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Abstract

Miscible tracer dispersion measurements in transpareniehfoactures with dterent types of wall roughness are
reported. The nature (Fickian or not) of dispersion is deteed by studying variations of the mixing front as a
function of the traveled distance but also as a function eflttteral scale over which the tracer concentration is
averaged. The dominant convective dispersion mechanigehscity profile in the gap, velocity variations in the
fracture plane) are established by comparing measuremsintg Newtonian and shear thinning fluids. For small
monodisperse rugosities, front spreading $udiive with a dominant geometrical dispersion (dispersiogficient

D « P¢) at low Péclet numberBeg at higherPevalues one has eith® o« P (i.e. Taylor dispersion) for obstacles
of height smaller than the gap & o Pe*3 for obstacles bridging the gap. For a seffire multiscale roughness
like in actual rocks and a relative shear displacendesftcomplementary walls, the aperture field is channelized in
the direction perpendicular & For a mean velocity) parallel to the channels, the global front geometry reflects
the velocity contrast between them and is predicted fromatherture field. FotJ perpendicular to the channels,
global front spreading is much reduced. Local spreading®fftont thickness remains mostly controlled by Taylor
dispersion except in the case of a very strong channelizatoallel toU.
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1. Introduction latter is the average of the fluid velocity over an ap-
propriate volume (the representative elementary volume

The geothermal reservoir of Soultz-sous-Foréts, like ©7 REV) while smaller scale variations induce tracer
most geological systems, contains structures of vari- SPréading. At the REV scale, the averaya, t) of the
ous size along which flow occurs: three main types of tracer concentration over a section o_f the medium nor-
structures were identified: individual fractures, frastur Mal to the mean displacement satisfies the convection-
clusters and major fault§][1]. In order to understand diffusion equation[fa]:
these flow system_s and help \{vith managerial decisions, JC(x, 1) JC(x, 1) 82C(x, 1)
large scale numerical models incorporating such hetero- o Ox 2 1)
geneities have been developed. Yet, when the transport
of solutes is involved, the choice of a dispersion law whereD is the longitudinal dispersion ctigient,U the
(possibly scale dependent) valid at the scale of an indi- mean velocity of the fluid (parallel tg). The value of
vidual fracture remains an open issﬂe [2]. D (or equivalently of the dispersivitly = D/U) is in-
At this scale, tracer dispersion results from the com- dependent of both time and the travelled distance: it is
bined action of the complex velocity field (varying both determined by the combined contributions of molecular
in the gap of the fracture and in its plane) and of mix- diffusion and advection. The relative order of magni-
ing by molecular diusion. The latter allows the tracers tude of these twofeects is characterized by the Péclet
to move from one streamline to another and homoge- number :Pe = Ua/Dp, (Dy, is the molecular dfusion
nizes the spatial distribution of the tracers. In the classi codficient; a is a characteristic length of the medium
cal approach, tracer particles are assumed to perform a(here the mean fracture aperture).
random walk superimposed over a drift velocity. The Recent experimental studies of breakthrough curves of
Preprint submitted to Elsevier February 4, 2009




solutes in natural fractureE [Hﬁ@ 7] measured disper- of complementary matching rough walls is introduced:
sion codficients increasing linearly with the mean flow high aperture channels oriented normal to the displace-
U (or with Pe). Moreover, the value of the dispersivity ment and spanning over the fracture are then created
lg¢ = D/U observed agreed with the predictions of a leading to an anisotrope aperture fie@ [@, 16]. This
perturbation analysi.{|[8]. These results suggested thatphenomenon increases with the magnitudé ahd be-
dispersion is controlled (like in 3D porous medﬂa [3]) comes noticeable as soondis of the order of the mean

by spreading due to velocity variations associated to the aperture]. The influence of the contact area between
geometry of the void structure. The latter determines the the fracture walls was also investigated by performing
correlation length of the velocity field, leading to the so flow experiments in a transparent model fracture with
called geometrical dispersion regime. However, flow in an array of contact points.

fractures is known to be frequently concentrated in long In order to address these various issues, dispersion has
channels of high hydraulic conductank[[2[ 9, 10]. The been studied as a function of :

velocity remains then correlated over distances which e the distance traveled by the tracer.

may be too large for establishing a Fickian dispersion e the lateral scale of observation in the fracture plane
regime. These previous experiments were all performed over which the concentration is averaged. This scale
for a fixed path length: however, in order to test the va- ranges from a (meso)microscopic scale.(the typical

lidity of the Fickian description one must measure the fracture aperture) up to the fracture width.

variation of the width of the mixing front with time e the fluid rheology in order to determine, without
and check whether it increases, as expectett/ s ambiguity, the main mechanisms controlling the disper-
Another key factor is dispersion resulting from the flow sion:i.e. velocity profile in the fracture gap or velocity
profile in the gap of the fracture: the variation of the fluctuations in the fracture plane.

velocity between the walls (where it cancels out) and This contrasts with previous measurements realized at
the middle of the gap (where it has a maximal value) the outlet of the samples and in which the development
stretches the solute front. This creates a concentrationof the mixing region and its spatial structure cannot be
gradient across the gap which is balanced by transverseinvestigated.

molecular dffusion. The decorrelation of the velocity of
the solute is then determined by the characteristic time
for the difusion of solute particles across the gap. This
differs from the geometrical regime in which the decor- _ L
relation is determined by the geometrical structure of 2.1. Experimental models and injection set-up

2. Experimental setup and procedure

the fracture.Then, the longitudinal dispersionficéent e Model 1: this model (see relﬁ|18] for details) has
scales likeD ~ P€ in this so-called Taylor dispersion  two transparent surfaces of size 36020 mm without
(instead oD ~ Pefor geometrical dispersion). contact points. The upper one is a flat glass plate and

In fractures, both dispersion regimes are expected to co-the lower one is a rough photopolymer plate. The wall
exist (see refsmir]lng]): at low Péclet numbers (but roughness corresponds to randomly distributed cylin-
large enough to neglect pure moleculaffuiion), dis- drical obstacles of diametat, = 1.4 mm and height
persion is controlled by the disordered geometry, while, 0.35 mm protruding out of the plane surface. The min-
at higher ones, Taylor dispersion becomes the leadingimum aperture,, of the model is the distance between
dispersion mechanism. Yet, the critical Péclet number the top of the obstacles and the flat glass plate &tk
characterizing the transition still has to be determined. 0.37 = 0.02 mm; the maximum and mean values are re-
Also, the robustness of this model when contact points spectivelyay = 0.72+0.02 mm anda = 0.65+0.02mm
between the fracture walls are present must be tested. e Model 2: this model uses a periodic square array of
We discuss in this paper dispersion experiments dealing obstacles of similar size as in model 1 but of rectangular
with these issues and carried out in transparent fracturesand variable cross section and with their top in contact
with various degrees of heterogeneities. The geometrieswith the top plate. Flow takes then place in a two di-
of the void space and the roughness of the walls of thesemensional network of channels of random aperture (see
models are described in Sdc.]2.1. They range from aref. [fL9] for a full description). The model contains
random wall roughness with a correlation length of the 150x 140 channels (real size 150140 mm) with an
order of the aperture to a multiscale rough wall geom- individual length equal td = 0.67 mm and a depth
etry similar to that observed in the fieIE[14]; this latter ay = 0.5 mm; their average width i = 0.33 mm and
case often leads to a strong flow channelizatfor [10]. its standard deviatioar(w) = 0.11 mm. Following the
In the present models a relative shear displacement definition of Bruderer and BernabE[ZO], the degree of
2



heterogeneity of the network can be characterized by the Fluids n Y0 Mo

normalized standard deviatier(w)/w. In the present st mPas
work : o(w)/w =~ 0.3. W — Glycerol 1 - 10
e model 3: Models 3, 4 and 5 have complementary 500ppm 0.38+0.04 0077+0.018 410+ 33

self-afine walls of size 35 90 mm, reproducing the ~ 1000ppm 026+ 0.02 0026+0.004 4500: 340
roughness of natural fractures (see r [21]). In model , )
3, a relative shear displacemeﬁt: 0.75 mm parallel Table 1: Rheological paramgters and _Peclet numbers fdsQBeand
. : . ] 1000 ppmscleroglucan solutions solutions used in the present work.

to the direction of the flow is applied between the walls. w - Glycerolrefers to the water glycerol mixture.
the mean of the fracture aperturais- 0.75 mm and its
standard deviation i, = 0.11 mm. This shear config-
uration is referred to a$|| U. 2.2. Fluids preparation and characterization

e model 4: In order to analyze the influence of the
direction of the shear displacement, the direction of the
shear for model 4 is now perpendicular to the direction  The solutions used in the present work are either
of the flow (the corresponding standard deviation of the a Newtonian water-glycerol mixture or shear-thinning
aperture isr, = 0.15 mm). This configuration (and that  water-polymer (scleroglucan) solutions with a 500 or
of model 5) is referred to asL U. All other character- 1000 ppm polymer concentration. In all cases, the in-
istics (wall size, mean aperture, map of the roughnessjected and displaced fluids have identical rheological
of each wall, amplitudé = 0.75 mm of the shear dis-  properties. The Newtonian solution contains 10% in
placement) are identical to those of model 3. weight of glycerol and has a viscosity equal t@ &
All models are transparent and placed vertically with 10-3Pas at 20C. The preparation and characteristics
their open sides horizontal. The upper side is fitted with of the shear-thinning solutions are the same as reported
a leak tight adapter allowing one to suck the fluids at a in ref. [23]. The variation of the viscosity with the
constant flow rate. The lower open side can be dipped shear rate is well fitted by the Carreau function:
into a bath containing the liquid. When the pump is

switched df, the bath can be lowered before changing 1
the fluid inside it. This allows one to obtain a flat initial M= v (HO — Hoo) + oo (2
front between the fluids (See Figure 1 in rgf][21]). @+

The models are illuminated from the back by a light
panel and images are acquired using a high resolutionThe values of the rheological parameters characterizing
camera. The pixel size is around2mm i.e. lower the fluids are listed in Table 1. For the non Newtonian
than the typical fracture aperture. About 100 images of fluids and at low shear rates < vy, the viscosity is
the distribution of the light intensity(x, y, t) transmit- constant like for a Newtonian fluid wita ~ yo (Newto-
ted through the fracture are recorded at constant inter- nian plateau regime). At higher shear raeg o, the
vals during the fluid displacement using a digital cam- viscosity follows a power lawyu « ¥1. Practically,
era with a high dynamic range. Reference images with p., is taken equal to 1 mPgi.e. the viscosity of water
the fracture saturated with the clear and dyed fluids (the solvent): this limiting value would indeed only be
(dye concentrationy) are also recorded before the ex- reached at shear rates above the experimental range.
periments and after the full saturation by the displac- The two main dispersion mechanisies Taylor disper-
ing fluid. A calibration curve obtained independently sion @ ~ P€?) and geometrical dispersioB(~ Pe) are
through separate measurements is then used to map theffected in opposite directions when a Newtonian fluid
local relative dye concentrationc(x,y,t)/co < 1 (in is replaced by a shear thinning solution. More precisely,
the following, ¢y is omitted and(x, y, t) refers directly the velocity contrasts betweenfldirent flow paths are
to the normalized dye concentration). The two fluids are enhanced for a shear thinning fluid, resulting in an in-
of equal density: this is verified by performing twice the crease of the geometrical dispersion (without modify-
experiments at each flow rate value with the dyed fluid ing the scaling lawD ~ P€). By contrast, the velocity
either displacing or displaced by the clear fluid. Com- profiles in the gap become flatter: this reduces there-
paring the results allows one to to detect possible insta- fore Taylor dispersion, but still witlD « Pe’. Vary-
bilities induced by residual densityftirences (the cor-  ing the fluid rheology modifies the relative influence of
responding experiments are discarded). The two fluids the two main dispersion mechanisms in opposite ways:
are, of course, miscible and have the same viscosity.  the dominant one can therefore be identified unambigu-
ously for each fracture geometry and flow rate.
3



3. Experimental results L5
Dy/D.
3.1. Fracture model /a [ 10%
In this model, flow takes place in the free space be- 0.5
tween a flat plate and a second one with protuberant
obstacles. The latter perturbs the flow velocity field:
the local mean fluid velocity (averaged over the gap)
is greater between the obstacles, where the aperture is
largest than at their top, where it is minimal. These
mean velocity variations in the fracture plane result in T Tk T s s s s s e
geometrical tracer spreading. As for the velocity pro- R
file in the fracture gap, it induces Taylor like dispersion. ! 10 100 Pe 1000
The variat.ion of the- Qispersiviﬂﬁ =D/Uasa fur-]Ctiqn Figure 1: Variation of the experimental dispersivigyas a function
OT Peconfirms that I,t is the sum of the two contributions of the Péclet number in model 100f: water-glycerol solution; £):
discussed above with: 1000 ppm, ¢): 500 ppm polymer solutjons. Solid, dotted and dashed
lg lines: fit of the respective data with Eg (3).
5 - actarPe (3)

1 0

wherear Pecorresponds to Taylor dispersion amgto dgmonstrating the lack of large scale heterogeneities in
geometrical dispersion. For a fracture with two flat par- this model fracture.
allel plates and a Newtonian fluid, one hag; = 0 and
atr = 1/210; also, one hasg # O only for fractures ~ 3-2. Fracture mode?
with rough walls. Moreover, if the correlation length In this model, the obstacles extend over the full gap
of the velocity field is small compared to the fracture height and mimic gouge particles created by the failure
size and if the ratie of the amplitude of the velocity  of the rock and evenly distributed in the fracture (see
fluctuations to the mean velocity is small, then the ~ Sec.[2}1). The model appears then as a plane array of
perturbation theory predicts that o« € (a complete channels of random width: it can be considered as a
expression ofg is given by Eq. (3) of ref.|ﬂ8]). 2D porous medium in which the pores correspond to
Experimental dispersivity variations as a functiorfef the junctions between the channels. We show now that
are plotted in Fig[|1 for the three fluids. These data sets mixing at these pore junctions has a crucial influence on
are well adjusted (see lines in F. 1) by functions of dispersion.
the type shown in Eq|](3): the dispersivity increases at Fig.ﬂ displays variations of the dispersivitywith the
first slowly with Pe abovePe ~ 20 from a nearly con-  Péclet number deduced from time variations of the lo-
stant plateau value before displaying a linear variation cal concentration at the pore scale (filled symbols) and
at higher velocities. The plateau value corresponds to of its average over the fracture width (open symbols); it
ag in Eq. () and increases with the polymer concentra- is seen that the values &f obtained in both cases are
tion. It can be shown that the amplitude of the veloc- similar so that, in the following, only global measure-
ity fluctuations is larger for shear thinning fluids: fora ments will be discussed.
power law dependence of the viscosity on the shear rateFor Pe< 10,14 = D/U is nearly constani.g. D « Pé),
(u o« ¥™1), the parametee would increase theoreti-  suggesting dominantly geometrical dispersion. As dis-
cally by a factor (1+ 1/n)/2 compared to a Newtonian  cussed in Se@.l, the valuelgfin this regime should
fluid. The velocity fluctuations (and, as a result, the dis- depend strongly on the rheology of the solution: more
persivity) increase therefore wherdecreasese when precisely, it should increase with the polymer concen-
the shear thinning character of the fluids is stronger. Un- tration as indeed observed here (like for model 1).
like ag, the parametewr for shear-thinning fluids is  For Pe > 10, a second dispersion regime is observed,
lower than the Newtonian valug 210 (see|fl|8]). in which |4 increases witiPe Furthermore, the linear
The values displayed in Figﬂ 1 were obtained by fit- trend observed in a log-log coordinate shows thébl-
ting the local concentration variation on each individual lows a power law oPe (more preciselyly o« P’ for
pixel by solutions of Eq.|]1). A similar analysis was per- Pe > 10). This result is in agreement with numerical
formed on the average of the local concentrations over simulations by Bruderer and Bernal:E] [20] andads
the fracture width. The results are displayed by empty from the Taylor dispersion reginlg « Peobserved in
symbols in Fig[]L: they almost fall on the filled symbols model 1 at higtPevalues.
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Figure 3: Variation of the normalized dispersivity/d as a function
Figure 2: Variation of the dispersivity (mm) with the Péclet number of Pefor model 3 and two dferent polymer concentrationse, @l):
for experiments with water-polymer solutionsJ),(H) : 500 ppm global dispersivities determined from concentrationsrayed over
concentration -4), (¢) 2000 ppm Open (resp. filled) symbols : av- the fracture width. ¢, [J): local dispersivities determined from con-
eraging interval : 35 (resp. .4) mesh sizes. Dashed lines : Mean centration variations on individual pixels. Lines: Taylispersion
dispersivity values for the geometrical dispersion regibetted line: for plane parallel walls with the same mean gap as for modgl,s),
power law fit of the variation foPe> 10 (exponent (35 + 0.03). dotted line: 2000ppm polymer solutiori;]( ), dashed line: 500ppm

polymer solution; continuous line: Newtonian solutionsért: varia-

tion of the ratio of the local and global dispersivities asiaction of

This difference is explained by the influence of the pore the Péclet number[{): 500 ppm solution.d): 1000 ppm solution.

junctions. At low flow velocities (typPe < 10), tracer

particles can explorefkactively the local flow field by

molecular difusion during their transit time through a  of the walls; they are characterized by an anisotropic
given junction: this distributes evenly the tracer con- permeability field with a larger permeability in the di-
centration inside it which represents a perfect mixing rection parallel to the channels. While most studies of
condition. Then, the tracer concentration is equal in all these systems have dealt with their permeability, little is
outgoing paths and the probability to follow one of them known about the influence of such a structure on tracer
is proportional to the corresponding flow rafe][£2] 25]. dispersion. .

Therefore, in this regime, dispersion is controlled by the In model 3, flow is parallel to (i.e. normal to the chan-
disordered geometry of the array of channels. nels): in this case(|| U), both the local and global con-
At higherPevalues (typ.Pe> 10), mixing at the junc- centration variation curves are well adjusted by the so-
tions is no more perfect and the tracer concentration lution of the convection-dispersion equatidh (1). More-
in slower channels (like those transverse to the mean oVver, dispersivity values determined from these curves
flow) is lower compared to the perfect mixing situation. Pecome constant after a long enough path inside the
The dispersion characteristic becomes more similar to fracture. Like for models 1 and 2, the dispersion pro-
the case of capillary tubes (representing the fast flow cess is therefore Fickian. Fiﬂ. 3 displays variations of
channels) oriented along the flow direction. In this case, Poth the local and global dispersivities wite for the
one would observe Taylor dispersion witho Pe (or two polymer solutions. Theoretical Taylor dispersivities
D « P& but the influence of flow redistribution at the ~ for a fracture of same mean aperture with plane smooth
junctions is quite |arge: this leads to a variatiorl pas walls and for the dferent fluid rheologies are also plOt-

P35 intermediate between those observed in the geo- ted in Fig[B as dashed and dotted linesfétences be-
metrical and Taylor regimes. tween these curves reflect th@eet of the velocity pro-

file in the gap).
For Pe > 12, the local dispersivity increases wige

in gqualitative agreement with theoretical expectations

Like in model 1, the walls of this fracture do nothave (I4 = D/U ~ Pe€) and is also lower for the strongly
any contact point but, in contrast with it, the rugosities shear-thinning 1000 ppm solution (open symbols). For
of the wall have been selected to reproduce the multi- both solutiondy is larger than predicted, particularly
scale roughness of most natural fractures (sec. 2.1)for the 500 ppm solution for which it is close to the
Such fractures are known to display high aperture chan- Newtonian value. This may be due to the vicinity of
nels perpendicular to the relative shear displacenient the “plateau” domain of the rheological curve in which

5
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the solution behaves like a Newtonian fluid at low shear x (mm)
rates. FolPe ~ 12, in which both solutions should be in

this “plateau” regime, the dispersivities are, as expected 230
the same for the two solutions but still slightly higher
than the theoretical value. ARe < 10, l4 rises again
due to the influence of longitudinal moleculaffdsion
and its value is also the same for the two solutions (the
(o) and (O) symbols coincide). 150
These value of the local dispersivity are compared in

Fig. 3 to the global dispersivities determined from time
variations of the concentration averaged over the frac- 100
ture width (filled symbols): as seen in F@. 3andits in-

set, the local dispersivities are significantly smaller (at

a same Péclet number and for a same solution). The 25 50 75 b 25 5075
front contours ¢ = 0.5) displayed in Figsﬂ4a and b for y (mm) y (mm)
model 3 reveal fine structures of the mixing front: they

reflect fluctuations of the velocity induced by the frac- Figure 4: Experimental isoconcentration fronts<(0.5) as a function
ture wall roughness. Their magnitude is large enough to ofthe normalized distancex(t) (x = mean front d'Stance_) fo.rﬁer'

T . : ent ratiose of the injected volume to the pore volume (a)-(b): fracture
account for the additional increase of the global disper- model 3 § || U); (c)-(d): fracture model 4§ + U). Mean veloci-
sivity with respect to pure Taylor dispersion (compared ties: (a)-(c):U = 0.0125mnys, Pe = 14; (b)-(d): U = 0.25 mnys,
to local dispersion) but not enough to allow for the ob- e = 285. (dots:a = 0.85, dash-dotsix = 0.65, dash-dot-dots

. . . . . ;@ = 0.5, dgshes:e = 0.15). Continuous line: theoretical varia-
servation of a geometrlcal dlSp_?I’SIOﬂ regime. tion from Eq.|#. All experiments have been realized with tieh
To conclude, in model 3 witd || U, dispersion is 1000 ppm water-polymer solutions.
mostly controlled by the Taylor dispersivity component
due to the velocity profile between the walls as soon as
Pe > 12; there is however an amplification of the dis-
persion due to the fracture roughness.

(b)

200

50

25 50 75 0 25 50 75
y (mm) y (mm)

fluid (Fig. Hd). Another important feature is the good
collapse of the large features of the front observed at
different times when normalized by the mean distance:
3.4. Fracture moded this shows that the size of these features parallel to the
flow increases linearly with time. Such a collapse is not
apparent in model 3, except near the sides of the model
where they likely reflect wall féects.

These results show that front spreading is purely con-
gective and that the total widthx of the front parallel

to U (i.e. the distance between the tips of the fingers
and the bottom of the troughs) increases linearly with
distance ax AU/U (AU/U = typical large scale veloc-

In model 3, the mean flow was perpendicular to the
channels or to the ridges induced by the shear displace-
ment: the correlation length of the velocity is then de-
termined by the typical width of these structures. Model
4 has the same size as model 3, a same mean apertur
and complementary rough walls with a seffiae ge-
ometry exactly identical to that used for model 3. How-
ever, the sheaf s, this time, perpendicular to the mean .
flow J. In this configurationd 1. U), J is parallel to ity contrast between the filerent channels created by
the channels and ridges created by the shear: the cor-the shear). .
relation length of the flow velocity is then determined In order to predict these contrasts, we modelled the frac-

o ture aperture field as a set of independent parallel chan-
he h of the ch Is which hi h
et els WRIE IS MUEHEGETRAN el of aperuraly) —< a(xy) > (23 E3). A parice

The dispersion characteristics are then veffedént as starting at a transverse distgry:at the inlft Is assumed
can be seen by comparing isoconcentration fronts ob- to move ata velocity proportional fy) "*'"; The the-

tained for model 4 (Figsﬂ 4c-d) and model 3 (Fiﬂs. da- oretical profilex; (y, t) of the front at a time is then:

b) at diferent times and in identical experimental con- X(t) a(y)™1/n

ditions. More precisely, large fingers and troughs are Xi(y,t) = < aly)m s, (4)

observed for model 4 while none appears for model Y

3. Also, the amplitude of these features parallel to wherex(t) =< x;(y, t) >y and< a(y)™V/n > are av-

Jis larger at the higher velocity for which the solu- erages ovey of the local apertura(x,y). Normalized

tion has a shear-thinning behaviour (F[§. 4d) than at profilesx¢(y, t)/x(t) computed using Eq[|(4) and the ac-

the lower velocity at which it behaves like a Newtonian tual aperture fields are plotted in Figﬂs. 4ato d as con-
6



tinuous lines. The exponenthas been taken equal to 1 e models 1 and 2: both models correspond to obsta-
at the lowest velocity for whicly ~ yg (Figs.Hla-c) and cles with a single characteristic size. The height of the
to 0.26 at the highest one for whigh> g (Figs.Blb-d) obstacles is smaller than the aperture for model 1 and
(as mentioned in Sef. 2.2, is the shear-rate value cor-  equal to it in model 2: this models the case of gouge (or
responding to the crossover from the Newtonian to the proppant) particles bridging the gap. In both cases the
shear-thinning behaviour of the fluid). variation with distance and time of the tracer concentra-
Eq. @) clearly predicts well the location and shape of tion satisfies the convection dispersion equatﬂ)n (2); the
the large “fingers” and “troughs” at both velocities for values ofD are independent of the fraction of the width
s L U. In contrast, the theoretical curves does not re- of the model over which the concentration is averaged
produce the front geometries in modeld&3|(J) except and also of the distance from the inlet.
for the small global slope. At low Péclet numbers, one has, in both casesy U
This confirms that, fos L U (model 4), the large  corresponding to geometrical dispersion due to the dis-
scale features of solute transport are determined by theorder of the velocity; in this regimé; = D/U increases
velocity contrasts between the channels created by thewith the polymer concentrationi.¢. with the shear-
shear. The curves of Fighl 4c-d also reproduce well thinning character of the fluids) due to an enhance-
the diference between the sizes of the fingers at the ment of the velocity contrasts. Moreover, for model 1,
two velocities investigated. This confirms that the dif- the value ofly is close to that predicted from a small
ference between these sizes may be accounted for byperturbation theory. At high Péclet numbers, there is,
the diferent rheological behavior of the fluid : the ve- for model 1 a transition towards Taylor dispersion with
locity contrasts (and, therefore, the size) are amplified D « P€. In model 2,D increases at higlPe values
for Pe = 285 (shear-thinning power law domain) com- asPe3: this exponent agrees with previous numerical
pared to the vicinity of the Newtonian constant viscosity simulations ] and should depend on the distribution
regime Pe= 14). of the size of the obstacles. In model 2, the transition
For model 3, the hypothesis of the model are not satis- between the dierent regimes is controlled by mixing at
fied and it does not reproduce the front geometry: how- the scale of individual junctions.
ever, the features of the front are generally visible at e models 3, 4 and 5: The roughness of the walls of
similar transverse distancgsn Figs.Ba an(ﬂ4b (at a these models has a multiscale seftiree geometry sim-
given time). They reflect likely also in this case a con- ilar to that of many fractured rocks; the walls of these
vective spreading of the front due to velocity contrasts fractures are complementary with a relative shear dis-
between the flow paths: however, there is no simple re- placement either paralleb (|| U) for model 3 or per-
lation of the front geometry to the aperture field, in con- pendicular § L U) for models 4 and 5. The rela-
trast with model 4. tive shear produces a channelization perpendicular to
The local dispersivityq(x, y) has also been determined s of the aperture field: as a result, dispersion depends
for model 4 from the variations of the concentration on strongly on the relative orientation 6fandU.
single pixels: its values are overall larger and their dis- For5 L U, the global spreading of the mixing front
tribution is much broader than for model 3. is not dispersive. The global width of the front par-
The same measurements have been perfor@d [21] on allel to U increases instead linearly with time and re-
model fracture with a similar wall geometry but with a flects directly the velocity contrasts between the chan-
smaller amplitudé = 0.33 mm of the shear (still with  nels created by the shear. The large scale structures of
s 1 U). In this case, the values of the local dispersivity the front can be predicted from the aperture field and
are very close to those predicted from Taylor dispersion. their size increases with the shear-thinning character of
Thogether with a smaller amplitude of the large scale the fluid. The variation of the local thickness of the
fingers, this reflects a weaker disorder of the flow field. front remains instead dispersive, but with a magnitude

larger than for Taylor dispersion. For model5’3l|( U),

the global spreading of the front is much weaker that
4. Discussion in model 4 which has the same characteristics but for

whiché L U: local spreading is controlled by Taylor

The experiments reported in this paper for several dispersion at largé€s and by molecular diusion at
model fractures demonstrate the key influence of wall lower ones.
roughness geometries on the dispersion processes and
their dependence oRe and on the fluid rheology. One
can group the results in two sets:
7



5. Conclusion [7]
The experiments reported here demonstrate that vary-
ing the fluid rheology is a powerful diagnostic tool for
understanding hydrodynamic tracer dispersion mecha-
nisms in rough fractures.
For models 1 and 2, both the size of the wall rugosities
and the correlation length of the velocity field are small
compared to the global size of the fracture: this allows
one to reach a geometrical dispersion regime atRawv
values. At highePe’s, other characteristics of the struc-
ture of the void space such as the flow profile in the
aperture (model 1) and the distribution of the tracer in [12]
the pore junctions (model 2) strongly influence disper-
sion. In these models, dispersion may be characterized!*®!
by a single macroscopic dispersion fftc@ent: however
the knowledge of the microscopic structure of the frac-
ture aperture field (correlation length, pore size...) is
necessary to predict its value and dependendeen
Experiments performed on multiscale fractures (mod-
els 3 and 4) reproducing the roughness of natural frac-
tures have demonstrated the strong influence of channel-
ization and of its orientation with respect to the mean [16]
flow on the transport of tracer. An important issue is
whether, in these cases, transverse exchange of tracer is
large enough so that aftlisive spreading regime might 17]
be reached at very large distances. These results havé
potentially a strong relevance to th&eiency of the re-
covery of heat through water circulation in geothermal
reservoirs. There are also other possible applications tol'8
the prediction of seismic events from water circulation
in the rock layers under stress.

(8]

El

[20]

[11]

[14]

[15]

[19]
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