

Building effective formal models to prove time properties of networked automation systems

Silvain Ruel, Olivier de Smet and Jean-Marc Faure

LURPA, ENS de Cachan France

Outline

- Time performances of networked automation systems
- Timed model-checking for time performances evaluation
- Building effective formal models
- Case study
- Conclusions and outlooks

Time performances

Considered class of NAS

Controllers (PLCs) → clients

Switched industrial Ethernet network (Modbus-TCP)

Remote I/O modules → data servers

Considered class of NAS

Controllers (PLCs) → clients

Switched industrial Ethernet network (Modbus-TCP)

Remote I/O modules → data servers

Main features

- Each PLC scans cyclically several RIOMs; PLCs scans are not synchronized.
- One RIOM may be scanned by several PLCs ⇒ PLCs scans are concurrent processes.

Assumption

• No frame loss (full duplex switched Ethernet, large enough switches buffers, no perturbations due to electromagnetic fields, ...)

5

Definitions and measurement

Response time and difference of response times

Experimental results: distribution of values

Off-line time performances evaluation using DES models

Construction of the model to check

- Structure of the NAS model: graph
 - Nodes → components models
 - Edges → communications between components models

COMi Model of communication processor #i

CFi Model of communication function #i

RIOi Model of RIOM #i

Timed model-checking for performances evaluation

Construction of the NAS model to check (continued)

Structure of the NAS model: graph

Components models: timed automata

Testing scalability of the approach

Small example

10

Testing scalability of the approach

A method to build effective formal models is required

 This method must yield abstract models that are tractable by existing model-checkers.

Proof results on these models must be trustworthy.

Building effective models

Method overview

Step 1: construction of the detailed model

Step 2: simplification of the structure

Principle

- Keep only the components models which generate, modify or propagate data that depend on the input or output events
- Interpretation abstraction similar to 'cone of influence' in symbolic modelchecking, or 'localization reduction' for integrated circuits verification

Step automation: analysis of the structure of the model (graph)

• Search of the **shortest path** from the considered input to the considered output that goes through the calculus processor that computes the value of the output event

Step 3: modification of the components models

Consequence of the previous step

 Loss of possible behaviors in remaining components models

15

In all remaining components models

- Remove useless transitions and locations
- Insert variable duration (from 0 to Worst Case Waiting Time) locations to account for concurrency

Objective of the study

Studied system

Studied time performance

Upper bound of δ (Max(δ))?

Simplification of the NAS model structure

Initial and final system models

Possibility to determine separately the lower and upper bounds of RT1 and RT2 (RT1m, RT1M, RT2m, RT2M)

 \rightarrow Max(δ) \leq MdRT = Max((RT1M-RT2m);(RT2M-RT1m))

17

Modification of the components models (RIO model)

Detailed model

Modified model

- Locations 1, 3 and 4 unchanged
- New location (variable duration) added to account for PLC3 requests

Obtained results

	Experiment 1	Experiment 2	Experiment 3
Model	Detailed	Reduced	Reduced
Performance	Max(δ)	Max(δ)	MdRT
Calculus duration	Impossible (not enough memory)	28 hours	1 second
Obtained values		Max(δ) = 21.4 ms	MdRT = 21.4 ms → Max(δ) ≤ 21.4 ms

Comparison

- Experiment 3 leads to a very short calculus duration
- Experiment 3 gives an overestimation of the upper bound of the difference of response times
- Experiment 2 gives the upper bound of the difference of response times

Conclusions

- Time performances evaluation of real systems using model-checking requires to "pre-process" detailed models
- Modeling method to build abstract formal models of networked automation systems based on:
 - Simplification of the structure of the system model
 - Modification of the components models
- Formal models obtained
 - Are tractable by existing proof tools
 - Proofs on these models are meaningful and trustworthy

Outlooks

Technical improvements

- Automation of the different steps of the method
 - Set up of a components models library to automate step 1
 - Automatic modification of components models (step 3) from shortest path search results (results of step 2)
- Larger case studies to assess the limits

Further investigations

- More complex models that account for other communications (data exchange between PLCs, between PLCs and upper levels (SCADA, maintenance, production management systems, ...))
- Parametric model-checking so as to find sets of parameters of NAS that guarantee specified time performances bounds

Thank you for attention.

Questions?

Behavior evolution

Initial behavior

Abstract behavior

With the abstract model, all requests might be delayed or not

- → Adding unexpected behaviors
- → Worst case model

