C1(Rd)

Let (rn)n∈N⋆ be a sequence of mollifiers, that is:

(A.2)
r ∈ C∞

c (Rd,R),

∫

Rd

r dx = 1, r ≥ 0 in R
d

and, for n ∈ N
⋆, x ∈ R

d, rn(x) = ndr(nx).

For n ∈ N
⋆, we set ρn = ρ ⋆ rn and (ρu)n = (ρu) ⋆ rn. Thanks to (A.1), we have

div((ρu)n) = 0 in R
d. Since u ∈ H1(Rd)d, and ρ ∈ L2γ(Rd), we will prove in

Lemma B.4 that div((ρu)n−ρnu) → 0 weakly in L(2γ)/(γ+1)(Rd) as n→ ∞. Then,
if (qn)n∈N⋆ is a converging sequence in L(2γ)/(γ−1)(Rd), we have:

−

∫

Rd

div(ρnu) qn dx =

∫

Rd

div((ρu)n − ρnu) qn dx → 0 as n→ ∞.

Let 1 < β ≤ γ. Taking qn = ρβ−1
n (which is actually a converging sequence in

L(2γ)/(γ−1)(Rd), which converges towards ρβ−1) yields:

(A.3) −

∫

Ω

div(ρnu) ρβ−1
n dx = −

∫

Rd

div(ρnu) ρβ−1
n dx → 0 as n→ ∞.

The function ρβ−1
n belongs to C1(Ω̄), at least for n large enough, since ρ ≥ α in

B ⊃ Ω̄. Then, (A.3) reads:
∫

Ω

ρβ−1
n u · ∇ρn dx → 0 as n→ ∞,
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or, equivalently:
∫

Ω

ρβ
ndiv(u) dx = −

∫

Ω

u · ∇ρβ
n dx → 0 as n→ ∞.

As n→ ∞, we have ρn → ρ in L2γ(Ω) and therefore ρβ
n → ρβ in L2(Ω). Then:

∫

Ω

ρβ
n div(u) dx →

∫

Ω

ρβ div(u) dx,

and we obtain (2.1).

As in the case of a regular ρ, it remains to prove (2.1) if β = 1. A simple way
to do so is to pass to the limit, as n→ ∞, on (2.1) with β = 1 + 1/n (and n ≥ n0,
1/n0 ≤ γ − 1).

Step 2, General Case. Let α > 0 and set ρα = ρ+α, so that ρα ≥ α a.e.. We
begin by using, for a fixed α > 0, the same proof as in Step 1, except that div(ραu)
is not equal to 0 since div(ραu) = α div(u). Setting, for simplicity, ρ̄ = ρα, we
proceed as in Step 1. Taking u = 0 in R

d \ Ω, ρ̄ = α in B \ Ω and ρ̄ = 0 in R
d \B,

we have ρ̄ ∈ L2γ(Rd), ρ̄ ≥ 0 a.e. in R
d, ρ̄ ≥ α a.e. in B and u ∈ H1(Rd)d. We also

deduce from (1.2b):

(A.4)

∫

Rd

ρ̄u · ∇ϕdx =

∫

Rd

αu · ∇ϕdx for all ϕ ∈ C1(Rd),

which gives div(ρ̄u) = h (in the sense of distributions) with h = αdiv(u) (which is
a function belonging to L2(Rd)).

For n ∈ N
⋆, we set ρ̄n = ρ̄ ⋆ rn and (ρ̄u)n = (ρ̄u) ⋆ rn. Thanks to (A.4), we

have div((ρ̄u)n) = h ⋆ rn in R
d (note that h ⋆ rn tends to h in L2(Rd) as n→ ∞).

Since u ∈ H1(Rd)d, and ρ̄ ∈ L2γ(Rd), Lemma B.4 gives that div((ρ̄u)n − ρ̄nu) → 0
weakly in L2γ/(γ+1)(Rd) as n→ ∞. Then, if (qn)n∈N⋆ is a converging sequence in
L2γ/(γ−1)(Rd) and in L2(Rd) to some q, we have:

−

∫

Rd

div(ρ̄nu) qn dx =

∫

Rd

div((ρ̄u)n − ρ̄nu) qn dx −

∫

Rd

(h ⋆ rn) qn dx

→ −

∫

Rd

h q dx as n→ ∞.

Let 1 < β ≤ γ. Taking qn = ρ̄β−1
n , which actually converges in L2γ/(γ−1)(Rd) and

in L2(Rd) towards ρ̄β−1, yields:

(A.5)
−

∫

Ω

div(ρ̄nu)ρ̄β−1
n dx = −

∫

Rd

div(ρ̄nu)ρ̄β−1
n dx

→ −

∫

Rd

h ρ̄β−1 dx as n→ ∞.

The function ρ̄β−1
n belongs to C1(Ω̄), at least for n large enough, since ρ̄ ≥ α in

B ⊃ Ω̄. Then, (A.5) reads:

(β − 1)

∫

Ω

ρ̄β−1
n u · ∇ρ̄n dx →

∫

Rd

h ρ̄β−1 dx as n→ ∞,

or, equivalently:

β − 1

β

∫

Ω

ρ̄β
n div(u) dx → −

∫

Rd

h ρ̄β−1 dx as n→ ∞.
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As n→ ∞, we have ρ̄n → ρ̄ in L2γ(Ω) and therefore ρ̄β
n → ρ̄β in L2(Ω). Then:

∫

Ω

ρ̄β
n div(u) dx →

∫

Ω

ρ̄β div(u) dx

and we obtain:
β − 1

β

∫

Ω

ρ̄β div(u) dx = −

∫

Rd

h ρ̄β−1 dx.

Replacing ρ̄ by ρ+ α and h by α div(u) gives, for all α > 0:

β − 1

β

∫

Ω

(ρ+ α)β div(u) dx = −

∫

Ω

α div(u) (ρ+ α)β−1 dx.

As α→ 0, the L2(Ω)−convergence of (ρ+α)β and (ρ+α)β−1 towards ρβ and ρβ−1

leads to (2.1).

Once again, it remains to prove (2.1) if β = 1, which can be done passing to the
limit, as n→ ∞, on (2.1) with β = 1 + 1/n (and n ≥ n0, 1/n0 ≤ γ − 1). �

Appendix B. Lemmata

Definition B.1. A sequence (Fn)n∈N ⊂ L1(Ω) is equi-integrable if:

lim
λd(A)→0

∫

A

|Fn| dx = 0, uniformly with respect to n ∈ N,

where λd(A) denotes the d−dimensional Lebesgue measure of the Borelian subset
A ⊂ Ω.

Lemma B.2. Let (Fn)n∈N ⊂ L1(Ω) be an equi-integrable sequence, and F be a
function of L1(Ω). We assume that:

(B.1) lim
n→∞

∫

Ω

Fnϕdx =

∫

Ω

Fϕdx for all ϕ ∈ C∞
c (Ω)

Then:

lim
n→∞

∫

Ω

Fn dx =

∫

Ω

F dx

Proof. Let ǫ be a positive real number. Using the equi-integrability of (Fn)n∈N and
F ∈ L1(Ω), there exists η > 0 such that, for any Borelian subset A of Ω:

(B.2) λd(A) ≤ η, n ∈ N ⇒

∫

A

|Fn| dx ≤ ǫ and

∫

A

|F | dx ≤ ǫ.

LetK be a compact subset of Ω. Then, there exists ϕ ∈ C∞
c (Ω) such that 0 ≤ ϕ ≤ 1

in Ω, ϕ = 1 in K and λd(Ω \K) ≤ η and we obtain, for all n ∈ N,
∫

Ω

(Fn − F ) dx =

∫

Ω

(Fn − F )(1 − ϕ) dx +

∫

Ω

(Fn − F )ϕdx,

which gives, with (B.2) and A = Ω \K,

|

∫

Ω

(Fn − F ) dx| ≤ 2ǫ+ |

∫

Ω

(Fn − F )ϕdx|.

Finally, (B.1) gives the existence of n0 ∈ N such that:

n ≥ n0 ⇒ |

∫

Ω

(Fn − F ) dx| ≤ 3ǫ.

which concludes the proof. �
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Remark B.3. Let F ∈ L1(Ω) and (Fn)n∈N ⊂ L1(Ω) be an equi-integrable sequence.
The fact that:

∫

Ω

Fnϕdx →

∫

Ω

Fϕdx for all ϕ ∈ C∞
c (Ω) ⇒

∫

Ω

Fn dx →

∫

Ω

F dx

(or more generally that Fn → F weakly in L1(Ω)) can also be proven using the
Dunford-Pettis theorem (a nice proof of which uses Fatou’s Lemma and Baire’s The-
orem) which states that the equi-integrability of (Fn)n∈N gives the weak sequential
compactness of (Fn)n∈N in L1(Ω).

Lemma B.4. Let γ > 1, ρ ∈ L2γ(Rd), and u ∈ H1(Rd)d. Let (rn)n∈N⋆ be a
sequence of mollifiers as given by (A.2) and, for n ∈ N

⋆, ρn = ρ ⋆ rn and (ρu)n =
(ρu) ⋆ rn. Then, [(ρu)n − ρnu] → 0 weakly in W1,(2γ)/(γ+1)(Rd)d (which gives, in
particular, that div((ρu)n − ρnu) → 0 weakly in L(2γ)/(γ+1)(Rd)).

Proof. First, we remark that ρn → ρ in L2γ(Rd) as n→ ∞. Let δ = 2γ/(γ + 1).
Since u ∈ L2(Rd)d, we deduce ρnu → ρu in Lδ(Rd)d as n→ ∞. Since ρu ∈
Lδ(Rd)d, (ρu)n → ρu in Lδ(Rd)d as n→ ∞. This gives [(ρu)n − ρnu] → 0 in
Lδ(Rd)d. Then, in order to prove the lemma, thanks to the reflexivity of W1,δ(Rd),
we only have to prove that the sequence ((ρu)n−ρnu)n∈N⋆ is bounded in W1,δ(Rd)d.
Then, we only have to prove that, for any i, j ∈ {1, . . . , d} (denoting by u1, . . . ,ud

the components of u), the sequence:

(∂i[(ρuj)n − ρnuj ])n∈N⋆

is bounded in Lδ(Rd) (where ∂i denotes the derivative with respect to xi).

Let i, j ∈ {1, . . . , d} and n ∈ N
⋆. We have:

∂i[(ρuj)n − ρnuj ] = (ρuj) ⋆ ∂irn − (ρ ⋆ ∂irn) uj − ρn ⋆ ∂iuj = Fn +Gn,

with

Fn = (ρuj) ⋆ ∂irn − (ρ ⋆ ∂irn) uj and Gn = ρn ⋆ ∂iuj.

The sequence (Gn)n∈N⋆ is bounded in Lδ(Rd) since:

||Gn||Lδ(Rd) ≤ ||ρn||L2γ(Rd) ||∂iuj ||L2(Rd) ≤ ||ρ||L2γ(Rd) ||u||H1(Rd)d .

We have now to prove that the sequence (Fn)n∈N⋆ is bounded in Lδ(Rd). For a.e.
x ∈ R

d, we have:

Fn(x) =

∫

Rd

ρ(x − y)
(

uj(x − y) − uj(x)
)

∂irn(y) dy

=

∫

B

ρ(x −
z

n
)

(

uj(x −
z

n
) − uj(x)

)

n ∂ir(z) dz,

where B is a ball of center 0 and radius R containing the support of r. Then,
setting δ′ = (2γ)/(γ − 1) (so that 1/δ + 1/δ′=1) and using Hölder Inequality, we
get:

|Fn(x)|δ ≤ nδ

∫

B

|ρ(x −
z

n
)

(

uj(x −
z

n
) − uj(x)

)

|δ |∂ir(z)| dz

[∫

B

|∂ir(z)| dz

]δ/δ′

.



A FE-FV SCHEME FOR THE ISOTHERMAL COMPRESSIBLE STOKES PROBLEM 25

We set:

C =

[∫

B

|∂ir(z)| dz

]δ/δ′

,

we integrate over R
d the preceding inequality and we use Fubini-Tonelli Theorem:

(B.3)

∫

Rd

|Fn(x)|δ dx ≤

Cnδ

∫

B

[∫

Rd

|ρ(x −
z

n
)(uj(x −

z

n
) − uj(x))|δ dx

]

|∂ir(z)| dz.

Using again Hölder Inequality, we have for z ∈ B:

∫

Rd

|ρ(x −
z

n
)(uj(x −

z

n
) − uj(x))|δ dx ≤

[
∫

Rd

|ρ(x −
z

n
)|2γ dx

]1/(γ+1)

[∫

Rd

|uj(x −
z

n
) − uj(x)|2 dx

]γ/(γ+1)

.

Since

∫

Rd

|ρ(x −
z

n
)|2γ dx = ||ρ||2γ

L2γ and, for all z ∈ B (see Lemma B.5):

∫

Rd

|uj(x −
z

n
) − uj(x)|2 dx ≤ (

R

n
)2 ||u||2H1(Rd)d ,

we obtain:
∫

Rd

|ρ(x −
z

n
)(uj(x −

z

n
) − uj(x))|δ dx ≤ (

R

n
)δ ||ρ||δL2γ ||u||δH1(Rd)d .

Then, (B.3) yields:
∫

Rd

|Fn(x)|δ dx ≤ Cnδ(
R

n
)δ ||ρ||δL2γ ||u||δH1(Rd)d C

δ′

δ .

This proves that the sequence (Fn)n∈N is bounded in Lδ(Rd) and concludes the
proof of the lemma since δ = (2γ)/(γ + 1). �

Lemma B.5. Let w ∈ H1(Rd) and h ∈ R
d. Then:

(B.4) ||w(· + h) − w||L2(Rd) ≤ |h| ||w||H1(Rd) ,

where |h| is the euclidean norm of h.

Proof. Let h ∈ R
d and ϕ ∈ C∞

c (Rd). For all x ∈ R
d, we have:

ϕ(x + h) − ϕ(x) =

∫ 1

0

∇ϕ(x + th) · hdt.

Then:

|ϕ(x + h) − ϕ(x)|2 ≤ |h|2
∫ 1

0

|∇ϕ(x + th)|2 dt.

Integrating the preceding inequality over R
d and using Fubini-Tonelli Theorem

gives:

||ϕ(· + h) − ϕ||2L2(Rd) ≤ |h|2 ||ϕ||2H1(Rd) ,

which leads to (B.4) with w = ϕ. Finally, the density of C∞
c (Rd) in H1(Rd) gives

(B.4) all w ∈ H1(Rd). �
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Lemma B.6. Let Ω be a bounded open set of R
d, q ≥ 1 and a, b, r > 0. Then

there exists C, only depending on Ω, q, a, b, r, such that:

p ∈ Lq(Ω),

∫

Ω

|p−m(p)|q dx ≤ a,

∫

Ω

|p|r dx ≤ b⇒

∫

Ω

|p|q dx ≤ C,

where m(p) denotes the mean value of p.

Proof. The proof is trivial if r ≥ 1 since, in this case, Hölder inequality gives
λd(Ω)|m(p)| ≤ b1/rλd(Ω)1−1/r (where λd(Ω) is the d−dimensional Lebesgue mea-
sure of Ω) and we conclude with |p|q ≤ 2q|p−m(p)|q + 2qm(p)q a.e. in Ω.

We assume now that r < 1. Then |m(p)|r ≤ 2r|p − m(p)|r + 2r|p|r ≤ 2r|p −
m(p)|q + 2r + 2r|p|r a.e. in Ω. This yields λd(Ω)|m(p)|r ≤ 2ra+ 2rλd(Ω) + 2rb and
we conclude, once again, using |p|q ≤ 2q|p−m(p)|q + 2qm(p)q a.e. in Ω. �

The following lemma is due to Necas, and a simple proof of this result is given
in [1].

Lemma B.7. Let q ∈ L2(Ω) such that
∫

Ω q dx = 0. Then, there exists v ∈ (H1
0(Ω))d

such that div(v) = q a.e. in Ω and ||v||H1(Ω)d ≤ c2 ||q||L2(Ω) where c2 only depends
on Ω.

Lemma B.8. Let Ω be a bounded open set of R
d and ρ ∈ L2(Ω). Then, there

exists v ∈ H1(Ω)d such that div(v) = ρ a.e. in Ω, curl(v) = 0 a.e. in Ω and
||v||(H1(Ω))d ≤ C ||ρ||L2(Ω) where C only depends on Ω.

Furthermore, if ρ ∈ Hk(Ω), then v ∈ Hk+1(Ω)d and ||v||Hk+1(Ω)d ≤ C ||ρ||Hk(Ω)

where C only depends on Ω and k.

Proof. Let B be a ball containing Ω, ρ ∈ Hk(Ω) and w be the solution of the
Dirichlet problem associated to ρ (taking ρ = 0 on B \ Ω). A classical regularity
result gives that w ∈ H2+k(B) and gives an estimate on the H2+k−norm of w in
term of the Hk−norm of ρ, only depending on the radius of B (and then of Ω).
Taking v = −∇w concludes the proof of the lemma. �

Lemma B.9. Let Ω be a bounded open set of R
d, p, q ∈ [1,∞], q < p and (gn)n∈N

a bounded sequence of Lp(Ω). Assume that gn → g a.e. in Ω. Then, g ∈ Lp(Ω) and
gn → g in Lq(Ω), as n→ ∞.

Proof. The fact that g ∈ Lp(Ω) is an easy consequence of Fatou’s Lemma applied
to the sequence (|gn|p)n∈N. The fact that gn → g in Lq(Ω), as n→ ∞ is an easy
consequence of the Egorov Theorem (and uses the a.e. convergence of gn to g)
and of the equi-integrability of the sequence (|gn|

q)n∈N (which follows from the
boundedness in Lp(Ω) of (gn)n∈N). �
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