Building effective formal models to prove time properties of networked automation systems Silvain Ruel, Olivier de Smet and Jean-Marc Faure LURPA, ENS de Cachan France #### **Outline** - Time performances of networked automation systems - Timed model-checking for time performances evaluation - Building effective formal models - Case study - Conclusions and outlooks #### **Time performances** ## **Considered class of NAS** Controllers (PLCs) → clients Switched industrial Ethernet network (Modbus-TCP) Remote I/O modules → data servers #### Considered class of NAS Controllers (PLCs) → clients Switched industrial Ethernet network (Modbus-TCP) Remote I/O modules → data servers #### Main features - Each PLC scans cyclically several RIOMs; PLCs scans are not synchronized. - One RIOM may be scanned by several PLCs ⇒ PLCs scans are concurrent processes. ## Assumption • No frame loss (full duplex switched Ethernet, large enough switches buffers, no perturbations due to electromagnetic fields, ...) 5 ## **Definitions and measurement** Response time and difference of response times Experimental results: distribution of values ## Off-line time performances evaluation using DES models ## Construction of the model to check - Structure of the NAS model: graph - Nodes → components models - Edges → communications between components models COMi Model of communication processor #i CFi Model of communication function #i RIOi Model of RIOM #i #### Timed model-checking for performances evaluation ## Construction of the NAS model to check (continued) Structure of the NAS model: graph Components models: timed automata # Testing scalability of the approach #### Small example 10 # Testing scalability of the approach ## A method to build effective formal models is required This method must yield abstract models that are tractable by existing model-checkers. Proof results on these models must be trustworthy. #### **Building effective models** ### **Method overview** # Step 1: construction of the detailed model ## Step 2: simplification of the structure #### Principle - Keep only the components models which generate, modify or propagate data that depend on the input or output events - Interpretation abstraction similar to 'cone of influence' in symbolic modelchecking, or 'localization reduction' for integrated circuits verification #### Step automation: analysis of the structure of the model (graph) • Search of the **shortest path** from the considered input to the considered output that goes through the calculus processor that computes the value of the output event # Step 3: modification of the components models ## Consequence of the previous step Loss of possible behaviors in remaining components models 15 ## In all remaining components models - Remove useless transitions and locations - Insert variable duration (from 0 to Worst Case Waiting Time) locations to account for concurrency # **Objective of the study** #### Studied system #### Studied time performance #### Upper bound of δ (Max(δ))? # Simplification of the NAS model structure Initial and final system models Possibility to determine separately the lower and upper bounds of RT1 and RT2 (RT1m, RT1M, RT2m, RT2M) \rightarrow Max(δ) \leq MdRT = Max((RT1M-RT2m);(RT2M-RT1m)) 17 ## Modification of the components models (RIO model) #### Detailed model #### Modified model - Locations 1, 3 and 4 unchanged - New location (variable duration) added to account for PLC3 requests ### **Obtained results** | | Experiment 1 | Experiment 2 | Experiment 3 | |----------------------|--------------------------------------|------------------|--------------------------------------| | Model | Detailed | Reduced | Reduced | | Performance | Max(δ) | Max(δ) | MdRT | | Calculus
duration | Impossible
(not enough
memory) | 28 hours | 1 second | | Obtained values | | Max(δ) = 21.4 ms | MdRT = 21.4 ms
→ Max(δ) ≤ 21.4 ms | ## Comparison - Experiment 3 leads to a very short calculus duration - Experiment 3 gives an overestimation of the upper bound of the difference of response times - Experiment 2 gives the upper bound of the difference of response times ### **Conclusions** - Time performances evaluation of real systems using model-checking requires to "pre-process" detailed models - Modeling method to build abstract formal models of networked automation systems based on: - Simplification of the structure of the system model - Modification of the components models - Formal models obtained - Are tractable by existing proof tools - Proofs on these models are meaningful and trustworthy #### **Outlooks** ### Technical improvements - Automation of the different steps of the method - Set up of a components models library to automate step 1 - Automatic modification of components models (step 3) from shortest path search results (results of step 2) - Larger case studies to assess the limits ## Further investigations - More complex models that account for other communications (data exchange between PLCs, between PLCs and upper levels (SCADA, maintenance, production management systems, ...)) - Parametric model-checking so as to find sets of parameters of NAS that guarantee specified time performances bounds # Thank you for attention. **Questions?** #### **Behavior evolution** #### Initial behavior #### Abstract behavior #### With the abstract model, all requests might be delayed or not - → Adding unexpected behaviors - → Worst case model