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Multiscale thermomechanical modeling of shock-driven dry friction
in hydrodynamicsq

F. Dambakizi a,b, P. Le Tallec a,*, J.P. Perlat b

a Ecole Polytechnique, Laboratoire de Mécanique des Solides, Palaiseau Route de Saclay, 91128 Palaiseau, France
bCEA/DAM, Commissariat à l’Enérgie Atomique, BP 12, 91680 Bruyères-le-Châtel, France

The purpose of the present work is to provide new insights in the understanding and computational mod-

eling of shock-induced metal-on-metal dry friction. Based on a multiscale approach, we develop herein a

1D finite difference subgrid model. To adequately describe the physics of dynamic friction under shock-

induced conditions, it accounts for frictional contact, elastoplastic yielding and work hardening, heating

by friction and plastic work, thermal softening and melting, as well as dynamics effects. Temperature and

dynamic elastoplasticity are predicted at a local scale through a nonlinear time implicit numerical solver.

Two strategies have been considered for the coupling of the subgrid model to a standard thermoelasto-

plastic macroscopic model. The first one is velocity driven. Its implementation is rather straightforward,

it leads to correct qualitative results but is restricted to sliding situations. To account for stick–slip cases,

a second force driven downscaling strategy has been developed.

1. Introduction

Shock-driven dynamic friction refers to the physics that govern

the shear stress acting along a material interface after the passage

of a shock wave. It plays a key role in explosively driven systems

where metal interfaces are submitted to relatively high sliding

velocities and large contact pressures. It leads to complex interac-

tions between the sliding bodies.

As observed by Oden [1] ‘‘dynamic friction is not a single phenom-

enon in itself but a collection of many complex thermomechanical

phenomena whose features cannot be grasped through isolated simple

experiments.”

The sliding response of structures submitted to dynamic friction

first depends on two parameters:

� ½v �, the relative interfacial sliding velocity;

� P, the contact pressure applied at the interface.

Depending on the values taken by both these parameters, the

dynamic friction regimes can be sorted out from high-speed

machining to ballistic penetration. Such a representation allows

to differentiate the different experimental conditions that have

been studied until now. In the past, dynamic friction with large slip

velocities has been investigated under low contact pressures. In

the pioneer works of Bowden and Freitag [3], Bowden and Persson

[4] and Montgomery [5], the authors reported velocity weakening

of the frictional shear stress as a function of increasing relative

velocity. As a consequence much lower friction than expected

was observed with a strong time dependence. On a physical point

of view, the origin of this velocity weakening has been quickly

attributed to thermal softening. It was shown that in the regime

of high sliding velocity, the major part of the energy spent in over-

coming the frictional resistance was appearing as heat near the

interface. As the shock-induced sliding interfaces are brutally

sheared, the rate of heat generation is much larger than it can be

conducted away. This amount of heat causes thermal softening at

the interface sub-surface (see Fig. 1), thus reducing the shearing

strength and leading to lower values of frictional stress.

Recent experiments Juanicotena et al. [6], Ball et al. [7], have

confirmed that severe loading conditions involving high contact

pressures were also leading to extremely localized thermomechan-

ical processes at the sliding interfaces: on a post-mortem observa-

tion under a microscope, they observe at the interface a layer of a

few microns which has been severely heated and distorted. These

q Expanded version of a talk presented at the USNCCM9 in honor of Prof. J. Tinsley

Oden’s 70th birthday (July 23–26, 2007 San Francisco, CA, USA).

* Corresponding author.

E-mail addresses: franck.dambakizi@cea.fr, franck.dambakizi@polytechnique.

edu (F. Dambakizi), patrick.letallec@polytechnique.fr (P. Le Tallec), jean-philippe.

perlat@cea.fr (J.P. Perlat).

mailto:franck.dambakizi@cea.fr
mailto:franck.dambakizi@polytechnique. edu
mailto:franck.dambakizi@polytechnique. edu
mailto:patrick.letallec@polytechnique.fr
mailto:jean-philippe. perlat@cea.fr
mailto:jean-philippe. perlat@cea.fr
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


local phenomena may profoundly change the state of interface

during the dynamic slip process: on a very thin sheared layer

(�0.1–5 lm) important strain rates are obtained with major irre-

versible plastic deformation ep.
Metal interfaces are also submitted to a warm-up phase due to

frictional heat production, and plastic work. It leads to an impor-

tant and localized rise in surface temperature H, that may lead

in extremely short time up to the fully melt temperature regime

and to the formation of a thin molten metal film.

Modelling of the dynamic frictional behavior and the associated

slip response therefore requires to focus on the thermomechanical

response of the interfaces. Most numerical simulations are based

on Coulomb’s law of friction in which the frictional or tangential

friction stress s at the interface is directly proportional to the nor-

mal stress rn and acts in the opposite direction of the sliding veloc-

ity ½v �:
s ¼ ljrnj: ð1Þ

In Eq. (1), the thermomechanical behaviour of the sliding interface

is described by a dimensionless scalar frictional coefficient l that

characterizes the interface. In the simplest models, this parameter

is an empirical constant determined for each given pair of materials.

To account for the velocity dependence of the effective shear stress,

many numerical models have considered l as a function of the slid-

ing velocity ½v � often assumed to be monotonically weakening with

increasing velocity:

s ¼ ljrnj; ð2Þ
lð½v�;l0;l1; #Þ ¼ l1 þ ðl0 � l1Þexp�#j½v �j: ð3Þ

This modified Coulomb’s law of friction was shown to be in qualita-

tive agreement with most of the experimental results. Nevertheless

it requires to finely tune three parameters: the static friction coeffi-

cient l0 that governs the low velocity behavior, the dynamic fric-

tion coefficient l1 that controls the large relative velocity

behavior, and the parameter # > 0 that controls the rate of change

of friction with changes in relative velocity. These coefficients turn

out to be experience dependent. Moreover, there is no clear temper-

ature’s dependance in the model. Last, for the high pressure range

and for systems of practical interest, the classical Coulomb’s law

of friction predicts a shear stress that greatly exceeds the Von Mises

yield limit in pure shear smax ¼ Y=
ffiffiffi

3
p� �

, where Y is the yield

strength. As a consequence, Tresca’s law of friction assuming that

the frictional shear stress is limited by the yielding limit of the

weaker material (Eq. (4)) seems more appropriate:

s ¼ min ljrnj;
Y
ffiffiffi

3
p

� �

: ð4Þ

But all these attempts are not very satisfactory since they do not in-

volve a clear relation between frictional stress, thermal softening

and work hardening.

In order to compute the response of shock-induced friction sys-

tems under severe loading conditions, we therefore propose to de-

velop a more detailed dynamic friction model. This model should

account for the physical phenomena observed at the shock-in-

duced sliding sub-surfaces (see Fig. 1), and be easily implemented

in an hydrocode environment. Hydrocodes are specially designed

for solving problems involving high energy, explosives, or shock

propagation, situations where pressures waves and acceleration

forces play a dominant role. They mostly use explicit time integra-

tion algorithms which means that the computational grids cannot

be too fine. Based on a multiscale approach, we develop herein a

1D finite difference subgrid model. To adequately model the phys-

ics of dynamic friction under shock-induced conditions, it accounts

for frictional contact, elastoplastic yielding and work hardening,

heating by friction and plastic work, thermal softening and melt-

ing, as well as dynamics effects. The outline of the paper is as fol-

lows: Section 2 reviews the basic experimental framework at hand,

Section 3 outlines the overall numerical strategy. The local model

is detailed in Section 4. Sections 5 and 6 are devoted to the devel-

opment and validation of adequate numerical coupling strategies.

2. Experimental framework

The loading regime considered in this work is described in Fig. 3

and corresponds to the area of interest, with velocities ½v � ranging
from 100 to 1000 m s�1, and pressures taken between 5 and

100 GPa.

In addition to the reference experiments introduced in Section

1, two recent series of studies realized by Prakash et al. and Ball

et al. must be mentioned. Irfan and Prakash [8] developed a

plate-impact pressure-shear friction experiment. In these experi-

ments interfacial slip speeds ranging from 1 to 60 m s�1, normal

pressures of 1–3 GPa and interfacial temperatures of 700 �C or

more were obtained. For the studied cases, the general behaviour

appears to be similar to what is observed at lighter loads. Thus,

the coefficient of friction is found to decrease with increasing slid-

ing speed. Nevertheless some important differences should be

mentioned. For some loading conditions, they showed that with

heavier loads the deformation of the solids appears to be primarily

plastic. At higher speeds and even heavier loads, the frictional

heating can become so severe that a continuous hydrodynamic

Fig. 2. Description of the interface at the macroscopic and microscopic scales.

Fig. 1. Sketch of the contact region showing the areas of interest.



film of molten metal may appear at the interface within a very

short time. To model the observed thermomechanical behavior,

Prakash [8] recently developed a dynamic friction model where

the resistance to motion is determined primarily by this molten

film.

More recently, Ball et al. [7] developed a novel experimental

technique for observing the sub-surface deformation in aluminium

when sliding against a steel cylinder at high velocity and pressure

(see Fig. 4). Associated with the aforementioned thermal heating

and softening (see Fig. 5) they also observed the evolution of the

microstructure in the vicinity of the sliding interface. Since the

sheared layer is very thin (�0.1–5 lm) and the sliding speed is rel-

atively high (>100 m s�1), important strain rates are obtained near

the interface, resulting in major irreversible plastic deformation. In

some cases, the interface sub-surface is sheared so rapidly that the

global deformation is fully plastic.

Such regimes can be also observed in the dynamic friction

experiment developed at the Cea/Dam by Juanicotena et al. [6].

Similar to the plate-impact technique described in [8], this exper-

iment consists in studying the response of a cylindrical target

when impacted by a metallic projectile.

This target is made up of two materials: a light central cone sur-

rounded by an heavier confinement material (see Fig. 6). Such a

geometry ensures the contact at the interface. Different values of

contact pressures and sliding velocities can be attained by simply

changing the nature of the flyer, the impact speed or the angle of

the cone.

Upon striking the target, the projectile generates a plane shock

wave that starts to propagate inside the tribopair materials. Be-

cause of its lower mechanical impedance, the central cone will first

start to move. It results in a relative motion at the interface

characterized by very large sliding velocities. To assess the magni-

tude of the slip response, the free surface velocity of the central

cone is measured by laser interferometry for various given impact

speeds. We may then express the interfacial slip response as a

function of the loading conditions.

The observed results show that severe loading conditions lead

to extremely localized thermomechanical processes. More pre-

cisely, we observe an important and localized increase in surface

temperature due to frictional heat production. This thermal blow-

up (warm-up) leads in an extremely short time to the fully melt

temperature regime and to the formation of a thin molten metal

film. As a counter-effect, extreme shearing of the sub-surface gen-

erates large plastic deformations which tend to strengthen the

material. Resulting interactions between both these phenomena

are generally complex and may profoundly affect the state of the

interface during the dynamic slip process.

These experimental studies do not completely characterize the

shock-induced frictional properties in the high sliding velocity and

high pressure regimes. This lack of data and the difficulties

encountered in setting up concrete and physically based experi-

ments could be overcome by using numerical simulations. Fig. 7

reports some classical output results obtained by hydrocodes when

Fig. 3. Physical domain.

Fig. 4. FN6 experiment used at the Awe (from Ball et al. [7]).

Fig. 5. Typical evolution of interface temperature and shear force as observed by

Ball et al. [7].

Fig. 6. CEA dynamic friction experiment setting: shock-induced motion of light

material inside heavier one (from Juanicotena et al. [6]).



studying centimetric axisymmetric samples subjected to an

impinging shock wave for a few microseconds.

The models use basic kinematically hardening and thermally

softening elastoplastic laws in large strains and neglect heat con-

duction. The codes are explicit in time with FEM cell sizes of

10 lm or more ðDZ � 10 lmÞ, and time steps of a few nanoseconds

ðDt � 1e�9 sÞ. They either neglect friction or use simple empirical

models (3) and (4) in which the frictional stress is related to the

normal stress through modified Coulomb’s laws:

s ¼ min ðl1 þ ðl0 � l1Þ � exp�#j½v �jÞ � rn;lT �
YðH; epÞ

ffiffiffi

3
p

� �

; ð5Þ

where lT is a user defined auxiliary friction coefficient. The center

cone in aluminium is pushed ahead by the incoming wave and

slides inside the steel hole.

Nevertheless, the observed predicted time histories are differ-

ent from experiments even with these modified friction models.

It could be explained by the lack of precision in computing fric-

tional interfaces. Indeed, the FEM mesh cells used in classical

hydrocodes fail to capture some key physical processes, such as

interface heating and transient heat conduction which occur at

lower scale. In addition, they do not track the thermomechanical

history of the materials at the interface. The temperature H calcu-

lated in the friction law (5) generally corresponds to the average

temperature value computed by the hydrocode at the center of a

FEM interfacial cell. For extreme loading cases this average value

may severely differ from the real interfacial temperature. It leads

to an over-estimation of the interfacial shear stress implying more

friction and therefore a limited relative motion. It is the same for

the sub-surface elastoplastic deformation ep.

3. Towards a physics-based multiscale numerical model:

proposed strategies

To improve the computational resolution of shock-driven inter-

faces we propose herein to develop a robust dynamic friction mod-

el for use in hydrocodes. This model requires that the physics of

dynamic friction conditions is adequately modeled. Based on the

1D model developed by Ball et al. [7] it should therefore accounts

for work hardening and thermal softening next to the frictional

interface.

To model the slip response of shock-driven interfaces the dy-

namic friction problem is here treated as a two-body problem. As

pictured in Fig. 8, it basically consists in studying the problem

where a light metallic material subjected to normal contact pres-

sures rn ¼ P, denoted as body X�, slides at large relative velocity

½v� on an heavier metallic body, denoted Xþ.

3.1. Modelling strategy

From a numerical point of view, the main difficulties are related

to the confinement of the thermomechanical processes over a thin

layer of matter near the interface and to the construction of a

numerical scheme which ensures that the interfacial temperature

stays below the melting temperature of the sliding bodies.

In order to adequately capture these localized thermomechani-

cal processes with computational cells, a multiscale approach is

necessary (see Fig. 9). The subgrid model to be coupled to the

existing macroscopic model should accurately resolve material

interfaces and help to understand the dynamic frictional character-

istics of sliding interfaces under relatively high sliding velocities,

high normal pressures and elevated temperatures. The local model

will therefore couple a detailed resolution of the heat equation in

the interface layer taking into account the heat produced by fric-

tion as in [9,10], and the thermal dependent elastoplastic model

of this layer.

As pictured on Fig. 10, this multiscale approach uses three

scales in space:

� Actual hydrocodes only consider themacroscopic scalewhere the

light and heavy sliding materials, respectively, occupy the half

spaces X� ¼ z 2 ½0;DZ�� and Xþ ¼ z 2 ½DZþ;0� (see Fig. 10) and

where DZ� and DZþ are the size of the FEM cells in the soft

and hard material, respectively.

Fig. 7. Numerical solution of a typical dynamic friction experiment computed by an

industrial hydrocode. The specifications are close to the experimental set up of

Juanicotena et al. [6]. The dark center cone in aluminium is push ahead by the

incoming wave and slides inside the center hole.

Fig. 8. The global geometry and the observed thermomechanical phenomena.

Fig. 9. Interfacial subgrid model accounting for sub-surface thermal softening and

plastic work hardening.



� At the local scale (microscopic scale) used in our subgrid model

we suppose that shearing at the interface is confined in a thin

layer of matter where all the key thermomechanical phenomena

appear. Therefore, we define a subspace Xint 2 X� made of an

heat affected zone (thermal boundary layer), and a plastic

boundary layer.

� Finally, a nanoscopic scale might be considered (Fig. 11). In that

case, the interface is described by a specific analytical model

that accounts for surface irregularities such as asperities.

3.2. Coupling strategy

The efficiency of the local model strongly depends on the strat-

egy that is defined to couple the local model to the global model

(which is solved by the hydrocode). For the sake of simplicity we

will differentiate the values computed at the macroscopic scale

from the local values predicted by the subgrid model. As pictured

in Fig. 2, the velocity values computed by the hydrocode are de-

noted by V, whereas the real velocity field at microscopic scale is

denoted by v. In the same way, the macroscopic shear stress is de-

noted by T and the real shear stress by s.
Downscale and upscale strategies consist in choosing adequate

parameters that will be exchanged between the two scales. In the

present study, two coupling methods have been considered. They

basically consist in coupling downscale and upscale through far field

shear stress T and macroscopic velocity fields V.

4. Multiscale thermomechanical model

4.1. Global model at the macroscopic scale

The thermomechanical problem couples the stress tensor

rðx; tÞ, the strain tensor eðx; tÞ, the temperature field Hðx; tÞ and

the material velocity vðx; tÞ. All of them are defined at a given

material point x, at a given instant t. They are governed by the stan-

dard equations of conservation of mass, momentum and energy

coupled to an elastoplastic material model.

In conservative form, on any given material subdomain charac-

terized by its reference configuration X0 or its present boundary

CðtÞ, the conservative laws write:

d

dt

Z

X0

q0 dX ¼ 0; ð6Þ

d

dt

Z

X0

q0 �Vðx; tÞdX ¼
Z

CðtÞ
rðx; tÞ � ndC; ð7Þ

d

dt

Z

X0

q0 �
V

2ðx; tÞ
2

þ e

� �

dX ¼
Z

CðtÞ
Vðx; tÞ � rðx; tÞ � ndC: ð8Þ

Here, e stands for the specific internal energy. In the present study it

is assumed that the evolution of the deviatoric stress is given by

sðx; tÞ ¼ rðx; tÞ � P1l, where P is the hydrostatic pressure and 1l

the identity tensor. The deviatoric stress then follows a standard

law of elastoplasticity with constant shear modulus G0,

Fig. 10. Multiscale problem at the interface showing the hydrocode cells and the subgrid model.

Fig. 11. Mechanical model including asperities and junctions at the sliding interface.



_sðx; tÞ ¼ 2G0 � deðx; tÞ ¼ 2G0ðdðx; tÞ � dpðx; tÞÞ; ð9Þ

and with plastic strain evolution being governed by a Von Mises like

flow rule:

f ðs;YÞ :¼ req � Yðx; tÞ 6 0; ð10Þ
_epðx; tÞ � ðreq � Yðx; tÞÞ ¼ 0; _epðx; tÞP 0; ð11Þ

dpðx; tÞ ¼
3

2
_epðx; tÞ �

sðx; tÞ
req

� �

: ð12Þ

Here req, the equivalent Von Mises stress is given by

req ¼
ffiffiffi

3

2

r

ksðx; tÞk: ð13Þ

The SCG model [11] is used to characterize the evolution of the flow

stress Y. This constitutive model takes into account work hardening,

pressure effect, thermal softening and melting:

Yðep;GÞ ¼ maxðYmax;Y0ð1þ bepÞgÞ �
GðP;HÞ

G0

; ð14Þ

GðP;HÞ ¼ G0ð1þ gP � hHðH� 300ÞÞ � exp �0:001 �H
HF �H

� �

: ð15Þ

Here, Y0 is the reference yield strength of the local material, P is the

pressure, H the temperature, and b; g; g; hH are material depen-

dent parameters. It is to note that the first term on the right of

Eq. (14) allows to model work hardening effects. The second term

which is defined by Eq. (15) represents pressure hardening and

thermal softening. The final exponential term was introduced by

Ball et al. [7] and produces a rapid decay in flow stress as the melt-

ing temperature is approached.

The global model does not specify the constitutive law of the

frictional interface. This will be introduced in the subgrid model

at a spatial scale which is compatible with the local singularities

of the temperature and plastic strain fields.

To compute the macroscopic behavior, both domains are dis-

cretized on a finite element grid and resolved by a locally devel-

oped explicit in time Lagrangian hydrocode [6]. Conservation of

momentum is written on vertex based lagrangian cells. The conser-

vation of mass and energy is imposed within each finite element.

4.2. Specification of the local model at the microscopic scale

At the microscopic scale and for the sheared layer configuration,

we assume spatial homogeneity in the x and y directions, meaning

that all field quantities defined in Xint depend on ðz; tÞ only.
As in [12], the local thermomechanical problem therefore

couples:

� The deviatoric stress tensor sðz; tÞ, that may be directly written

as a function of the shear stress sðz; tÞ, so that:

sðz; tÞ ¼
0 0 sðz; tÞ
0 0 0

sðz; tÞ 0 0

0

B

@

1

C

A
: ð16Þ

� The deviatoric strain tensor dðz; tÞ which is written in terms of

its elastic and plastic components, respectively, deðz; tÞ and

dpðz; tÞ, and such that:

dðz; tÞ ¼ deðz; tÞ þ dpðz; tÞ: ð17Þ

� The temperature field Hðz; tÞ.
� The material velocity vðz; tÞ.

They are all defined for a given material point z 2 Xint ¼ ½0;h�,
and at each time t. They are governed by the energy and momen-

tum conservation laws, by the elastoplastic constitutive law (9), by

the flow rule (11), by the flow stress construction (14) and (15),

and by a specific interface elastoplastic constitutive law to be spec-

ified below.

4.3. Local energy conservation and transient heat problem

As previously indicated, under shock loading conditions, the

heat generated at the sliding interface dissipates into a very thin

heat affected zone and decreases very quickly with distance from

the interface. To model this thermal behaviour we use the tran-

sient model of conduction defined by Prakash [8]. This model as-

sumes that both the material may be modeled by semi-infinite

solids.

4.3.1. Heat sources

The heat generated during the slip process may be produced by

two sources: on the one hand by the interfacial frictional work
_qð0; tÞ and on the other hand by plastic work in the sub-surface
~wðz; tÞ which we will neglect for the time. The surfacic source
_qð0; tÞ is defined as a heat flow per unit time per unit area. If we as-

sume that all the interfacial frictional work is converted to heat, we

have:

_qð0; tÞ ¼ bT � sð0; tÞ � ½v�ð0; tÞ: ð18Þ

The coefficient bT governs the partitioning of heat in the tribopair

materials. Assuming a perfect contact, Vernotte [13] showed by

equating the temperatures at the material interfaces that this coef-

ficient was only dependent on the materials properties:

bT ¼ k
ffiffiffiffiffiffi

aþ
p

k
ffiffiffiffiffiffi

aþ
p þ kþ

ffiffiffi

a
p : ð19Þ

In Eq. (19), k; a; kþ and aþ are the thermal conductivity and ther-

mal diffusivity of Xint and Xþ, respectively.

4.3.2. Heat conduction equation

The temperature increase for a given point z 2 Xint is governed

by the equation of conservation of energy, which in nonconserva-

tive form writes

@2Hðz; tÞ
@z2

� 1

a
@Hðz; tÞ

@t
¼ 0: ð20Þ

For simplicity, we have taken here uniform diffusivity and conduc-

tivity coefficients a and k inside the shear layer.

4.3.3. Thermal boundary conditions

In our case, we will suppose that at microscale the initial tem-

perature field Hðz;0Þ is uniform in space, and equal to the post-

shock temperature Href , such that:

Hðz; 0Þ ¼ Href : ð21Þ

The dissipation of heat at the interface is modeled using a Neumann

boundary condition and is based on the Fourier’s law of heat diffu-

sion which connects the gradient of temperature to the interfacial

heat flux:

�k
@Hðz; tÞ

@z

	

	

	

	

0;t

¼ _qð0; tÞ: ð22Þ

Furthermore, we assume that the heat flux can be neglected at the

shear layer upper bound ðz ¼ hÞ:

@Hðz; tÞ
@z

	

	

	

	

h;t

¼ 0: ð23Þ

Altogether, the heat conduction problem is defined by equations

(Eqs. (20)–(23)).



4.3.4. Analytical solution to the heat conduction problem

An analytical solution to the aforementioned set of equations

can easily be obtained using Laplace transforms. In such a case,

the temperature field inside the shear layer is given by the follow-

ing equation, as used in [8]:

Hðz; tÞ ¼ 1

k

Z t

0

_qð0; nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
pðt � nÞ

r

� exp �z2

4aðt � nÞ

� �

dnþHðz; 0Þ:

ð24Þ

If we assume that the interfacial heat flux _q is constant over a given

timestep Dt we observe that the interface temperature Hð0; tÞ de-

pends linearly on the interfacial heat flux _qð0; tÞ:

Hð0; tÞ ¼ 1

k

Z tn�1

0

_qð0; nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
pðt � nÞ

r

þ q

k

Z tn

tn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
pðt � nÞ

r

dnþHð0;0Þ

ð25Þ
¼ Hadð0; tÞ þS

�1
Dt � _qð0; tÞ: ð26Þ

Above, Hadð0; tÞ would be the interface temperature observed if

there were no sliding (that is without frictional heat production)

during the time step, andS
�1
Dt is the inverse of the incremental Stek-

lov–Poincare linear operator which to a given heat flux applied

through the time step Dt associates the corresponding temperature

increase H�Had.

4.3.5. Discrete heat problem

Because of the fine scale in space which is used, the conduction

problem (20) and (23) is approximated by an implicit scheme in

time and finite differences in space. At each time t and at each grid

point 0 > i > N, the heat equation (20) then reduces to:

Hn�1
i ¼ �FoðHn

i�1 þHn
iþ1Þ þ ð1þ 2FoÞHn

i : ð27Þ

The adimensional Fourier mesh parameter Fo characterizes the heat

diffusion inside the sliding material as a function of its thermal dif-

fusivity a and discrete space and time steps, respectively, Dz and Dt:

Fo ¼ aDt
Dz2

: ð28Þ

This equation is completed by Neumann boundary conditions at

point i ¼ 0 and a zero heat flux condition at point i ¼ N:

B:C: at point i ¼ 0 : _qn ¼ bT � ½v �n � sn; ð29Þ

B:C: at point i ¼ N :
k

2Dz
ðHn

Nþ1 �Hn
N�1Þ ¼ 0: ð30Þ

The temperature is thus finally obtained by solving a tridiagonal lin-

ear system:

1þ 2Fo �2Fo 0

�Fo 1þ 2Fo �Fo

�Fo 1þ 2Fo �Fo �
� �

�Fo 1þ 2Fo �Fo

0 �2Fo 1þ 2Fo
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C
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Hn�1
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_qnDz
k

� �

Hn�1
1

Hn�1
2

�
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0

B

B

B

B

B

B
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C
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C

C

C

C

C

C

C

C
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C
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ð31Þ

from which we deduce the vector Hn of temperature nodal values

by

Hn ¼ Aþ _qn � B: ð32Þ

For a given time tn, the vectors of coefficients A and B (with B0 cor-

responding to the discrete inverse of the Steklov–Poincare operator

S
�1
Dt ) are determined by solving Eq. (31) for two given values of _qn.

More precisely, we first compute an adiabatic temperature fieldHn
ad,

and a frictional temperature field Hn
fr , which is obtained for a refer-

ence nonzero heat flux:

_qn
ad ¼ 0 ! Hn ¼ Hn

ad; ð33Þ
_qn
fr ¼ Y0 � ½v� ! Hn ¼ Hn

fr: ð34Þ

Then, the temperature field near the interface can be directly ob-

tained by

Hn ¼
Hn

fr �Hn
ad

_qn
fr

!

� _qn þHn
ad: ð35Þ

Observe that the heat flux _qn given by (18) depends on the mechan-

ical state of the interface. The thermal problem is thus coupled to

the elastoplastic problem detailed below.

4.4. Local elastoplastic model

4.4.1. Equation of motion

Dynamic of a material point z 2 Xint is determined by the equa-

tion of momentum:

divðrðz; tÞÞ þ f ðz; tÞ ¼ q � cðz; tÞ 8z 2 Xint ; ð36Þ

where f stands for the volumic forces and c for the acceleration.

4.4.2. Elastoplastic law

In the case of perfect shear, the elastoplastic law (9) reduces to:

@sðz; tÞ
@t

¼ 2G0
1

2

@vðz; tÞ
@z

�
ffiffiffi

3
p

2

@epðz; tÞ
@t

 !

: ð37Þ

4.4.3. Von Mises flow rule

For perfect shear, the equivalent Von Mises stress req (13) re-

duces to

req ¼
ffiffiffi

3

2

r

ksðx; tÞk ¼
ffiffiffi

3
p

� sðz; tÞ: ð38Þ

Considering the shear layer geometry, the maximum shear stress

for yielding must therefore satisfy

s 6
YðP;Hðz; tÞÞ

ffiffiffi

3
p : ð39Þ

To model the behavior of metal when submitted to severe loading

conditions, we determine the flow stress Y using the SCG model

(14) and (15) with unlimited kinematic hardening. At time tn, the

discrete form of the yield limit writes:

YnðzÞ ¼ Y0ð1þ benpðzÞÞ
g � GnðPn;HnðzÞÞ

G0

; ð40Þ

GnðPn;HnÞ ¼ G0ð1þ gPn � hHðHn � 300ÞÞ � exp �0:001 �Hn

HF �Hn

� �

:

ð41Þ

After implicit time discretization of the plastic flow rule, and explic-

itation of the yield limit, two cases may occur:



� (a) Elastic local behavior:

sn � YnðzÞ
ffiffiffi

3
p 6 0; ð42Þ

DenpðzÞ ¼ 0; ð43Þ

YnðzÞ ¼ Y0ð1þ ben�1
p ðzÞÞg � GnðPn;HnðzÞÞ

G0

: ð44Þ

In such a case, the shear stress at a given point z is less than the

yield shear stress (44). As the local plastic strain rate is equal to

zero ð _enpðzÞ ¼ 0Þ, no plastic flow is observed and therefore

DenpðzÞ ¼ 0.

� (b) Plastic local behaviour:

sn ¼ YnðzÞ
ffiffiffi

3
p ; ð45Þ

DenpðzÞ > 0; ð46Þ

YnðzÞ ¼ Y0ð1þ bðen�1
p ðzÞ þ DenpðzÞÞÞ

g � GnðPn;HnðzÞÞ
G0

: ð47Þ

In such a case, the shear stress at a given point z is greater or

equal to the yield shear stress YnðzÞ. Plastic deformation is deter-

mined by equating the shear stress with the yield limit (45), and

DenpðzÞ > 0. By eliminating Yn in (45) and inverting (47), we may

directly compute the cumulated plastic strain by

Denpðsn; zÞ ¼
1

b
� sn � G0

ffiffiffi

3
p

GnðzÞ � Y0

 !1
g

� 1

8

<

:

9

=

;

� en�1
p ðzÞ

0

@

1

A

þ

: ð48Þ

4.5. Frictional interface model at the nanoscopic scale

Last, we may also consider the nanoscopic scale to model the

frictional behavior of the interface. The constitutive model for

the frictional interface is based on the works of Oden et al. [1,2]

or of Molinari [14]. It introduces a third scale associated to micro-

scopic asperities and junctions at the sliding interface (see Fig. 11).

These junctions are of average height d and are in contact with

the hard body on a fraction f of the apparent contact surface S. In

order to have equilibrium of interface shear forces exerced on a

substrate of area S, the shear stress sa inside a junction is related

to the shear stress s inside the shear layer through:

FT ¼ sa � ðf � SÞ ¼ s � S: ð49Þ

Following Molinari [14], the elastic strain inside the junctions are

neglected, which means that the plastic strain inside the junction

is equal to the ratio between the relative sliding velocity ½v � (differ-
ence of velocity between the top and the bottom of the asperity, the

top being in contact with the hard material and the bottomwith the

soft material), and the junction height d:

_ep;a ¼
½v �
d

: ð50Þ

The friction force is then determined by the Coulomb–Tresca law:

sa 6 min lrn;
Ya
ffiffiffi

3
p

� �

; ð51Þ

sa �min lrn;
Ya
ffiffiffi

3
p

� �� �

� ½v � ¼ 0: ð52Þ

Finally, the interfacial yield limit is again given by a SCGmodel [11]:

YaðtÞ ¼ minðYmax;a;Y0;að1þ bep;aðtÞÞgÞ �
GðP;Hð0; tÞÞ

G0

; ð53Þ

GðP;HÞ ¼ G0ð1þ gP � hHðH� 300ÞÞ � exp �0:001 �H
HF �H

� �

: ð54Þ

4.6. Mathematical characteristics of the thermomechanical problem

From a mathematical point of view, two major unilateral con-

straints appear at local scale:

� First, the interface temperature Hð0; tÞ must stay below the

melting temperature HF .

� Furthermore, relative sliding can only occur if the interface

ðz ¼ 0Þ is plastic and vice-versa. Therefore, one must respect

the variational inequality defined by Eqs. (51) and (52).

Both these conditions can only be respected by the numerical

model if the local problem is solved by a fully coupled time implicit

scheme.

As specified, the local model is still ill posed. A boundary condi-

tion is missing in the local equation of motion. This is where the

global model will influence the local one. Altogether, we therefore

need two coupling conditions between the global and the local

model in order to have a well posed coupled system, one in veloc-

ity, one in force.

5. Velocity driven downscaling

5.1. Coupling strategy

In a first coupling strategy, we assume that the relative sliding

velocity ½v � at the interface is given by the hydrocode so that a cou-

pling condition is

½v �n ¼ V
n
�ð0Þ �V

n
þð0Þ ¼ ½V�n; ð55Þ

where V
n
�ð0Þ is an extrapolation at point z ¼ 0 of the velocity com-

puted by the hydrocode at the interface of the softer cell (see Fig. 2).

We also assume that the interface is fully in contact ðf ¼ 1Þ and that

its yield limit is given by the soft material yield limit (40). We final-

ly neglect all inertia terms inside the shear layer which from the

momentum equation (36) implies that the shear stress is uniform

in the shear layer.

Velocity downscaling clearly simplifies the resolution of the lo-

cal model and allows us to compute the shear stress sðtÞwithin the

shear layer. This shear stress is then passed to the global model for

an explicit updating of the macroscopic velocities.

5.2. Local solver

To compute the thermomechanical slip response at the inter-

face, we use a simple predictor–corrector scheme which is re-

quired to integrate the governing equations (18), (35)–(37) and

(48). The friction law (51)–(54) is not used in the model, since

we assume sliding and since we identify the interface yield limit

to the internal yield limit. We must check aposteriori that the pre-

dicted interface shear stress is at the yield limit (40). The resolution

of this thermomechanical local problem consists in determining

the shear stress sn (uniform from (36)) that satisfies the nonlinear

elastoplastic law (37) with H given by (18) and (35), and Dep given
by (48). This is done by finding a zero to the nonlinear function

FðsnÞ which is defined by

FðsnÞ :¼ h
sn � sn�1

Dt

� �

þ G0

ffiffiffi

3
p Z h

0

Depðsn;HðsnÞÞ
Dt

dz: ð56Þ

It should be noted that this equation depends implicitly on the tem-

perature field by means of the plastic flow rule (48). The tempera-

ture is an explicit function of velocity jump and friction through

(18) and (35). Therefore, Eq. (56) is indeed a scalar equation in s
to be solved by the following secant’s method:



5.3. Numerical results

The following results where obtained for a shot between alu-

minium and steel. The pressure was supposed to be uniform in

space and constant over time. The slip velocity was also assumed

to be constant in time.

The material properties considered in these computation are

defined by the following set of parameters:

� For the aluminium central cone (soft material), mass density

q0 ¼ 2703 kg=m3, shear modulus G0 ¼ 27:6 GPa, initial tensile

strength Y0 ¼ 200 MPa, adimensional work hardening parame-

ters used in the SCG model b ¼ 125; g ¼ 0:10; g ¼ 6:52e�11

Pa�1 and hH ¼ 6:16e�4 K�1, melting temperature HF ¼ 1220 K,

thermal conductivity k ¼ 117 W=m K, specific heat c ¼ 900

J=kg K and thermal diffusivity a ¼ 48:9e�6 m2=s.

� For the steel confinement (hard material), q0 ¼ 7900 kg=m3;

G0 ¼ 77 GPa; Y0 ¼ 340MPa; b ¼ 43; g ¼ 0:35; g ¼ 2:26e�11 Pa�1;

hH ¼ 4:55e�4H�1; HF ¼ 2380 K; k ¼ 16:1W=mK; c ¼ 500 J=kg K

and a ¼ 4:076e�6 m2=s.

Then, for this tribopair configuration the coefficient of heat par-

tition is given by bT ¼ 0:68. The load and discretisation parameters

used in this simulation were h ¼ 20 lm; P ¼ 11:2 GPa, ½v � ¼
100 m s�1; Dt ¼ 1e�9 s; Dz ¼ h=500.

5.3.1. Consistent data

Fig. 12 clearly shows that thermal softening occurs on a very

thin layer of matter of thickness h ¼ 1 lm. Shear deformation

may be observed near the interface sub-surface producing irrevers-

ible bulk plastic deformation. On a qualitative point of view, we ob-

tain similar results (see Figs. 13 and 14) to those obtained by Ball

et al. (Fig. 5).

Velocity driven downscaling – resolution algorithm

Fig. 12. Yield limit in the shear layer at a given time t (thickness in meters and yield

limit in Pascal).

Fig. 13. Evolution with time of the interfacial temperature Hð0; tÞ (time in seconds, temperature in Kelvin).



5.3.2. Inconsistent data: weakness of velocity driven strategy

Although it allows to qualitatively describe shock-driven dy-

namic friction, this model does not allow to take into account

stick/slip phenomena. For some loading conditions described on

Fig. 15, plastification of the interface brutally stops. This corre-

sponds to elastic unloading, hence to zero plastic flow or equiva-

lently sticking interface. But our calculation will still impose in

such cases a nonzero sliding condition as inherited from the mac-

roscopic model, violating the sliding condition imposed by (52).

On the other hand, if we relax the velocity condition, the local

subproblem becomes ill posed. We must therefore develop a new

strategy for imposing the velocity and shear stress coupling condi-

tions while solving the local subproblem.

6. Force driven downscaling

Contrary to the previous coupling strategy, we consider herein a

force driven downscaling. This coupling strategy appears to be the

simplest way to obtain consistent slip velocities. In this strategy,

we inherit from the macroscopic model the shear stresses at mid

cell snþ ¼ TðþDZ=2; tnÞ and sn� ¼ Tð�DZ=2; tnÞ. The global problem

on the interface cell and the local problem on the shear layer are

then solved together, while respecting the coupling conditions in

velocity and stresses, namely that the macroscopic and micro-

scopic velocity V and v are identical outside the shear layer at

z ¼ h and that the macroscopic and microscopic interface shear

are identical at z ¼ h so that Tðh; tÞ ¼ sðh; tÞ (see Fig. 2). We also

Fig. 14. Evolution with time of the interfacial shear stress sð0; tÞ (time in seconds, stress in Pascal).

Fig. 15. Domain of validity of the sliding assumption. The black line corresponds to the limiting regime at which we observe numerical elastic unloading (slip to stick

transition).



assume that the inertia forces at macroscopic scale and at micro-

scopic scale are identical which reduces the momentum equation

(36) to the following equality:

@s
@z

¼ @T

@z
: ð57Þ

Added to the relation Tðh; tÞ ¼ sðh; tÞ, this equality implies that the

macroscopic and microscopic shear stresses are identical within the

shear layer.

6.1. Global model

At the global scale, the hydrocode solves the equation of motion

using a centered scheme in time. Accelerations are computed at a

given time tn for a given point z. The velocities are thus given at

time tn�
1
2 by the finite difference:

cnðzÞ ¼ V
nþ1

2 �V
n�1

2

Dt
: ð58Þ

In this case, writing the macroscopic conservative law on the softer

material yields

sn� � snð0Þ

 �

� Dt
m�

¼ V
nþ1

2� ð0Þ �V
n�1

2� ð0Þ
� �

: ð59Þ

For the harder material and in the same way, we obtain:

snð0Þ � snþ

 �

� Dt
mþ

¼ V
nþ1

2
þ ð0Þ �V

n�1
2

þ ð0Þ
� �

: ð60Þ

Subtracting Eq. (60) to Eq. (59) we have:

sn�
Dt

m�
þ snþ

Dt

mþ
� snð0Þ Dt

m�
þ Dt

mþ

� �

¼ ½V�nþ1
2 � ½V�n�1

2: ð61Þ

In the softer cell, we suppose that the macroscopic plastic strain

rate _Ep is uniform in space and that the velocity field V�ðz; tÞ com-

puted by the hydrocode is linear in space (see Fig. 2) such that at

any point z 2 ½0;DZ��, the elastoplastic constitutive law writes:

dT

dt
ðz; tÞ ¼ G0

V�ðDZ�; tÞ �V�ð0; tÞ
DZ�

� �

�
ffiffiffi

3
p

G0 � _Ep

¼ G0
V�ðh; tÞ �V�ð0; tÞ

h

� �

�
ffiffiffi

3
p

G0 � _Ep: ð62Þ

6.2. Coupling condition

As defined previously, we consider at the local scale a thin layer

of thickness h 2 ½0;DZ��. The local velocity field is represented by

v�ðz; tÞ and the real relative sliding velocity is given by ½v �ðtÞ ¼

Fig. 16. Slip response of the tribopair computed by the hydrocode only at t ¼ 12 ls: shape and temperature field. No interfacial heating is observed.

Fig. 17. Slip response of the tribopair computed with our subgrid model at t ¼ 12 ls and showing a strong thermal blow-up near the sliding interface: shape and temperature

field.



v�ð0; tÞ �Vþð0; tÞ. We have assumed that v�ðh; tÞ ¼ V�ðh; tÞ (see

Fig. 2), so that the velocity field is continuous at point z ¼ h.

By now, subtracting the microscopic elastoplastic constitutive

law (37) to the macroscopic formulation (62), we get after integra-

tion in space,

1

h

Z h

0

dT

dt
ðz; tÞ � ds

dt
ðz; tÞ

� 


dz

¼ G0

v�ð0; tÞ �V�ð0; tÞ
h

� �

� G0

ffiffiffi

3
p

� _Ep þ
G0

ffiffiffi

3
p

h

Z h

0

@epðz; tÞ
@t

dz:

ð63Þ
But, by assumption, the microscopic stress and macroscopic stress

are identical at each point z and thus (63) reduces to

½v�ðtÞ ¼ ½V�ðtÞ �
ffiffiffi

3
p

h � _Ep þ
ffiffiffi

3
p Z h

0

@epðz; tÞ
@t

dz: ð64Þ

The relation takes into account the coupling condition in force (63),

the local conservation of momentum and the local microscopic con-

stitutive law (37).

The local problem then reduces to the thermal equations (18)

and (35), to the coupling condition (64), to the yield plastic flow

rule (48) and to the friction law (51)–(54).

6.3. Local simplified model

For the sake of simplicity, we first consider a simple case where

plastic deformation is neglected at both scales, such that _epðz; tÞ ¼
0 8z 2 ½0;h� implying ½v � ¼ ½V� from (64), with ½V� ¼ ½V�nþ1

2þ
�

½V�n�1
2Þ=2 given from the global model by (61). We also take f ¼ 1

and d ¼ 0 in the friction law, which thus reduces to:

sn 6 min lrn;
Ymax
ffiffiffi

3
p � GðH

nð0ÞÞ
G0

� �

; ð65Þ

½v�n � sn �min lrn;
Ymax
ffiffiffi

3
p � GðH

nð0ÞÞ
G0

� �� �

¼ 0: ð66Þ

The equilibrium equation (36) has been used in the derivation of

(64). The remaining discrete local equations are given again by

the thermal equations (18) and (35). It reduces to a scalar nonlinear

equation in temperature:

Hn ¼ S
�1
Dt bT � ½v�ðHnð0ÞÞ � sðHnð0ÞÞð Þ ð67Þ

with s given by (65) and (66) and ½v � ¼ ½V� given by (61).

As for velocity downscaling, the thermomechanical problem de-

fined by Eq. (67) is solved by the secant method driving to zero the

residual FðHnÞ:

FðHnÞ :¼ Hn �Hn
ad �

Hn
fr �Hn

ad

_qn
fr

!

� bT � ½v �nðHnÞ � snðHnÞ: ð68Þ

Force driven downscaling – resolution algorithm

Fig. 18. Friction models used during the computation with the hydrocode only.



It is to note that if we take into account the plastic strain, the

solution algorithm stays the same except for the equation in veloc-

ity which is now (64) with ½V� again given by (61) and plastic flow

given by (48).

6.4. Numerical results

The following results were obtained for shock-driven friction of

an aluminium–steel tribopair. They essentially give a qualitative

overview of the role played by our subgrid model on the sliding re-

sponse. Therefore, we here compare the results computed by the

hydrocode with or without our 1D subgrid model.

The macroscopic slip response of the tribopair is represented

both on Figs. 16 and 17. In the first case, the results were computed

with the hydrocode only with friction law (5). The values used in

the modified Coulomb law of friction are chosen so that l0 ¼ 0:3,

l1 ¼ 0:02, # ¼ 0:01 and lT ¼ 1. This empirical model uses a very

low friction coefficient l1 in presence of large sliding velocity.

Fig. 19. Friction models used during the computation with our subgrid model.

Fig. 20. (1D subgrid model) – Evolution with time of the interfacial temperature. Dark blue areas stand for nonsliding initial cases. (For interpretation of the references in

color in this figure legend, the reader is referred to the web version of this article.)



As the mesh cells fail to capture the thermomechanical history

at the interface, we do not observe any interfacial heating (see

Fig. 16). It is not the case anymore when using our 1D subgrid

model. As pictured on Figs. 17 and 20, we clearly observe a thermal

blow-up located near the sliding interface, with high values of tem-

perature. This brief overview allows us to confirm that the subgrid

model has been correctly taken into account.

We also notice that due to our choice of friction coefficients

and to the history of shear waves propagating inside the domain,

the 1D subgrid model predicts much more friction than

expected by the classical computation. Indeed we observe less

sliding on Fig. 17 (1D subgrid model) than on Fig. 16 (hydrocode

only).

To confirm the role played by our subgrid model, we pictured

out the evolution with time of the relative sliding velocity, the

interfacial shear stress, as well as the interfacial temperature. All

these values have been computed at every new time step and for

each interfacial point (see Figs. 18, 20–22). In both the cases

Fig. 21. (1D subgrid model) – Evolution with time of the relative sliding velocity.

Fig. 22. (1D subgrid model) – Evolution with time of the interfacial shear stress.



(hydrocode only/1D subgrid model), we first determined which

friction model was used.

As shown on Fig. 18, because of the very small value of l1, the

classical computation without our 1D subgrid model uses mainly

the Coulomb friction model.

This result slightly differs when using our 1D subgrid model

(see Figs. 19–22). In such a case, we observe much more Tresca

friction, so that:

lrn P
Y0 � GðHð0; tÞÞ

ffiffiffi

3
p :

The area that represents the Tresca friction law is surrounded by the

area standing for Coulomb friction. Due to thermal softening, the

shear force reaches the Tresca yield stress.

7. Conclusions

A 1D dynamic friction model has been developed for use in

hydrocodes. It provides a full coupling between heat equation, fric-

tion and plasticity and is treated at low cost through a subgrid

model. Two coupling strategy have been used:

� The first case is based on velocity driven downscaling. It ade-

quately describes the evolution of the interfacial shear stress

and predicts asymptotic melting, as observed by Ball et al. [7].

Nevertheless it does not take into account stick/slip phenomena

at the sliding interface.

� To avoid this physical problem a second coupling strategy based

on force driven downscaling has been used. In a simplified case,

the interfacial shear stress is chosen so that no plastic deforma-

tion may occur. The computed results show that the 1D model is

correctly coupled to the hydrocode and adequately describe the

thermal blow-up at the interface.

Further studies will be needed to correctly specify the mechan-

ical data of the experimental problem and to take into account the

plastic deformation at the interface and dynamic effects at the local

scale.
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