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Isoperimetry for spherically symmetric log-concave

probability measures

Nolwen Huet1

February 4, 2009

Abstract

We prove an isoperimetric inequality for probability measures µ on R
n with

density proportional to exp(−φ(λ|x|)), where |x| is the euclidean norm on R
n and

φ is a non-decreasing convex function. It applies in particular when φ(x) = xα with
α ≥ 1. Under mild assumptions on φ, the inequality is dimension-free if λ is chosen
such that the covariance of µ is the identity.

1 Introduction

In his paper [10], Bobkov studies the spectral gap for spherically symmetric probability
measures µ on Rn with density

dµ(x)

dx
= ρ(|x|),

where ρ is log-concave. His main result can be stated as follows.

Theorem 1 (Bobkov [10]). The best constant Pµ in the Poincaré inequality

Varµ(f) ≤ Pµ

∫

|∇f |2 dµ, ∀f smooth

satisfies
Eµ(|X|2)

n
≤ Pµ ≤ 12

Eµ(|X|2)
n

.

In particular, if µ is isotropic, we get

1 ≤ Pµ ≤ 12,

which means a spectral gap not depending on n.
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2000 Mathematics Subject Classification: 26D10, 60E15, 28A75.
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Here “µ is isotropic” means that the covariance of µ is the identity. However, we
already know from the spherically invariance of µ that the covariance is proportional to
the identity. So in our case, the isotropy of µ reduces merely to Eµ(|X|2) = n.

If we assume furthermore that µ itself is log-concave (see [11] for precisions about
log-concave measures), that is to say that ρ is non-decreasing, then one can show an
isoperimetric inequality for µ, thanks to a result of Ledoux [15] (generalized in [17] by E.
Milman) bounding the Cheeger constant from below by the spectral gap.

Theorem 2. There exists a universal constant c > 0 such that, for any n ∈ N, all
log-concave measures µ on Rn spherically symmetric and isotropic satisfy the following
isoperimetric inequality:

Isµ(a) ≥ c a ∧ (1 − a). (1)

Here Isµ denote the isoperimetric function of µ and a ∧ b = min(a, b). We need some
notation to define Isµ properly. Let A be a Borel set in Rn. We define its ε-neighborhood
by

Aε = {x ∈ X; d(x, A) ≤ ε}.
The boundary measure of A is

µ+(∂A) = lim inf
ε→0+

µ(Aε) − µ(A)

ε
.

Now the isoperimetric function of µ is the largest function Isµ on [0, 1] such that for all
Borel sets A,

µ+(∂A) ≥ Isµ

(

µ(A)
)

.

The result of Bobkov answer the KLS-conjecture ([12]) in the particular case of spherically
symmetric measures. This conjecture asserts that (1) is true for all log-concave and
isotropic measures µ, with a universal constant c.

Our aim in this note is to sharpen Theorem 2 when ρ is “better” than log-concave.
For instance, the Gaussian measure γn corresponding to ρ(t) = (2π)−

n
2 exp− t2

2
, is known

to satisfy the log-Sobolev inequality and the following isoperimetric inequality:

Isγn
(a) ≥ c

(

a ∧ (1 − a)
)

√

log
1

a ∧ (1 − a)

with constants not depending on n either. We can ask what happens for regimes between
exponential and Gaussian or even beyond the Gaussian case. This idea has already be
developed in [14, 2, 6, 4, 5] for product measures.

Let φ : R+ → R+ be a convex non-decreasing function of class C2 such that φ(0) = 0.
Then we consider the probability measure on R

n

µn,φ(dx) =
e−φ(|x|) dx

Zn,φ

and its associated radial measure on [0, +∞)

νn,φ(dr) = |Sn−1|r
n−1e−φ(r) dr

Zn,φ

.
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In the particular case φ(x) = φα(x) = xα with α ≥ 1, we note µn,α = µn,φα
and νn,α =

νn,φα
. We denote by σn−1 the uniform probability measure on the unit sphere Sn−1 of Rn.

If X is a random variable of law µn,φ, then |X| has the distribution νn,φ. Conversely, if
r and θ are independent random variables whose distributions are respectively νn,φ and
σn−1, then X = rθ has the distribution µn,φ. In view of this representation, we will derive
inequalities for µn,φ from inequalities for νn,φ and σn−1.

In the subgaussian case, following the results for µ⊗n
1,φ from [5], we expect the isoperi-

metric function of µn,α to be equal to a constant depending on n, times a symmetric
function defined for a ∈ [0, 1

2
] by

Lα(a) = a

(

log
1

a

)1− 1
α

,

and more generally for µn,φ,

Lφ(a) =
a log 1

a

φ−1
(

log 1
a

) .

Otherwise, since we are aiming at results which do not depend on n and because of
the Central-Limit Theorem ([13]), we cannot expect better isoperimetric profile than the
one of the Gaussian measure, proportional to

L2(a) = a

√

log
1

a
.

The point is to know the exact dependence in n of the constant in front of the term
in a, and in particular to know whether we recover universal constants in the isotropic
case. The main theorems of this paper are stated next.

Theorem 3. There exists a universal constant C > 0 such that, for every α ≥ 1, for
every n ∈ N∗, and every a ∈ [0, 1], it holds

Isµn,α
(a) ≥ Cn

1
2
− 1

α

(

a ∧ (1 − a)
)

(

log
1

a ∧ (1 − a)

)1− 1
α∧2

.

It can be seen as a corollary of the following more general theorem.

Theorem 4. Let φ : R+ → R+ be a convex non-decreasing function of class C2 such that
φ(0) = 0. If moreover we assume that

i)
√

φ is concave, then for every n ∈ N
∗, and every a ∈ [0, 1], it holds

Isµn,φ
(a) ≥ C

√
n

φ−1(n)
φ−1(1)

(

a ∧ (1 − a)
)

log 1
a∧(1−a)

φ−1
(

log 1
a∧(1−a)

) ,

ii) x 7→
√

φ(x)/x is increasing, then for every n ∈ N∗, and every a ∈ [0, 1], it holds

Isµn,φ
(a) ≥ C

√
n

φ−1(n)

(

a ∧ (1 − a)
)

√

log
1

a ∧ (1 − a)
,
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where C > 0 is a universal constant.

Remark. One can see that φ−1(1) in Theorem 4.i) is necessary if a uniform result in φ
is wanted, by homogeneity. Indeed, replacing φ by φλ : x 7→ φ(λx) multiplies both terms
of the inequality by λ.

We introduce in Section 2 the different hypotheses made on φ. Then we establish
in Section 3 the isoperimetric inequality for the radial measure. The proof relies on an
inequality for log-concave measures due to Bobkov and some estimates of probabilities of
balls. Section 4 is devoted to the argument of tensorization which yields the isoperimetric
inequality from the ones for the radial measure and the uniform probability measure on
the sphere. A cut-off argument is needed to get rid of the case of large radius. This
tensorization relies on a functional version of the inequality whose proof is postponed to
Section 5. We combine the previous results in Section 6 to prove Theorem 4. Eventually,
we discuss the isotropic case and the optimality of the inequalities in Section 7.

2 Hypotheses on φ

We make different assumptions on φ, corresponding to the different case of Theorem 4.

Hypotheses (H0) φ : R
+ → R

+ is a non-decreasing convex function of class C2 such
that φ(0) = 0.

Hypotheses (H1) φ satisfies (H0) and x 7→
√

φ(x)/x is non-increasing.

Hypotheses (H1’) φ satisfies (H0) and
√

φ is concave.

Hypotheses (H2) φ satisfies (H0) and x 7→
√

φ(x)/x is non-decreasing.

The next lemma sums up some properties of φ under our assumptions.

Lemma 5. • Under (H0), it holds:

i. For all t ≥ 1 and x ≥ 0,
φ(tx) ≥ tφ(x).

ii. For all t ≥ 1 and y ≥ 0,
φ−1(ty) ≤ tφ−1(y).

iii. For all x ≥ 0,
xφ′(x) ≥ φ(x).

• Under (H1), it holds:

i. For all t ≥ 1 and x ≥ 0,

tφ(x) ≤ φ(tx) ≤ t2φ(x).

ii. For all t ≥ 1 and y ≥ 0,
√

tφ−1(y) ≤ φ−1(ty) ≤ tφ−1(y).
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iii. For all x ≥ 0,
φ(x) ≤ xφ′(x) ≤ 2φ(x).

iv. For all t ≥ 1 and x ≥ 0,
φ′(tx) ≤ 2tφ′(x).

• Under (H2), it holds:

i. For all t ≥ 1 and x ≥ 0,
φ(tx) ≥ t2φ(x).

ii. For all t ≥ 1 and y ≥ 0,

φ−1(ty) ≤
√

tφ−1(y).

iii. For all x ≥ 0,
xφ′(x) ≥ 2φ(x).

3 Isoperimetry for the radial measure νn,φ

In order to deal with µn,φ, a first step is to establish a similar isoperimetric inequality for
its radial marginal.

Theorem 6. There exists a universal constant C > 0 such that for every n ∈ N
∗, every

a ∈ [0, 1
2
], and every function φ,

i) if φ satisfies (H1) then

Isνn,φ
(a) ≥ C

√
n

φ−1(n)
φ−1(1)

a log 1
a

φ−1
(

log 1
a

) .

ii) if φ satisfies (H2) then

Isνn,φ
(a) ≥ C

√
n

φ−1(n)
a

√

log
1

a
.

As νn,φ is a log-concave measure, we can apply the isoperimetric inequality shown by
Bobkov in [9].

Theorem 7 (Bobkov [9]). If µ is a log-concave measure on Rn, then for all Borel sets
A, for all r > 0, and for all x0 ∈ R

n,

2rµ+(∂A) ≥ µ(A) log
1

µ(A)
+ µ(A∁) log

1

µ(A∁)
+ log µ{|x− x0| ≤ r}, (2)

where A∁ denotes the complement of A.
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One chooses r as small as possible but with µ{|x−x0| ≤ r} large enough, such that the
sum of the two last terms is non-negative. This requires explicit estimates of probabilities
of balls. In our case, we will use two different estimates valid for two ranges of r, leading
to inequalities for two ranges of a.

The first lemma is due to Klartag [13]. The balls are centered at the maximum of
density in order to capture a large fraction of the mass.

Lemma 8 (Klartag [13]). Let ν(dr) = rn−1ρ(r) dr be a probability measure on R+ with
ρ a log-concave function of class C2. Let r0 be the point where the density reaches its
maximum. Then,

∀δ ∈ [0, 1], ν{|r − r0| ≥ δr0} ≤ C1e
−c1nδ2

where C1 > 1 and 0 < c1 < 1 are universal constants.

Bobkov’s inequality combined with the latter lemma leads to the following proposition.

Proposition 9. There exist two universal constants c > 0 and C > 0 such that for all
functions φ satisfying (H0) and all n large enough to ensure e−cn < 1

2
, it holds

∀a ∈
[

e−cn,
1

2

]

, Isνn,φ
(a) ≥ C

√
n

φ−1(n)
a

√

log
1

a
.

Proof. Let C1 and c1 be the constants given by Lemma 8. Let K > 0 and set

δ =

√

K log 1
a

c1n
.

Choose a ∈
[

exp
(

− c1n
K

)

, 1
2

]

and K > log C1

log 2
. It follows that δ ≤ 1 and 1 − C1a

K > 0.
Then Lemma 8 implies

(1 − a) log
1

1 − a
+ log νn,φ{|r − r0| ≤ δr0} ≥ (1 − a) log

1

1 − a
+ log(1 − C1a

K). (3)

The right-hand term of (3) cancels at 0 and is concave in a on [0, 1
2
] if K ≥ 1. Take K

large enough such that it is also non-negative at 1
2
. Thus, by concavity, it is non-negative

on [0, 1
2
]. So Bobkov’s formula (2) yields

Isνn,φ
(a) ≥ 1

2

√

c1n

Kr2
0

a

√

log
1

a
.

It remains to estimate the point r0 where the density of νn,φ reaches its maximum. The
differentiation of the density leads to

r0φ
′(r0) = n − 1.

By Lemma 5, φ(r0) ≤ n − 1. Thus

r0 ≤ φ−1(n).
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Let us remark that under (H1), for all a ≤ 1
2
,

√

log
1

a
≥
√

log 2 φ−1(1)
log 1

a

φ−1
(

log 1
a

) .

So the latter proposition implies a stronger inequality that the one required under (H1),
but only for large enough sets.

To cope with smaller sets, we need another estimate for balls with greater radius.

Lemma 10. Let φ be a function satisfying (H0) and n ∈ N∗. Then for all r ≥ φ−1(2n),

νn,φ{(r, +∞)} ≤ Fn,φ(r) =

(

er

φ−1(n)

)n

e−φ(r) ≤ 1.

Note that this tail bound gives estimates of probability of balls centered at 0 for νn,φ,
but also for µn,φ since

νn,φ{(r, +∞)} = µn,φ{|x| ≥ r}.
This lemma can thereby be used to derive isoperimetric inequalities from Bobkov’s for-
mula for both measures.

Proof. The main tool is integration by part.
∫ +∞

r

tn−1e−φ(t) dt =

∫ +∞

r

tn−1

φ′(t)
φ′(t)e−φ(t) dt

=
rn−1

φ′(r)
e−φ(r) +

∫ +∞

r

[

n − 1

tφ′(t)
− φ′′(t)
(

φ′(t)
)2

]

tn−1e−φ(t) dt

≤ rn−1

φ′(r)
e−φ(r) +

∫ +∞

r

n − 1

tφ′(t)
tn−1e−φ(t) dt.

If t ≥ r ≥ φ−1(2n) ≥ φ−1
(

2(n − 1)
)

, then tφ′(t) ≥ 2(n − 1). So the last integral in the

above inequality is less than 1
2

∫ +∞
r

tn−1e−φ(t) dt. Moreover rφ′(r) ≥ 2n. Hence
∫ +∞

r

tn−1e−φ(t) dt ≤ 2
rn−1

φ′(r)
e−φ(r) ≤ rn

n
e−φ(r).

It remains to deal with the normalization constant which makes νn,φ a probability
measure:

∫ +∞

0

ntn−1e−φ(t) dt ≥
∫ φ−1(n)

0

ntn−1e−φ(t) dt

≥ e−n

∫ φ−1(n)

0

ntn−1 dt =

(

φ−1(n)

e

)n

.

Putting all together, we get the desired bound on the tail of νn,φ:

νn,φ{(r, +∞)} =

∫ +∞
r

tn−1e−φ(t) dt
∫ +∞
0

tn−1e−φ(t) dt
≤
(

er

φ−1(n)

)n

e−φ(r).

Then one can show that the bound is non-increasing for r ≥ φ−1(n) and is equal to 1 for
r = φ−1(n).
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Then, we show an isoperimetric inequality simultaneously for µn,φ and νn,φ in the
range of small sets.

Proposition 11. For every c > 0, there exists C > 0 such that for all functions φ
satisfying the hypotheses of (H0),

∀a ∈
[

0, e−cn ∧ 1

2

]

, Isµ(a) ≥ C
a log 1

a

φ−1
(

log 1
a

) ,

where µ stands for µn,φ or νn,φ.

Note that this is worth showing the result for every c > 0. Indeed, to prove Theorem
6, we combine this result with Proposition 9 where this constant is already fixed but
unknown.

Proof. As before, we start from (2) and set r(a) = φ−1
(

K log 1
a

)

, where K is a constant
large enough to ensure

Kc ≥ 2, (4)

K − 1 ≥ 1

c
, (5)

eKc exp (−(K − 1)c) ≤ 1

2
. (6)

By Lemma 5, r ≤ Kφ−1
(

log 1
a

)

, as K > 1. So the result is deduced from Bobkov’s
inequality (2) provided that

(1 − a) log
1

1 − a
+ log µn,α{|x| ≤ r} ≥ 0. (7)

Now, by concavity,

∀x ∈
[

0,
1

2

]

, (1 − x) log
1

1 − x
≥ log 2 x, and log(1 − x) ≥ −2 log 2 x.

So, for all a ∈ [0, 1
2
],

(1 − a) log
1

1 − a
+ log µn,α{|x| ≤ r} ≥ log 2

(

a − 2Fn,φ(r)
)

≥ 0,

as soon as
r ≥ φ−1(2n) and Fn,φ(r) ≤ a

2
.

Assume that a ≤ exp(−cn) ∧ 1
2
. Then r ≥ φ−1(Kcn) ≥ φ−1(2n) by (4). Let us define

the function G by

G(a) =
Fn,φ

(

r(a)
)

a
.

Then (7) holds as soon as G(a) ≤ 1
2
. To handle this, it is easier to look on G as a function

of r. We know that a = exp
(

−φ(r)
K

)

. So

G(a) =

(

er

φ−1(n)

)n

exp

(

−φ(r)
(

1 − 1

K

)

)

.
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This function is non-increasing in r when

rφ′(r) ≥ n

1 − 1
K

.

This is the case if r ≥ φ−1
(

Kn
K−1

)

. Moreover φ−1(Kcn) ≥ φ−1
(

Kn
K−1

)

by (5). Thus, when
a ≤ exp(−cn),

G(a) ≤ G
(

exp(−cn)
)

≤
[

eKc exp
(

− (K − 1)c
)

]n

≤ 1

2n
≤ 1

2
.

Under (H1), this result is again stronger than the one required since then

1 ≥
√

n

φ−1(n)
φ−1(1).

We could also derive the required inequality under (H2), but with
√

n/φ−1(cn) instead
of

√
n/φ−1(n). So we prefer to prove it directly, following the above proof.

Proposition 12. For every c > 0, there exists C > 0 such that for all functions φ
satisfying (H2),

∀a ∈
[

0, e−cn ∧ 1

2

]

, Isµ(a) ≥ C

√
n

φ−1(n)
a

√

log
1

a
,

where µ stands for µn,φ or νn,φ.

Proof. We set

r(a) =

√

K
(

φ−1(n)
)2

n
log

1

a
, (8)

where K is a constant large enough to verify

Kc ≥ 2,

K − 1 ≥ 1

2c
,

e
√

Kc exp (−(K − 1)c) ≤ 1

2
.

Assume that a ≤ exp(−cn) ∧ 1
2
, then

r ≥
√

Kc φ−1(n) ≥
√

Kc

2
φ−1(2n) ≥ φ−1(2n).

So we can use the estimate from Lemma 10. Consider as before

G(a) =
Fn,φ

(

r(a)
)

a
.
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Then, as explained in the proof of Proposition 11, Bobkov’s formula (2) yields the required
isoperimetric inequality as soon as

G(a) ≤ 1

2
.

From (8), we deduce

a = exp

(

− nr2

K
(

φ−1(n)
)2

)

.

So if we express G as a function of r,

G(a) =

(

er

φ−1(n)

)n

exp

(

−φ(r) +
nr2

K
(

φ−1(n)
)2

)

.

The derivative ∂rG
1
n is of the same sign as

1 +
2r2

K
(

φ−1(n)
)2 − rφ′(r)

n
.

Under hypothesis (H2), rφ′(r) ≥ 2φ(r) ≥ 2n (r/φ−1(n))
2

as soon as r ≥ φ−1(n). Thus,
when r ≥

√
Kc φ−1(n),

1 +
2r2

K
(

φ−1(n)
)2 − rφ′(r)

n
≤ 1 +

2r2

(

φ−1(n)
)2

(

1

K
− 1

)

≤ 1 + 2Kc

(

1

K
− 1

)

≤ 0,

since 1
K

− 1 < 0. So G is non-increasing in r when r ≥
√

Kc φ−1(n), and for all
a ≤ exp(−cn), it holds

G(a) ≤
(

e
√

Kc
)n

exp

(

cn − φ
(√

Kc φ−1(n)
)

)

≤
[

e
√

Kc exp (−(K − 1)c)
]n

≤ 1

2
.

We have again used Hypothesis (H2) which ensures φ
(√

Kc φ−1(n)
)

≥ Kcn.

Combining Proposition 9 for big sets, and Proposition 11 or Proposition 12 for small
sets yields Theorem 6.

4 Tensorization and cut-off argument

We derive the isoperimetric inequality for µn,α by tensorization from the ones for the
radial measure and the uniform probability measure on the sphere, following the idea of
the proof by Bobkov of Theorem 1. For that purpose, we need a functional version of our
isoperimetric inequality. In [8] and [3], the authors give conditions so that isoperimetric
inequalities translate into functional inequalities. Actually this works in our setting as
explained in Section 5.

Let κ > 0. Let J : [0, 1] → R+ be a continuous convex function symmetric with
respect to 1/2, with J(0)=J(1)=0, and such that the following property holds : for any
measure µ on Rd and constant C ≥ 0, if

Isµ ≥ CJ,
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then for all smooth functions f : R
d → [0, 1],

κJ

(
∫

f dµ

)

≤
∫

J(f) dµ +
1

C

∫

|∇f | dµ.

Remark. Ideally, one would expect κ = 1. For instance the latter inequality implies the
former one and is tight for constant functions only in the case κ = 1. However this does
not matter here as we tensorize only once.

For such profiles J , we can show the following proposition.

Proposition 13. Let µ be a measure on Rn with radial measure ν. Assume that there
exists positive constants Cν and Cσn−1 such that

Isν ≥ CνJ and Isσn−1 ≥ Cσn−1J.

There exist κ1, κ2 > 0 depending only on κ such that, for every n ∈ N
∗, for every

r2 > r1 > 0 and a such that

r2 − r1 ≥
1

CνJ(1
2
)
, (9)

κ1 ν{[r1, +∞)} ≤ a ≤ 1

2
, (10)

it holds

Isµ(a) ≥ κ2 min
(

Cν ,
Cσn−1

r2

)

J(a).

Proof. Let f : R
n → [0, 1] be a smooth function. We recall some facts on radial and

spherical differentiation. If we define g on R+ × Sn−1 by g(r, θ) = f(rθ), then the partial
derivatives of g can be computed as follows:

∂rg = 〈∇f, θ〉,
∇θg = r Πθ⊥(∇f),

where Πθ⊥ is the orthogonal projection on θ⊥. Hence,

∇f = ∂rg θ +
1

r
∇θg,

|∇f |2 = |∂rg|2 +
1

r2
|∇θg|2.

First, we apply the functional inequality for σn−1 to the function F defined on Sn−1

by

F (θ) =

∫

f(rθ) dν(r).

As
∫

F dσn−1 =
∫

f dµ, this yields

κJ

(
∫

f dµ

)

≤
∫

J(F ) dσn−1 +
1

Cσn−1

∫

|∇Sn−1F | dσn−1.
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On one hand,

∇Sn−1F (θ) =

∫

r Πθ⊥(∇f)(rθ) dν(r).

On the other hand, we can use the inequality for ν to bound J(F ). Indeed, for all
θ ∈ S

n−1,

κJ
(

F (θ)
)

≤
∫

J
(

f(rθ)
)

dν(r) +
1

Cν

∫

|∂rf(rθ)| dν(r).

Putting all together,

κ2J

(
∫

f dµ

)

≤
∫

J(f) dµ

+
1

Cν

∫

|∂rf | dµ +
κ

Cσn−1

∫

|x| |Πθ⊥(∇f)| dµ(x). (11)

We would like to get |x| out of the last integral. As it is not bounded, we use a
cut-off argument similar to the one in Sodin’s article [18], while simpler in our case.
Heuristically, we use the fact that on “a set of large measure”, |x| is almost constant,
close to its expectation for instance. Let us introduce a cut-off function h(rθ) = h1(r)
with

h1 =











1 on [0, r1)
r2 − r

r2 − r1
on [r1, r2]

0 on (r2, +∞)

with 0 < r1 < r2 to be chosen later (typically of the same order as Eµ|X|). It holds

∇(fh) = h∇f + f∇h,

thus

|∂r(fh)| ≤ |∂rf | + ||f ||∞|∂rh|,

|Πθ⊥

(

∇(fh)
)

| ≤ h |Πθ⊥(∇f)|.

As h = 0 if |x| > r2,
∫

|x|
∣

∣Πθ⊥

(

∇(fh)
)
∣

∣ dµ(x) ≤ r2

∫

|Πθ⊥(∇f)| dµ(x).

Besides, we can bound the derivative of h so that
∫

|∂rh| dµ ≤ ν
(

[r1, r2]
)

r2 − r1

.

Finally, Inequality (11) applied to fh yields

κ2J

(
∫

fh dµ

)

−
∫

J(fh) dµ − ||f ||∞ν
(

[r1, r2]
)

Cν(r2 − r1)

≤ max
( 1

Cν

,
κr2

Cσn−1

)

(
∫

|∂rf | + |Πθ⊥(∇f)| dµ

)

≤
√

2 max
( 1

Cν

,
κr2

Cσn−1

)

∫

|∇f | dµ. (12)
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Hence we have almost the functional inequality for f and µ with an additional term that
we expect to be negligible. It is easier to look at functions approximating characteristic
functions to go back from fh to f in the left hand term.

Let A ⊂ Rn be a closed set of measure a ≤ 1
2
. Let K > 0 and t ∈ (0, 1) constants to

be chosen later. Assume the following constraints on r1, r2, and a:

Cν(r2 − r1) ≥ K,

ν{[r1, +∞)} ≤ ta.

Then it holds

µ{1Ah = 1} ≥ µ
(

A \ {h < 1}
)

≥ (1 − t)a,

µ{1Ah > 0} ≤ a ≤ 1

2
.

As J is non-decreasing on (0, 1
2
), concave, and J(0) = 0,

J

(
∫

1Ah dµ

)

≥ J
(

(1 − t)a
)

≥ (1 − t)J(a).

Besides J cancels at 0 and 1, and reaches its maximum at 1
2
, so

∫

J(1Ah) dµ ≤ J(1
2
) µ{0 < 1Ah < 1}

≤ J(1
2
)
(

µ{1Ah > 0} − µ{1Ah = 1}
)

≤ J(1
2
) ta.

As for the third term of (12), it is bounded by

ν
(

[r1, r2]
)

Cν(r2 − r1)
≤ ta

K
.

For ε > 0, we approximate 1A by a smooth function fε : Rn → [0, 1] with fε = 1 on A
and fε = 0 outside Aε. Then we apply (12) to fε and let ε to 0, taking advantage of the
continuity of J :

√
2 max

( 1

Cν

,
κr2

Cσn−1

)

µ+(∂A) ≥ κ2(1 − t)J(a) −
(

J(1
2
) +

1

K

)

ta.

Now by concavity, J(a) ≥ 2J(1
2
)a on

[

0, 1
2

]

. Hence

√
2 max

( 1

Cν

,
κr2

Cσn−1

)

µ+(∂A) ≥
(

κ2(1 − t) − J(1
2
) + 1

K

2J(1
2
)

t

)

J(a)

=

(

κ2 − t
(

κ2 +
1

2
+

1

2KJ(1
2
)

)

)

J(a).

Taking for instance K =
(

J(1
2
)
)−1

and t = κ2/(2(κ2 + 1)) yields a non-trivial result.
Note that looking at closed sets was not a real restriction. Indeed, if lim infε→0+ µ(Aε)−

µ(A) > 0 then µ+(∂A) = +∞.

13



5 Getting functional inequalities

To apply Proposition 13 to our case, we need to know how to pass from an isoperimetric
inequality to a functional inequality. Actually we can approximate Lφ by an other profile
satisfying the hypotheses of Proposition 13. However we need stronger hypotheses on φ
to control Lφ uniformly, namely assuming that

√
φ is concave.

Proposition 14. Let φ satisfying (H1’) and denote by Iφ the isoperimetric function Isµ1,φ

of µ1,φ.

i) The function Iφ is continuous and concave on [0, 1], symmetric with respect to 1/2,
and Iφ(0) = Iφ(1) = 0.

ii) Let µ be a measure on Rd and C ≥ 0. If

Isµ ≥ CIφ,

then for all smooth functions f : Rd → [0, 1],

κIφ

(
∫

f dµ

)

≤
∫

Iφ(f) dµ +
1

C

∫

|∇f | dµ,

where κ > 0 is a universal constant.

iii) There exist universal constants d1 > 0 and d2 > 0 such that

d1Iφ ≤ Lφ ≤ d2Iφ.

Proof of i) and ii). Let us first remark that µ1,φ is an even log-concave probability mea-
sure on the real line. Hence half-lines solve the isoperimetric problem and we can ex-
press explicitly Iφ (see e.g. [7]). Let fφ : x 7→ e−φ(|x|)

Zφ
be the density of µ1,φ, Fφ(x) =

µ1,φ

{

(−∞, x)
}

its cumulative distribution function, and Gφ(x) = µ1,φ

{

(x, +∞)
}

. Then

Iφ = fφ ◦ F−1
φ = fφ ◦ G−1

φ

and the properties stated in i) are clearly satisfied. Besides the transfer principle empha-
sized by Barthe in [2] holds : if Isµ ≥ cIφ then µ satisfies essentially the same functional
inequalities as µ1,φ. As a consequence, it remains to establish that for all smooth functions
f : R → [0, 1],

κIφ

(
∫

f dµ1,φ

)

≤
∫

Iφ(f) dµ1,φ +

∫

|f ′| dµ1,φ.

Now, applying the 2-dimensional isoperimetric inequality to the set

{

(x, y) ∈ R
2; y ≤ F−1

φ (f(x))
}

,

one can show (see e.g. [3]) that

Isµ1,φ
⊗2

(
∫

f dµ1,φ

)

≤
∫

Iφ(f) dµ1,φ +

∫

|f ′| dµ1,φ.
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So, ii) is shown if there exists a universal κ > 0 such that

Isµ1,φ
⊗2 ≥ κIφ.

Actually Barthe, Roberto, and Cattiaux prove it in [5] without verifying the universality
of κ. However one can check that their constant can be uniformly controlled for every φ
satisfying (H1’), by using the same estimates for Gφ and Zφ as in the proof of Proposition
14-iii). Indeed, a Beckner inequality is shown to hold with a constant uniform in φ, thanks
to their explicit bound. It tensorizes and implies a super-Poincaré with a constant uniform
in n and φ, which translates into the isoperimetric inequality

Isµ1,φ
⊗n ≥ κIφ,

for all n and for all φ satisfying (H1’), with κ > 0 universal.
One can also check the simple criterion given by E. Milman in [16] for a tensorization

result. As the function defined by

t 7→ Lφ(t)

L2(t)
=

√

log 1
t

φ−1
(

log 1
t

)

is non-decreasing under (H1) — all the more under (H1’) — then by Proposition 14-iii)
there exists a universal constant D > 0 such that

∀0 < t ≤ s ≤ 1

2
,

Iφ(t)

L2(t)
≤ D

Iφ(s)

L2(s)
.

This also implies the existence of a universal κ > 0 such that for all n and for all φ
satisfying (H1’),

Isµ1,φ
⊗n ≥ κIφ.

So, up to the proof of iii), we are done.

Proof of Proposition 14-iii). We can restrict ourselves to the case φ(1) = 1. Indeed if we
set φλ(x) = φ(λx), one can show Lφλ

= λLφ and Iφλ
= λIφ. This hypothesis ensures that

1 ≤ φ′(1) ≤ 2 and also that

t2 ≤ φ(t) ≤ t on [0, 1] and t ≤ φ(t) ≤ t2 on [1, +∞).

Let r ≥ 0. By integration by part,

∫ +∞

r

e−φ =
e−φ(r)

φ′(r)
−
∫ +∞

r

φ′′

(φ′)2
e−φ.

By the properties of φ and especially as (
√

φ)′′ ≤ 0,

0 ≤
∫ +∞

r

φ′′

(φ′)2
e−φ ≤

∫ +∞

r

e−φ

2φ
=

e−φ(r)

2φ(r)φ′(r)
−
∫ +∞

r

(φ′)2 + φφ′′

2(φφ′)2
e−φ ≤ e−φ(r)

2φ(r)φ′(r)
.

Hence
e−φ(r)

φ′(r)

(

1 − 1

2φ(r)

)

≤
∫ +∞

r

e−φ ≤ e−φ(r)

φ′(r)
.
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In particular, if r ≥ 1,
e−φ(r)

2φ′(r)
≤
∫ +∞

r

e−φ ≤ e−φ(r)

φ′(r)
. (13)

Now let us estimate the normalizing constant for µ1,φ, denoted by Zφ.

Zφ = 2

∫ +∞

0

e−φ = 2

(
∫ 1

0

e−φ +

∫ +∞

1

e−φ

)

≤ 2(1 + e−1).

Moreover
∫ 1

0

e−φ ≥
∫ 1

0

e−x dx = 1 − e−1,

so
Zφ ≥ 2(1 − e−1) > 1.

By symmetry, we consider the case a ∈
[

0, 1
2

]

. We set a = Gφ(r) =
∫ +∞

r
e−φ

Zφ
. It

follows that r ≥ 0. Then, to prove the lemma, we need only to compare

e−φ(r)

Zφ

with Lφ

(

Gφ(r)
)

= Gφ(r)
log 1

Gφ(r)

φ−1
(

log 1
Gφ(r)

) .

Recall that φ(t) ≤ tφ′(t) ≤ 2φ(t) under (H1) so that

1

2
φ′ ◦ φ−1(x) ≤ x

φ−1(x)
≤ φ′ ◦ φ−1(x)

and

Gφ(r)

2
φ′ ◦ φ−1

(

log
1

Gφ(r)

)

≤ Lφ

(

Gφ(r)
)

≤ Gφ(r) φ′ ◦ φ−1

(

log
1

Gφ(r)

)

.

Assume first that r ≥ 1 so that (13) holds. On one hand,

Lφ

(

Gφ(r)
)

≥ Gφ(r)

2
φ′ ◦ φ−1

(

log
1

Gφ(r)

)

≥ e−φ(r)

4Zφφ′(r)
φ′ ◦ φ−1

(

log
(

Zφφ
′(r)eφ(r)

)

)

≥ e−φ(r)

4Zφ

since Zφφ
′(r) ≥ 1 and φ′ ◦ φ−1 is non-decreasing.

On the other hand,

Lφ

(

Gφ(r)
)

≤ Gφ(r) φ′ ◦ φ−1

(

log
1

Gφ(r)

)

≤ e−φ(r)

Zφφ′(r)
φ′ ◦ φ−1

(

log
(

2Zφφ
′(r)eφ(r)

)

)

.

One can show that

2Zφφ
′(r)eφ(r) ≤ 2Zφrφ

′(r)eφ(r) ≤ 4Zφφ(r)eφ(r) ≤ φ(4Zφr)eφ(r)

≤ eφ(4Zφr)eφ(r) ≤ e2φ(4Zφr) ≤ eφ(8Zφr).
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Thus

Gφ(r) log 1
Gφ(r)

φ−1
(

log 1
Gφ(r)

) ≤ e−φ(r)

Zφφ′(r)
φ′(8Zφr) ≤ 32(1 + e−1)

e−φ(r)

Zφ

.

Now assume that r ≤ 1. Let us remark that Lφ : a 7→ a log 1
a

φ−1(log 1
a)

is non-decreasing on

[0, 1
2
]. Indeed, Lφ

′ is of the same sign as

(x − 1)φ−1(x)φ′ ◦ φ−1(x) + x, with x = log
1

a
.

If x > 1,
(x − 1)φ−1(x)φ′ ◦ φ−1(x) + x ≥ (x − 1)x + x ≥ 0.

Else x ∈ [log 2, 1] and

(x − 1)φ−1(x)φ′ ◦ φ−1(x) + x ≥ (x − 1)2x + x = x(2x − 1) ≥ 0.

So

Lφ

(

Gφ(r)
)

≥ Lφ

(

Gφ(1)
)

≥ Gφ(1)

2
φ′ ◦ φ−1

(

log
1

Gφ(1)

)

≥ e−φ(1)

4Zφφ′(1)
φ′ ◦ φ−1

(

log
(

Zφφ
′(1)eφ(1)

)

)

≥ e−1

4Zφ

≥ e−1

4

e−φ(r)

Zφ

.

Similarly for the lower bound,

Lφ

(

Gφ(r)
)

≤ Lφ

(

Gφ(0)
)

≤ Gφ(0) φ′ ◦ φ−1

(

log
1

Gφ(0)

)

≤ 1

2
φ′ ◦ φ−1(log 2) ≤ 1 ≤ 2(1 + e−1)

e−1

e−φ(r)

Zφ

.

6 Isoperimetry for µn,φ

Now we can apply Proposition 13 to µn,φ with J = Iφ when φ satisfies (H1’) or J = Isγ

the Gaussian isoperimetric function when φ satisfies (H2). Indeed by Theorem 6 and
Proposition 14,

Isνn,φ
≥ Cνn,φ

J

with Cνn,φ
= Cφ−1(1)

√
n

φ−1(n)
under (H1) and Cνn,φ

= C
√

n

φ−1(n)
under (H2), where C > 0 is a

universal constant. As for the sphere, it is known that σn−1 satisfies Gaussian isoperimetry
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with a constant of order
√

n, e.g. by a curvature-dimension criterion (cf [1]). That means
that for every a ≤ 1

2
and every φ satisfying (H1),

Isσn−1(a) ≥ C
√

n Isγ(a)

≥ CK
√

n a

√

log
1

a

≥ CK
√

log 2
√

n φ−1(1)
log 1

a

φ−1
(

log 1
a

)

where K > 0 is a universal constant.

Proposition 15. For every c > 0, there exists C > 0 such that if e−cn < 1
2
, then for

every function φ,

i) if φ satisfies (H1’) then

∀a ∈
[

e−cn,
1

2

]

, Isµn,φ
(a) ≥ C

√
n

φ−1(n)
φ−1(1)

a log 1
a

φ−1
(

log 1
a

) .

ii) if φ satisfies (H2) then

∀a ∈
[

e−cn,
1

2

]

, Isµn,φ
(a) ≥ C

√
n

φ−1(n)
a

√

log
1

a
.

Proof. We only prove i). We can restrict ourselves to the case φ(1) = 1. Let κ be the
constant coming from Proposition 14, then let κ1 and κ2 be the corresponding constants
given by Proposition 13. Set c1 large enough to ensure

c1 ≥ 2,

max(κ1, 1)ec1e
−c1 ≤ e−c.

If we take r1 = φ−1(c1n), then we know by Lemma 10 that

κ1νn,φ{(r1, +∞)} ≤ κ1

[

ec1e
−c1
]n ≤ e−cn.

Here we use that φ−1(c1n) ≤ c1φ
−1(n). So for all φ, for all n, and all a ∈

[

e−cn, 1
2

]

,
Condition (10) holds, i.e.

κ1 νn,φ{[r1, +∞)} ≤ a ≤ 1

2
.

Now there exists a universal C > 0 such that Cνn,φ
≥ C

√
n

φ−1(n)
by Theorem 6 and Propo-

sition 14 as explained at the beginning of the section (recall that here φ−1(1) = 1). So,
if we set r2 = (1 + 1

CIφ( 1
2
)
)φ−1(c1n), then Condition (9) is also satisfied, i.e.

r2 − r1 ≥
1

Cνn,φ
Iφ(1

2
)
.
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Thus Proposition 13 yields

Isµn,φ
(a) ≥ κ2 min

(

Cνn,φ
,
Cσn−1

r2

)

Iφ(a).

Besides, there exists a universal d > 0 such that Iφ ≥ d Lφ according to Proposition 14.
In particular,

Iφ

(

1

2

)

≥ d Lφ

(

1

2

)

=
d log 2

2φ−1(log 2)
≥ d

√
log 2

2
.

We can deduce an upper bound for r2. Finally, we have established

Isµn,φ
(a) ≥ κ2Cd min

(

1,

[

c1

(

1 +
2

Cd
√

log 2

)]−1
) √

n

φ−1(n)
Lφ(a).

Therefore we have proved Theorem 4 at least for a large enough. We complete the
proof with Proposition 11 or Proposition 12 for smaller sets.

7 Optimality and the isotropic case

One can ask whether the isoperimetric inequalities obtained are optimal at least up to
universal constants, and whether we recover dimension-free results in the case of isotropic
measures.

We consider only bounds for the isoperimetric profile constructed as product of a
function of n times a function of a. When φ satisfies (H1’), inequalities of Theorem 4 are
optimal in a for n = 1, according to Proposition 14-iii). In the supergaussian case, the
optimality in a is given by the central limit theorem of Klartag (see [13]) in the simpler
case of spherically symmetric distributions. So optimal inequalities should be of the type

∀a ∈
[

0,
1

2

]

, Isµn,φ
(a) ≥ Cµn,φ

(n) φ−1(1)
a log 1

a

φ−1
(

log 1
a

) under (H1’),

≥ Cµn,φ
(n) a

√

log
1

a
under (H2).

This implies

∀a ∈
[

0,
1

2

]

, Isµn,φ
(a) ≥ c Cµn,φ

(n) a,

where c > 0 is universal. Now Poincaré inequalities are equivalent up to universal con-
stants to Cheeger inequalities (see [17]), so the optimal constant in n should be

Cµn,φ
(n) = C

√

n

Eµn,φ
(|X|2) ,

in view of Theorem 1, with C > 0 a universal constant.
Thus, the two questions raised at the beginning of the section appear to be connected

to the same property, namely Eµn,φ
(|X|2) ≃ (φ−1(n))

2
.
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Lemma 16. i) Let φ be a function satisfying (H0). Define rn(φ) the point where the
density of the radial measure νn,φ reaches its maximum, and Eµn,φ

|X|2 the second
moment of µnφ. For every M > 1, there exists n0 ∈ N not depending on φ such that,
for all n ≥ n0,

1

M

√

Eµn,φ
|X|2 ≤ rn(φ) ≤ M

√

Eµn,φ
|X|2.

ii) Besides, if there exists α ≥ 1 such that x 7→ φ(x)/xα is non-increasing, then

φ−1(n) ≥ rn(φ) ≥ e−
1
e φ−1(n).

Proof. To prove the first point, we can assume that µn,φ is isotropic, that is to say that
Eµn,φ

(|X|2) = n. Let X be a random variable with distribution µn,φ. In the following,
we denote by P, E, and Var the corresponding probability, esperance, and variance. Let
δ ∈ (0, 1). In view of Lemma 8, there exist universal constants c > 0 and C > 0 such
that

P
{
∣

∣rn(φ) − |X|
∣

∣ ≥ δrn(φ)
}

≤ Ce−cnδ2

.

On the other hand, Bobkov proved in [10] the following upper bound for the variance of
|X| to establish Theorem 1:

Var|X| ≤ (E|X|)2

n
,

which can also be reformulate

nE|X|2 ≤ (n + 1) (E|X|)2 .

Then

E
(

√

E|X|2 − |X|
)2

= 2
√

E|X|2
(

√

E|X|2 − E|X|
)

≤ 2

(

√

1 +
1

n
− 1

)

√

E|X|2E|X| ≤ E|X|2
n

.

So, by Chebychev’s inequality it holds for all t > 0:

P

{

∣

∣

√

E|X|2 − |X|
∣

∣ ≥ t
√

E|X|2
}

≤ 1

nt2
.

Fix δ ∈ (0, 1), and choose n large enough to ensure Ce−cnδ2
+ 1/nδ2 < 1. Then there

exist x > 0 such that |rn(φ) − x| ≤ δrn(φ) and |
√

E|X|2 − x| ≤ δ
√

E|X|2. It follows

1 − δ

1 + δ

√
n ≤ rn(φ) ≤ 1 + δ

1 − δ

√
n.

Now, rn(φ) satisfies rn(φ)φ′(rn(φ)
)

= n − 1. Therefore, as already mentioned, (H0)
ensures that rn(φ) ≤ φ−1(n). Assume moreover the existence of α ≥ 1 such that x 7→
φ(x)/xα is non-increasing. Then

rn(φ) ≥ φ−1

(

n − 1

α

)

≥ φ−1
( n

2α

)

≥
(

1

2α

)
1
2α

φ−1(n) ≥ e−
1
e φ−1(n).
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Eventually, we can state the following theorem.

Theorem 17. • If φ satisfies (H1′), or if φ satisfies (H2) and there exists α ≥ 2
such that x 7→ φ(x)/xα is non-increasing, then the inequality proved in Theorem 4
is optimal.

• For any n ∈ N, let us choose λ > 0 such that µn,φλ
is isotropic, when replacing φ

by φλ : x 7→ φ(λx). Then it holds a dimension-free isoperimetric inequality. More
precisely, there exist a universal C > 0 and a universal n0 ∈ N such that

i) if φ satisfies (H1′) then

∀a ∈
[

0,
1

2

]

, ∀n ≥ n0, Isµn,φλ
(a) ≥ C φ−1(1)

a log 1
a

φ−1
(

log 1
a

) ;

ii) if φ satisfies (H2) and there exists α ≥ 2 such that x 7→ φ(x)/xα is non-
increasing, then

∀a ∈
[

0,
1

2

]

, ∀n ≥ n0, Isµn,φλ
(a) ≥ C a

√

log
1

a
.
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