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Building effective formal models to prove time properties
of networked automation systems

Silvain Ruel, Olivier de Smet, Jean-Marc Faure

Abstract— This paper proposes a method to build formal
models of networked automation systems, in the form of sets of
communicating timed automata, which are reduced enough to
avoid (or limit) combinatory explosion, but accurate enough to
provide meaningful proof results, when they are checked. This
method starts from a detailed initial model, which includes all
behaviours of all components of the system, and comprises two
steps. First, given a property to prove, the structure of the
model is simplified so as to keep only the components models
which impact directly this proof. Then the formal models of
the remaining components are modified to take the previous
simplification into account; the resulting models are worst-case
models which guarantee trustworthy results. Experiments show
the effectiveness of this modeling.

I. INTRODUCTION

Networked automation systems (NAS) with Ethernet-
based fieldbuses instead of traditional fieldbuses are more
and more often used in industry, even for critical systems
such as chemical or power plants. To ensure dependability
of these systems, not only the functionalities but also the
time performances must be validated.

Time performances validation may be achieved by simu-
lation [1] or timed model-checking of a NAS model. For
critical systems, this latter technique is more promising
because it is based on an exhaustive analysis of the model.
However, even if it has been used to determine features of
NAS components or validate communication protocols [2]
[3], timed model checking is not employed to evaluate global
time performances of NAS, to the best of our knowledge.
This comes from the well-known combinatory explosion
issue; the formal models of real NAS are too large to be
analysed by the existing timed model-checkers.

To limit combinatory explosion, new resolution meth-
ods, such as over-approximation, and evolutions of model-
checkers [4] have been proposed. Another promising solution
is to build formal models which capture all the useful
behaviours of the modelled system, so that the proof results
which are obtained with these models would be meaningful,
but which are reduced enough to be analysed by existing
model-checkers. This is the basic idea of this work. More
precisely, this paper proposes a method to build, from a
detailed formal model of a NAS, in the form of a set of
UPPAAL [5] timed automata, a reduced model which can be
checked more easily and quickly. This effective model will
contribute to improve scalability of timed model-checking
techniques.
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Section II presents the class of networked automation
systems that is considered and the time performances which
are focused on; a simple but non-trivial example illustrates
this presentation. Then, the different steps of our modeling
method are described in section III and exemplified in
section IV. Experimental results obtained with the detailed
and reduced models are provided and discussed in section V.

II. NETWORKED AUTOMATION SYSTEMS

A. Considered class of NAS

Several Ethernet-based industrial solutions (Ethernet/IP,
Modbus-TCP, Ethernet Powerlink, Profinet, . . . ) can be se-
lected to implement a NAS. This paper considers only
NAS which rely on the Modbus-TCP protocol, while the
methodology which is presented can be applied to other kinds
of networks. More precisely, focus is put on architectures
where logic controllers and remote input-output modules
(RIOMs) communicate to carry out automation functions;
with the selected protocol, controllers are clients and RIOMs
are data servers. Figure 1 shows an example of such a system
that will be used as a case study in this paper.

The main features of the physical components of these
architectures are:

• Controllers (Programmable Logical Controllers (PLCs)
or industrial computers) are modular. Within each con-
troller, a calculus processor runs a program cyclically,
while a communication processor performs a periodic
scanning of some RIOMs, termed I/O scanning. It mat-
ters to underline that the cycles of these two processors
are asynchronous, data exchanges being made by means
of a shared memory.

• The network includes Ethernet switches and Ethernet
links and is dedicated only to communications between
the PLCs and RIOMs; there is no other additional
traffic.

• Inputs and outputs from/to the plant are gathered in
RIOMs which are directly connected to the network.
One RIOM may be shared by several PLCs.

Moreover, it will be assumed that there is no frame loss,
which is a quite reasonable assumption for this kind of
switched industrial Ethernet solution in the concerned op-
eration conditions. This explains why probabilistic model-
checking [6], an interesting verification technique for ar-
chitectures which require probabilistic modelling, was not
considered in this work.

The architecture of the case study encompasses three PLCs
and nine RIOMs. PLC1 communicates with four RIOMs



Fig. 1. Case study

(RIOMs 1 to 4), PLC2 communicates with five other RIOMs
(RIOMs 5 to 9); thus, these two PLCs do not share any
RIOM. PLC3, which runs monitoring functions, communi-
cates with all RIOMs and consequently shares respectively
four and five RIOMs with PLC1 and PLC2. To evaluate the
time performances of this architecture, an input event and
two output events are introduced. The input event, which
could correspond to a global start or stop event, is observed
by two RIOMs: RIOM R1, which is scanned by PLC1, and
RIOM R5, scanned by PLC2. The responses to the input
event, from PLC1 and PLC2, are respectively output1 and
output2 and are sent to the plant through the same RIOMs.

The configurations of the 3 PLCs are given in table I.

TABLE I

CONFIGURATIONS OF THE 3 PLCS

PLC1 PLC2 PLC3
calculus duration 2 to 3 ms 3 to 4 ms 5 to 6 ms
I/O scanning time 10 ms 10 ms 50 ms
RIOMs scanned R1 to R4 R5 to R9 R1 to R9

B. Required performances

Several global time performances of a given NAS are
to be considered, such as response times (delays between
input events and output events which are consequences of
those events, like rt1 or rt2 in figure 2) or the minimal
duration of an input event which can be always detected,
for example. This paper focuses on a more complex time
performance: the delay between two output events which
are both consequences of the same input event (fig. 2). This
performance will be called difference of response times and
noted d; it is worth evaluating when synchronisation between
two elements of the plant must be ensured.

The final objective of this study is to find an upper bound
of this difference, by checking with the UPPAAL model-
checker whether the following property

d is always lower than τ ,

Fig. 2. Time performances

where τ is a variable parameter, holds on a formal model of
the system. If the property does not hold for a given value
τ1 of the parameter and holds for another value τ2 which is
higher than τ1, then τ2 is an upper bound of the difference
of response times. An accurate value of this upper bound can
be easily obtained by reducing the difference between these
two values by classical dichotomy techniques.

It must be underlined that, to verify this property, a formal
model of the system which includes several automata which
evolve in an asynchronous manner (formal models of PLCS,
of RIOMS, . . . ) must be built. Building such a model that
can be analysed by UPPAAL without combinatory explosion,
in a short time and with reasonable computing resources is
not a trivial issue.

III. MODELING METHOD DESCRIPTION

To obtain tractable models of real indutrial NAS, the
method depicted figure 3 has been set up. This method
includes three steps that might be automated.

Fig. 3. Proposed method

The aim of the first step is to build a detailed model of
the system, in the form of a set of communicating timed
automata [7] [8]. Each timed automaton, named component
model, describes precisely the behaviour of one physical
component (calculus processor, communication processor,
RIOM,. . .) or communication function (run by switches
between one RIOM and one communication processor) and



includes parameters that represent features of this component
or function, such as duration of the I/O scanning cycle or
processing time. The detailed model of a given NAS can be
easily obtained from a non-formal description of this system
by instantiating generic components models.

The structure of a NAS model can be represented by
a graph where nodes are components models and edges
represent communications between these models. This rep-
resentation is used by the second step of the method.

This second step aims indeed to simplify the structure
of the model by keeping only the components models that
introduce delays (treatment times, waiting times for resource
availability or synchronization) which impact directly the
property to prove; all the other components models are
removed. This simplification step relies on an interpretation
abstraction which is similar to those developed for checking
hardware systems – localisation reduction [9] – or hybrid
systems [10].

When the property to prove refers to a response time or
a difference of response times, the components models that
must be kept can be easily found: they are on the route of
data, i.e. they generate, modify or propagate data (frames
or variables) which are functions of the input or output
events which the considered time performance is based on.
Hence the principle of this step is to search, in the graph
that represents the structure of the model, the shortest path,
from an input event to an output event, which crosses the
model of the PLC which computes the output event. Only
the components models whose corresponding nodes belong
to this path are retained in the simplified model.

Therefore, this step yields a simplified model that contains
a smaller number of components models; however each one
of these models is a detailed one that includes meaningless
behaviours, e.g. communications with removed components.
The role of the third step of the method is to remove these
behaviours from the remaining components models.

To clean up the components models, the following actions
are carried out during the last step:

• all the locations and transitions that correspond to
meaningless behaviors, e.g. treatment of requests from
removed components, are deleted;

• when a transition which belongs to a concurrency
structure in the detailed model is deleted, the maximal
duration of the locations that follow immediatedly the
remaining transitions of this structure is increased by the
time of the removed concurrent treatment. This permits
to obtain a reduced component model that encompasses
all real behaviours, for instance treatment delay due
to another concurrent treatment, even if it includes not
realistic ones that correspond to a worst-case modelling,
e.g. it is possible one concurrent process be always
selected first, as it will be shown in the next section.

These three steps are exemplified in the following section.

IV. APPLICATION TO THE EXAMPLE

For the example which is dealt with in this paper, the
structure of the initial model (fig. 4) comprises three PLC

models, each one including one calculus processor model
and one communication processor model, nine RIOM models
and eighteen communication function models, what requires
thirty three clocks for the whole system. Previous studies
[11] and [12] showed that the switches can be modelled by
this set of independent communication functions because the
traffic due to the exchanges between PLCs and RIOMs is far
lower than the maximal throughput of the Ethernet network.

Fig. 4. Structure of the initial model
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Fig. 5. Detailed UPPAAL model of a RIOM

Figure 5 shows an example of a component model: the
model of a RIOM which communicates with two PLCs
(PLC1 and PLC3). Formal models of RIOMs which commu-
nicate with more than two PLCs can be easily constructed



from this basis.
The response of the RIOM to a request from PLC1 is rep-

resented by three locations – ”Input reading 1”, ”Treatment
of the request from PLC1 1” and ”Sending frames to PLC1
1” –. When a request from the other PLC3 occurs during
the treatment of this request, the new request must be stored,
what is modelled by the transition from location ”Treatment
of the request from PLC1 1” to location ”Treatment of the
request from PLC1 2”. The response to a request from PLC3
is modelled in the same way.

As the duration of the response to an isolated request
(input reading, treatment of the request and sending frames)
is much lower than the period of each I/O scanning, nearly
0.7 ms versus 10 ms or 50 ms, a request from any PLC can
be delayed by one and only one request from the other PLC.
This explains the structure of the automaton.

Communication with the other component models is per-
formed both with communication channels (NRreq1?, RN-
rep1!, . . . ), for synchronisation purposes, and with shared
Boolean variables (RIOin, SIGin, . . . ), to exchange values
of input or output events.

A parameter, RIOd, is used on guards and invariants to
represent the duration of the treatment of one request; then,
the formal model can be specialized for different types of
RIOMs.

A. Simplification of the model structure

Fig. 6. Structure of the simplified model

Figure 6 shows the result of this simplification step for
the case study and the property presented in subsection II-B.
Only the models of the following components remain:

• RIOMs R1 and R5, which both receive the input event,
send to PLCs frames that contain the value of this event,
and generate, from the response frames sent by PLC1
and PLC2, the output events;

• PLCs PLC1 and PLC2, which receive frames that con-
tain the value of the input event, process these frames
and reply respectively to RIOMs R1 and R5 by sending
frames that contain the values of the output events;

• communication functions CF1 and CF5 between the two
models couples (R1, PLC1) and (R5, PLC2).

The other components models (PLC3 model, seven RI-
OMs models, and sixteen communication function models)
are not kept because they are not on the route of data for the
considered property. However, it is necessary to preserve the
impacts of the removed components models on the behaviour
of the remaining components models.

Although the removed components models have no di-
rect action on the considered data, they can indeed impact
strongly the proof results. This will be exemplified on the
basis of model R1. In the initial structure (figure 4), this

RIOM model communicates with two PLCs models (PLC1
and PLC3) via communication functions CF1 and CF10;
hence, a request from PLC1 can be delayed by a previ-
ous request from PLC3. Removing model PLC3, and the
communications from this model, from the structure without
modification of the RIOM model would lead not to take into
account this behaviour, which is surely a modelling flaw and
would give rise to meaningless proof results.

Hence, simplification of the structure of the NAS model
implies to modify the remaining components models, as
explained below.

B. Modification of the components models

Fig. 7. Detailed model of a RIOM

Fig. 8. Modified model of a RIOM

Components models modification will be exemplified on
the basis of a RIOM model only, for room reasons. Figures 7
and 8 depict respectively the initial and modified models. For
these two models, only locations and transitions are repre-
sented; the other modelling elements (guards, invariants, . . . )
are omitted for clarity reasons.

Comparison between the two models shows first that all
the locations that represent the response to a request from
PLC3 do not appear in the modified model, which is quite



normal. Moreover, concurrency between requests from the
two PLCs, a behaviour that must be absolutely preserved in
the modified model as explained above, is modelled in two
different manners. Concurrency between requests from PLC1
and PLC3 is indeed explicitly modelled by the structure of
the initial model, by two concurrent transitions starting from
location 1, while it is represented by a variable delay in
the modified model; the duration of location 2 may vary
from a void value to the request treatment time (0.7 ms),
by means of appropriate invariant and guard. Hence, the
behaviour of the modified model is simpler than that of the
initial model, because only the response to a request from
PLC1 is modelled, but this response is sent with a variable
delay, which is mandatory to obtain a meaningful model.

These two different solutions to model concurrency can
lead to different time behaviours when the two I/O scanning
cycles are synchronized, however. Even if this situation is
not at all usual for a real system, it deserves to be discussed
because it may happen when dealing with formal models.
When the I/O scanning cycles are synchronized indeed, and
with the numerical values of the example (I/O scanning cycle
periods of PLC1 and PLC3 equal respectively to 10 ms
and 50 ms, and duration of the request treatment equal to
0.7 ms), only one request from PLC1 among five can be
delayed by a request from PLC3 in the initial model; if the
nth request is delayed, then the (n+1)th to (n+4)th requests
cannot (fig. 9). This is not true for the modified model; two
consecutive requests can be delayed in that case.

Fig. 9. Synchronized I/O scannings

Nevertheless, for the two models, the minimal and maxi-
mal values of the delay between the reception of a request
from a PLC and the response to this request are the same:
one time and two times the duration of the request treatment.
Hence, the modified model is a worst-case model, in the
sense that it provides the exact bounds of the particular delay
which is introduced by the component for one request but
can provide pessimistic bounds when several requests are
considered.

When verifying the considered timed property of the
architecture model (d is always lower than τ ), which involves
several requests to RIOMs, a positive proof on the reduced
architecture model is meaningful because all the modified
components models are worst-case models. On the opposite,
a negative proof will require analysing the diagnostic trace
so as to determine whether this result comes from a possible
behaviour or not, e.g. two consecutive requests delayed for
the maximal value. This will be addressed in the next section.

V. PROPERTIES PROOF

A. Experimental method

To verify whether the studied property (d is always lower
than τ ) holds (or not) on the initial and reduced models,
observer automaton OBS1 has been designed (Fig. 10.a).
For clarity reasons, only the structure of this automaton is
depicted on this figure; invariants, guards, communication
channels, shared variables are omitted.

Fig. 10. Observer automata OBS1 (a) and OBS2 (b)

If the difference of response times is lower than τ ,
then location 6 is reached from the initial location; on the
opposite, if this difference is greater than τ , location 5 is
reached. Therefore, property checking is equivalent to verify
whether the following statement, in the UPPAAL syntax:

A[]notOBS1.5 (1)

is true, i.e. for all evolutions of the architecture model,
location 5 of OBS1 is never reached.

Moreover, for the reduced model, the considered property
can be checked in another manner. The structure of this
model (figure 6) shows indeed that it can be decomposed
in two independent sub-models, each of them including
four components models. Hence, it is possible to analyse
separately these sub-models and in particular to find the
lower and upper bounds of the response times of each sub-
model, noted respectively rt1m and rt1M, for the first sub-
model (CAL1, COM1, CF1 and R1), and rt2m and rt2M,
for the second one (CAL2, COM2, CF5 and R5). Then, the
maximal value of the difference of response times is:

d = Max((rt1M − rt2m), (rt2M − rt1m)) (2)

Four properties are to be checked, with this second solution:

• rt1M is always lower than τ1
• rt1m is always higher than τ2
• rt2M is always lower than τ3
• rt2m is always higher than τ4

where τ1, τ2, τ3, τ4 are variable parameters. This seems to
increase the overall verification time. However, as the state
spaces of the sub-models are smaller than the one of the
global model, this is not the case, as it will be shown in the
next sub-section.

Observer automaton OBS2 has been designed (Fig. 10.b)
to verify the first above property; this property holds if the
statement

A[]notOBS2.4 (3)



is true. Similar automata and statements enable to check the
other properties.

B. Results and discussion

Table II contains the results of three experiments which
were made by using UPPAAL on the same computer, with a
2.8 GHz Pentium 4 processor and 4 GB of RAM, so that the
computing times can be compared. The first experiment was
aiming at checking the initial model. The second and third
experiments were carried out with the reduced architecture
model; in the second experiment, the initial form of the
property (d is always lower than τ ) was used, whereas the
objective of the third one was to find the parameters values
so that the four elementary properties of the two sub-models
would be verified.

It must be also mentioned that the under- and over-
approximation possibilities of UPPAAL [5], which can really
reduce verification time, have not been implemented in these
experiments. This work focuses only on effectiveness of the
formal representation of a real system, like a NAS, and
not on that of state space analysis algorithms, whatever
their benefits. The overall objective is to construct effective
formal models which can be analysed by different tech-
niques. Moreover using these approximations might hinder
the interpretation of the results.

TABLE II

RESULTS COMPARISON

experiment 1 experiment 2 experiment 3
verification impossible 28 hours 1 second for

time each property
rt1m =10 ms

obtained rt1M = 21.4 ms
results τ = 21.4 ms rt2m = 10 ms

rt2M = 31.4 ms
d = 21.4 ms

The following conclusions can be drawn up from the
obtained results:

• The initial, detailed model cannot be checked in the con-
ditions of these experiments, for combinatory explosion
reasons; the RAM size of the computer is not sufficient.

• The properties of the reduced model can be verified.
In addition, diagnostic traces in case of negative proofs
show that the modifications of the components models
do not lead to erroneous results; negative proofs are
obtained only for realistic behaviours. Then, the method
that is proposed to construct reduced models yields
effective models which can be used to verify timed
properties and provide meaningful results.

• The two verification strategies (verification of one
global property or verification of four elementary prop-
erties) yield the same result. They can be both selected.

• Nevertheless, verification of the global property with
observer OBS1 is far longer than verification of the
four elementary properties. This latter solution, that is
only possible for the reduced model, shall be privileged
because it strongly speeds up verification.

VI. CONCLUSION

This paper has presented a generic method to construct
reduced timed models of networked automation systems;
these models are small enough to avoid (or limit) combina-
tory explosion, while providing meaningful and trustworthy
results, when they are checked. Construction of a reduced
model includes two steps. First, the structure of the model is
simplified, according to the property which must be proved:
the models of components which are not on the route of
data are removed. Then the remaining components models
are modified to integrate the influences of the removed
components models, in the form of worst-case behaviours.

It has been also shown that a complex property can be
decomposed in a set of simpler elementary properties, when
using a reduced model. Comparison of the experimental
results obtained with detailed and reduced models shows
clearly the effectiveness of the reduced model. Verification of
a complex timed property on a non-trivial system is possible
in a short time.

On-going works are aiming at developing a library of
components models for different kinds of networks and at
automating the method; the overall objective of these works
is automatic construction of the reduced architecture model,
once the property to prove is given. A second outlook is to
combine our approach, which focuses on improvement of
the effectiveness of models, and approximation techniques,
to fully benefit from these two approaches.
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