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Marine terraces, tidal notches and sediments along a 1200-km-long stretch of the northern coast of the South

China Sea passive margin were studied and divided into five areas with varying tectonic characters. Up to

three marine terraces occur, that have elevations reaching up to 60 m above mean sea level (amsl), and two

marine notches occur up to 11 m amsl. Chronology of the morphologies and deposits was obtained mainly by

comparison with Quaternary sea levels derived from the oxygen isotope curve. However, prior to the last

interglacial highstand (MIS 5e, c. 125 ka), evidence of history of events is less well-constrained, leading to less

precision on sea-level positions prior to MIS 5e. Using the morphological features of MIS 5e as a marker,

mean coastal uplift rates in the last c.125 ka range from 0.07 mm/yr to 0.18 mm/yr. The pattern of

deformations is slightly higher than those observed on passive margin coasts in other parts of the world. The

cause of uplift of the south China coastline is not clear, but may relate to the Himalayan collision zone or any

other large-scale phenomena.

1. Introduction

Since the 1960s the formation and evolution of coasts have been

interpreted to result from the combination of eustasy and tectonics

combined with the local setting: climate, oceanography, and rock types

that form the coastline (Herbert-Veeh, 1966). Uplifted marine terrace

sequencesmay be considered the geomorphic record of repeated glacio-

eustatic sea-level highstands superimposed on a rising coastline (Bull,

1985). Positive vertical movements have been quantified on different

coasts of theworld through the studyofmarine terraces andnotches (see

Johnson and Libbey, 1997, for a review). In contrast to active areas,

Pleistocene rocky shores on passive margins are rarely reported in the

literature, except in areas of large-scale isostatic rebound following

deglaciation, such as in northern Europe (e.g. Lowe and Walker, 1997).

Because a passive margin is a continental margin, which does not

coincide with the junctions of tectonic plates, generally few or no

tectonic movements are observed on such coasts in far-field sites (far

from glacial centers). The northern coast of the South China Sea passive

margin is a non-glaciated coastline, but demonstrates tectonic motion

that is notunderstoodowing to the lackof data anddates. Althoughuplift

is recognized (Zong, 2004; Yim et al., 2006, this study) there is limited

knowledgeof Pleistocene terraces in the region. Thenorthern coastof the

South China Sea is composed of various rocks, primarily Palaeozoic to

Mesozoic granitic andmetamorphic rocks but alsoMesozoic to Cenozoic

basaltic rocks to the north (Hainan Island) and a thin cover of Quaternary

sediments in some places (mainly Hainan) (Wang et al., 2000).

The principal aim of this paper is to assess the application of

marine terrace data on the northern coast of the South China Sea in

order to interpret the recent tectonic history of the coastal areas. An

attempt is made to correlate the terraces with known Pleistocene

highstands in the region; data are better quality for the more recent

history, since the last interglacial highstand (MIS 5e, c. 125 ka). The

resulting uplift rates are therefore interpreted in order to improve the

knowledge of coastal tectonics and Pleistocene sea-level highstands

on the passive margin of the northern part of the South China Sea.

Much of the background information was previously available in

Chinese, and so a secondary aim of this paper is to open this

information to non-Chinese readers.

2. Regional tectonic background

2.1. Geodynamics and geology

East and Southeast Asia is a geodynamically complex zone (Fig. 1).

At a regional scale, themajor event consists of the collision of the India
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and Eurasian Plates (Fig.1A) with ongoing orogenesis of the Himalayas

and important tectonic stress distributed on a zone extending 60° to

130° W (Morley, 2002; Tapponnier et al., 1986, Zhang et al., 2003). To

the east, this major collision results in the extrusion of continental

blocks (Sundaland and South China on Fig. 1A) (Morley, 2002; Zhang

et al., 2003). The northern part of the South China Sea coast lies on the

eastern part of the Eurasian Plate that faces the Pacific Plate and the

Philippine Subplate to the East, and is bounded to the west by the

ongoing Himalayan orogenesis (Fig. 1A). The Philippine Subplate (of

the Pacific Plate) slides underneath the Eurasian Plate at a rate of

5.6 cm/yr (Sibuet and Hsu, 2004).

Since the Mesozoic, this continental margin went through a

succession of geotectonic regimes: from an active Andean typemargin

during the Cretaceous, to a divergent rift, to a passive continent

margin since Palaeogene times (for a recent synthesis see Lüdmann

and Wong, 1999).

Very little is known about the active tectonics of the northern coast

of the South China Sea. The zone between the Pearl River mouth and

the Taiwan Strait (Fujian and east Guangdong Provinces) is character-

ized as a relatively narrow continental shelf. This area is inferred to be

influenced by little tectonic movement (Zong, 2004). The zone

southwest of the Pearl River mouth (west Guangdong and Hainan

Island) lies further away from the plate boundary and is considered

tectonically stable (Huang et al., 1986). These two zones are separated

by the Pearl River delta (Fig. 1B) interpreted to have experienced

subsidence caused mainly by fault activity (Zong, 2004).

The northern South China Sea is dominated by three major fault

systems: 1) a normal NE–SW trending system which has been active

during the rift phase (late Cretaceous through Oligocene Time) (for

example Yu, 1990, 1994). The extensional movements associated with

the rifting (NW–SE) present an increasing intensity towards the south

and the west. 2) a normal E–W to ENE–WSW trending system

developed between the Late Eocene and the Early Miocene (Yu, 1990,

1994) and 3) a sinistral strike-slip NW–SE system which is associated

with the Red River Fault (Lüdmann and Wong, 1999) and is currently

active as shown by earthquake focal mechanisms (Wei and Chung,

1995). On the northern continental margin of the South China Sea,

Lüdmann et al. (2001) attempted to derive a neotectonic curve by

subtracting eustatic sea-level changes from the relative sea-level

curve. Although there is no agreed eustatic curve, Lüdmann et al.'s

Fig. 1. Location of the passive margin of South China Sea. A) Geodynamical context of Eastern Asia. The sketch map is redrawn from Tapponnier et al. (1986) and Zhang et al. (2003).

HI: Hainan Island. T: Taiwan. B). Studied zone on the northern Coast of the South China Sea.
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(2001) work shows that the depths of the delta fronts today are

controlled by regional tectonic movements and global sea level. The

ocean south of Hong Kong and around the Dongsha Archipelago

(Fig. 1B) has been interpreted to have undergone two uplift episodes

during the past 5million years; at theMiocene/Pliocene boundary and

the end of Lower Pleistocene, leading to subaerial exposure of the

Dongsha rise (Lüdmann et al., 2001), see Fig. 14. After the major

collision of Taiwan with the East China continental margin 5 Ma ago

(Mio/Pliocene boundary), the NNW–WNW compression was turned

into a WSW–SSW strike-slip motion along the continental margin of

the northern South China Sea, generating a transtensional tectonic

regime which activated and reactivated crustal zones of weakness,

and caused upwelling of mantle material and magma intrusion into

the upper crust and uplift of the caprocks (Lüdmann andWong, 1999)

(see the Hainan and Wenshan uplift on Fig. 14).

2.2. Holocene RSL

Little is published in English on Holocene relative sea-level and/or

coastal tectonics of continental China (e.g. Zong, 2004) compared to

Taiwan (Liew et al., 1990, 1993, 2004; Liew and Hsieh, 2000; Chen and

Liu, 1996, 2000; Chen et al., 2004; Hsieh et al., 2004; Song et al., 2004;

Yamaguchi and Ota, 2004), Hong Kong (Owen,1995; Davis, 1999, 2000;

Yim, 1999; Fyfe et al., 2000, Yim and Huang, 2002, 2003; Baker et al.,

2003;) or South Korea (Kim and Lee, 2006). For the southern Fujian

province, Xie et al. (1985) stated that sea level fluctuated from 8000 to

7000 yr B.P. and rose rapidly 6000–5000 and 3500–2500 yr B.P. The

maximum transgression with a 3–5 m high sea level occurred 4000–

3000 yr B.P. Other authors (Huang and Zhu, 1985) studied the

development of tombolo in the southern part of Hainan Island proposed

a 5mhighermiddle Holocene highstand. Field observation revealed the

important developmentof tombolo and recent sanddeposits (see Figs. 2,

5, 7, and 10) on the China Coast. Frequently granitic islands are linked to

the continent by sand deposits (see description of Shihu micro-

peninsula, Fig. 2), the coastal morphology can be easily explained if

middleHolocenehighstands are interpreted. The regressionwould have

led to the deposition of sand that would create those morphologies. In

this paper, we recognize at least two relative highstands above present

sea level, one at +4 (±1) m c. 5000 yr BP, and another at 1.5 (±1) m c.

3000 yr BP as in the complex sea-level curve proposed by Xie et al.

(1985) and bettered by Huang and Zhang (2005). However, the curve

provided by Baker et al. (2003) is probably themost accurate because of

its dependence of fixed biological indicators (FBIs); these give a much

more reliable position of sea level because of the fixed nature of

encrusting organisms. Baker et al. (2003) recognised a mid-Holocene

highstand of only +2 m above moderns sea level at c. 5000 yr BP, giving

uplift rates approximately half of those derivable from the Huang and

Zhang (2005) curve. Nevertheless, the occurrence of mid-Holocene

highstands remains problematic on the coast of continental China (for a

recent synthesis see Zong, 2004), but have been observed to the north

and to the south in the Penghu Islands (Chen and Liu, 1996) and the Red

River Delta (Hori et al., 2004; Lam and Boyd, 2003; Tanabe et al., 2003)

respectively. They are concordant with coastal morphologies (i.e.

Holocene deposits, tombolos). This interpretation of two Holocene

highstandspartially agreeswith the sea-level changes in the Indo-Pacific

(Woodroffe and Horton, 2005) and in the general shape agree with the

summary of oscillating regression models from sea-level index points

created using fixed biological indicators from another far-field location

(as defined by Pirazzoli, 1991, 1993), in southeastern Australia (Baker

et al., 2001). Nevertheless, Baker et al. (2003) interpreted only one

Holocenehighstand, c. 5000yr BP, identified alsobyBeamanet al. (1994)

on the east coast of Australia; so the issue remains controversial.

Recognition and estimation of magnitude of the mid-Holocene

high sea level has some implication for the Holocene sea-level history

of the south China coastline. However, over the longer time period to

MIS 5e, the effect of variations in calculation of Holocene sea levels has

little influence of the calculation of rates of Pleistocene sea levels. This

is because the issue of interplay between sea-level change and uplift

rates for the Holocene only apply to the last 5000 yr, which is only a

small fraction of the total uplift since MIS 5e.

Fig. 2. Marine terraces (Sequence A) and marine notch sequences on the Jinjing Peninsula (Fujian province).
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3. Materials and methods

On uplifting coasts, marine terrace sequences are sometimes

represented by flights of “stairs” up to hundreds of meters in altitude

above mean sea level. Each terrace corresponds to a gently seaward-

dipping erosional or depositional platform backed by a relict sea cliff.

The shoreline angle (i.e. intersection of the relict platform and the relict

sea cliff) provides a good approximation of the location and elevation

of a former shoreline and hence a relative sea level (Carter and

Woodroffe, 1994). It is now widely viewed that marine terraces are

formed during the separated highstands of interglacial stages

correlated to Marine Oxygen Isotopic Stages (MIS) (James et al., 1971;

Chappell, 1974; Bull, 1985; Ota, 1986; Jouannic et al., 1988; Muhs et al.,

1990). The total displacement of the shoreline relative to the age of the

associated interglacial stage allows calculation of a mean uplift rate.

However, just because it is logically true that terraces are correlated to

the MIS, it does not prove that they actually were; so, in this study we

correlate them to the oxygen isotope curve, subject to testing in a

future paper. In order to estimate vertical uplift, the eustatic position of

the considered paleo sea levels relative to the present one must be

known as precisely as possible. Our chronology relies principally on

relative dating based on geomorphologic criteria but in all cases we

associated the shoreline angle of the marine terraces with numerical

ages. The best-represented terrace worldwide is the one correlated to

the last interglacial maximum (MISS 5e) (Hearty and Kindler, 1995;

Johnson and Libbey, 1997; Pedoja et al., 2006a,b,c). Age of MISS 5e is

arbitrarily fixed to range from 130 to 116 ka (Kukla et al., 2002) but is

demonstrated to range from 134 to 113 ka in Hawaii and Barbados

Fig. 3.Marine terraces on ShiHumicro-peninsula. A) View of T1marine terrace and its shoreline angle. B) View of T2 marine terrace and its shoreline angle. C) Morphology of a paleo-

stack in T2 (altitude 37 m). D) Morphology of a paleo-stack in T3 (altitude 57 m).
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(Muhs, 2002) with a peak from 128 to 116 ka on tectonically stable

coastlines (Muhs, 2002). Older marine terraces well represented in

worldwide sequences are those related to MIS 9 (∼303–339 ka) and

11 (∼362–423 ka) (Imbrie et al., 1984). Compilations show that sea

level was 3±3 m higher during MISS 5e, MIS 9 and 11 than during the

present one and −1±1 m to the present one during MIS 7 (Hearty and

Kindler, 1995, Zazo, 1999). Consequently MIS 7 (∼180–240 ka; Imbrie

et al.,1984)marine terraces are less pronounced and sometimes absent

(Zazo, 1999). Because the elevations of these terraces are higher than

the uncertainties in paleo-eustatic sea level mentioned for the

Holocene and Late Pleistocene, these uncertainties have no effect on

overall interpretation.

Uplift can also be registered through tidal notch sequences.

Notches are often portrayed as lying at sea level; however notch

types actually form a continuum from wave notches formed in quiet

conditions at sea level to surf notches formed in more turbulent

conditions and as much as 2 m above sea level (Pirazzoli et al., 1996 in

Rust and Kershaw, 2000). As stated above, there was at least one

higher sea level during the Holocene, so that some notches may not

contain a tectonic component in their formation.

In 2005, during several field visits, the altitudes of the shoreline

angles were measured using digital altimeters calibrated on the last

high tidemark observed on the shore. The precise 0m sea level is then

determined using the tide tables of the China tidal gauge. We assume

that the marine terraces, notches and coastal sandy deposits were

formed under tide conditions similar to the modern. Note, however,

that controlling processes on notches in granites may not be as well-

constrained as those in limestones. In fact, notches in granites

identified in this paper are secondary in importance to the terraces,

because of the lack of published data on formation of notches in

granites. Barometric drift was registered using another altimeter

displayed in a steady position at or near the reference point on the

shore. All altitudes are given in meters above mean sea level (amsl).

The error range with the altimeter is ±1 m, but the major error comes

from the preservation quality of the shoreline angle. Erosion and/or

anthropization tend to reduce the accuracy of measurement. Field

techniques also included topographic surveys of Holocene beach,

platform and notches. The whole zone is micro to meso tidal

(Woodroffe, 2003) and the sea-level reference corresponds to the

mean sea level. The Principal Datum (PD) of China consists in the LAT

Fig. 4. Altitudes ofmarine terraces along the northern coast of South China Sea. All transects are represented. The vertical exaggeration ranges between 7 and 10 times. See text for details.

Table 1

Measured shoreline angles and calculated uplift rates for marine terraces

Transect Shoreline angle elevation Calculated uplift rates (preferred hypothesis in bold italic)

(m) (mm/a or m/ka)

Ha T1 T2 T3 For T1=MISS 5eb For T2=MISS 5eb For T2=MIS 7c For T2=MIS 9c For T3=MIS 9c

A nd 25±5 40±7 60±10 0.10–0.26 nd 0.12–0.26 nd 0.13–0.23

B 8±1 20±3 28±3 ? 40±5 0.08–0.20 nd 0.10–0.18 nd 0.08–0.14

C nd 12±4 25±5 0.01–0.14 0.10–0.26 0.08–0.17 nd

D 6±1 20±5 0.08–0.22 nd

E 5±1 11±2 22±4 0.02–0.11 nd 0.07–0.15 0.03–0.08

nd = not determined near this transect.
a Holocene—not all Holocene measurements are exactly on the same transect, but they are nearby, and in the same geographic order.
b MISS 5e is considered to have occurred between 134 and 113 ka with an eustatic sea level of 3±3 m.
c Considered range of ages for MIS 7 and 9 are 180–240 ka and 303–339 ka respectively. Sea levels of 3±3 m is considered for MIS 9 and −1±1 m for MIS 7.
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(Lowest Astronomical Tides) of the Yellow Sea. Preliminary C14

analyses were performed in the Geochemistry laboratory of the

Guangzhou University of Geography. It is important to note that the

results of radiocarbon analysis have been reported without reference

to the laboratory name or laboratory numbers. Other than the

knowledge that the analyses were conducted in this laboratory,

information such as laboratory codes, δ13C values are missing, limiting

the possibility of further calibration.

4. Results

4.1. Coastal morphologies and deposits along the South China Sea Coast

The northern coast of the South China Sea extends southwest–

northeast (Fig. 1B). Marine terraces and notch sequences have been

investigated along a total 1200-km stretch of the coast of the Fujian,

Eastern Guangdong and Hainan Provinces with the exception of

southwest Guangdong. Marine terraces have been found in four places

(Fig. 1B) which are from northeast to southwest: 1) Shihu on the

Jinjing peninsula (Fujian Province), 2) Haishan Island (Guangdong

Province) 3) Zhelang and Shigongliao on the Shanwei peninsula and 4)

on thewestern side of the Hainan Island.With exception of the Hainan

Island (Wang et al., 2000), this is the first description and interpreta-

tion of these Chinese marine terraces sequences in English. The

marine terraces sequences herein considered as Late Pleistocene in

age (see below for details) are frequently associated with Holocene

notches sequences and/or littoral deposits. Except in Hainan Island,

total coastal retreats generally are on the order of 0.5–1 km, the

terraces being narrow because of the hardness of the basement. We

describe themain sequences of terraces and notches fromnortheast to

southwest.

On the northern coast of the South China Sea some problems are

specific to particular sites (for a general description see Morton and

Blackmore, 2001). Firstly, the lithology constitutes a limiting factor for

the study of coastal morphologies. The northern coast of the South

China Sea lacks limestone inwhich notches, marine terraces and other

abrasion and/or dissolution features are easily carved (Kershaw and

Guo, 2001). As a result we observed the poor development of notches

and marine terraces and also the currently forming platform. Another

limiting lithologic factor is the development of aeolian deposits that

mask the coastal morphologies and cover the shallow marine and/or

beach deposits (Wu and Wang, 1985). However, the most important

problem is human degradation of the coastline: between 24 and 41%

of the Chinese population live in the coastal zone, which produces 66%

of the GDP (for more detail see Lau, 2005 and for an example see the

factories on Fig. 3A). The land occupation results in the total

destruction of coastal morphologies and deposits as raw material for

building is needed (sand for cement, rocks for construction) or in the

modification of the coastal zone for human living and economy

(polders). Fish/clams farming and intertidal mud flats cover much of

the South China Sea coast (Shi and Chen, 1996). As noticed by Yim

(1999) for the Hong Kong region, the influence of humans through

accelerated soil erosion, ground water pumping and coastal land

reclamation have made it more difficult to see clearly minor variations

in eustatic sea level.

4.1.1. ShiHu marine terraces, Sequence A (JinJing peninsula)

ShiHu peninsula is a micro-peninsula on the northern margin of

Jinjing peninsula, which lies east of the Shijing Estuary (Fig. 2). The

ShiHu micro-peninsula (1.5 km wide and 1.2 km long) is a former

granitic Island connected to the continent by a sandy tombolo, and

contains a sequence of three marine terraces that cover the micro-

peninsula. Also, a sequence of 2 notches above the modern one is

observed in Weitou, 35 km to the south of ShiHu. In between these

two zones, some low sandy deposits are probably littoral in origin and

may be Holocene in age (Fig. 2). In ShiHu peninsula, terraces are best

preserved in its northern part. In this zone, the marine terraces carved

in granites are narrow and reach a maximum altitude of 60±10 m

(Figs. 3 and 4, Table 1). The lowest and youngest T1 marine terrace,

which is the best preserved, has a maximum width of 60 m. The T1

shoreline angle is noticeable in the landscape (Fig. 3A) at an altitude at

25±5 m. The important margin of error (1/5 of the measurement) is

due to the fact that the shoreline angle precise location (and therefore

altitude) is not easy to determine: as observed on the actual platform,

the hardness of basement results in the carving of very irregular

platform. The second marine terrace, T2, is also narrow and its

shoreline is even more difficult to determine precisely. Evidence of

this terrace is present between 33 and 47m so an altitude of 40±7m is

applied here (Fig. 3B and C, Fig. 4, Table 1). The uppermost terrace (T3)

constitutes the upper and wide surface of the micro-peninsula where

the Pagoda has been built. Paleo-stacks are found up to the top at an

Fig. 5.Graphic representation of the uplift rates deduced frommarine terraces along the

northern coast of South China Sea. A) Sequence A, ShiHu micro-peninsula. B) Sequence

B, NE Haishan Island. C) Sequence E, western part of the Hainan Island, North of

Dongfang City.
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altitude of 57 m (Fig. 3D), so we estimate the paleo-shoreline

associated to T3 to be at 60±10 m (Fig. 4, Table 1). On the summit of

the ShiHu micro-peninsula has sandy soil with marine mollusk shells

(Glycimeris sp and Cerithium sp); however, because the shells are

associated with ceramics, we interpret this deposit as archaeological

in origin. Nevertheless, although no certain marine deposits are

associated with these abrasion platforms, their marine origin is not

doubtful, because paleo-stacks, honeycomb-weathering pits, marine

tafonis and shallow tidal pools are encountered on them (see photos C

and D on Fig. 3).

4.1.2. Haishan Island (Sequence B)

Haishan Island, located on the northern coast of the Guangdong

province near Nanao Island, is 9 km long and has a maximumwidth

of 6 km (Fig. 6). It lies near a low coastal zonewith intertidalmud flats

that have been modified by human activities (see Bizhou area on

Fig. 6). A sequence of marine terraces is present over a total distance

of 3 km on the northeastern part of Haishan Island near Aobian

village. Due to vegetation cover and human disturbance, the terraces

are not continuously observable. This leads to difficulty in determin-

ingwhether there are two or three terraces. Paleo-abrasion platforms

are carved in intrusive granites, which are from lower and middle

Mesozoic (Guangdong Geological Survey, 1965). Above a small

modern abrasion platform, the lowest marine terrace is 25 m wide

with a shoreline angle at 20±3 m above mean sea level (Fig. 6,

Table 1). Above this terrace a 20–25 m wide flat morphology with a

scarpat28±3 is observed, interpreted as a secondterrace (Figs. 4B and6).

Above this, the uppermarine terrace, 60mwide, has a shoreline angle at

an elevation of 40±5 m (Figs. 4 and 6). No marine deposits associated

with the Haishan terraces have been encountered but the marine origin

of these morphologies is not doubted, because honeycomb weathering,

marine tafoni, tidal pool and paleo-stacks are present on their surfaces.

On the south margin of Haishan Island, a 7 m-thick deposit of sand and

consolidated sand extends over a 2.8-km-long stretch of the coast and a

maximum of 0.8-km inland. These deposits have been described as

beachrock and dated by Bi and Yuan (1988); however, the sediment does

not conformwith the established characters of beachrock (Purser,1980),

and is more appropriately interpreted as a shallow marine sand with

many sea shells (coquina) from a wave-built terrace. The upper part of

the deposit is associated with a notch at an elevation of 8±1 m. Bivalves

and gastropods for 14C-dating were collected from the inner edge of the

deposit. The C14 sample gave a non-calibrated age of 2810±90 ky

(Table 2). Littoral deposits in Nanao Island and the Barto area are similar

to the Haishan coquina. North of Buwei some low zones and/or wave-

built deposits are observable (Fig. 5) on Landsat images (available at

https://zulu.ssc.nasa.gov/mrsid/).

4.1.3. Shanwei peninsula (Sequences C, D)

Along the 160 km coastline between Houmen and Guang'ao,

littoral Holocene deposits and marine terraces record tectonic move-

ment, identified by field and satellite observations (Fig. 7). To the

northeast lies Lianjiang River, which is described as a half graben

(Chen, 1995), which has two marine terrace sequences, from which

were obtained preliminary dates of some Holocene coastal deposits in

the western entrance of Shanwei City (Table 2).

Two marine terraces carved into Mesozoic granite (Guangdong

Geological Survey, 1965) are found on the Shigonglia micro-peninsula.

The lower (T1) terrace is 10 m maximum width and outcrops only on

the westernmost point of Shigongliao micro-peninsula near the

Buddhist temple. The T1 shoreline angle lies at an altitude of 12±4 m

(Table 1). The margin of error is important because no clear shoreline

angle is observable continuously in the landscape. The upper (T2)

marine terrace marine develops extensively (Fig. 8A and B) and

constitutes the top of the micro-peninsula. In some places this surface

is eroded by fluvial and/or human erosion, resulting in the fact that no

clear shoreline angle is observed but some paleo-islands and paleo-

stacks are present (Fig. 8B). Themain surface of this terrace stands at an

elevation of 20–22m and amaximal elevation of 25±3 (Figs. 4 and 8A)

m is interpreted here as the altitude of the shoreline angle of this

marine terrace.

Fig. 6. Marine terraces (Sequence B) and Holocene littoral deposits on Haishan Island and its vicinity.

Table 2
14C results (Geochemistry Laboratory of the Guangzhou University of Geography) on seashells from marine deposits of the northern coast of South China Sea

Nom Date Location Description Observation Age Error range

LM 1 6/26/2005 22°47.283 115° 19.971′ Seashells in bioclastic sand Distal edge of the Holocene wave-built terrace 1220 60

LM 2 7/5/2005 23°31.272 116° 57.411 Seashells in bioclastic sandstone Inner edge of the Holocene coastal deposit 2810 90
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The top of the Zhelang micro-peninsula (Fig. 7) has a marine

terrace carved in Mesozoic granites. However, this terrace lacks a clear

shoreline. As the main surface is present at 18–20 m, the shoreline

angle would lies at 20±5 m (Table 1, Fig. 4); here the precision is

influenced by human activity.

In the northwestern entrance of Shanwei City, at N 22° 47.283′ E

115° 19.971′ a 2-m sand deposit (Fig. 7) exposed by quarrying is

present about 200 m inland from the beach and consists of 4 layers

(Fig. 9). The lowest layer (A) consists in 0.8 m of grey whitish sand

with nearly planes bed. In some parts the beds are coarser, with

bioclasts and entire seashells; some of the latter have been sampled

for carbon 14 analysis (Sample LM2 on Figs. 7 and 9). The second layer

B consists of 40-cm of gray whitish sand with low angle cross

stratification. Few bioclasts are present in the beds. The third layer C is

a 45-cm graywhitish sand deposit with nearly planes bed. This layer is

very similar to layer A but lacks marine shells. The fourth layer (D)

consists of the same deposit as layer C but its top is the outcrop upper

limit, and the full thickness of layer D is not preserved. The base of the

outcrop lies at 3±1 m above mean sea level. This deposit extends

about 700 m landward and constitutes a 13-km large wave-built

terrace. We estimate its maximum altitude at 7±2 m. The C14 sample

gave an age of 1220±60 yr (Table 2). This age must not be considered

at representative of the wave-built terrace as 1) the sample was taken

from the distal part of the terrace 2) the result is not calibrated, 3) sea

shells can be reworked (sample not in life position).

4.1.4. Western side of Hainan Island (Sequence E)

The Hainan Island constitutes the biggest Chinese Island of the

South China Sea. Marine terraces (some true abrasion platform but

mostly wave-built terraces), beach ridges, coastal bars and notches

sequences are present on the western and south part of the island

along a 300 km-long stretch of coast (Fig. 10). Hainan Island

Quaternary coastal deposits and morphologies have been the subject

of a brief description (in English) in a congress (Wang et al., 2000) and

articles (in Chinese) about local Holocene relative sea level (Huang

and Zhu, 1985), beachrocks (Wang, 1991a,b), Holocene carbonates

(Lassen et al., 1995).

Wang et al. (2000) described remnants of pre-Pleistocene, highly

indented shorelines occurring as terraces on the hills at different

elevations ranging from 80 m to 40 m. Lower, more recent terraces at

20, 10 and 5 m asl record the development of the coast during Late

Pleistocene and Holocene. In the coastal plains, best exposed in the

Sanya region, there are up to eight to nine coastal bars, from small

residual inland uplifted ones around promontories of hills to the

recent extensive (approximately 10–15 km long and 5–600 m wide)

more recent bars that occur along the present shore. The internal

architecture of the more recent bars can be readily defined using

Ground Penetrating Radar (GPR) (Wang et al., 2000). This shows that

the bars have developed over bedrock, reefal platforms or beachrock.

Their deeper horizons have characteristic lexeme-like GPR facies of

shoreface to coastal sand, and their top parts are characterized by

locally well-developed, stacked, seaward prograding 3–4m thick cross

beds.Where not stripped by human activities, aeolian dunes generally

cap them. The total sand thickness of the bars reaches up to 8–10 m

(Wang et al., 2000).

This preliminary study focused on the western point of Hainan

Island, in the vicinity of the Dongfang town (Figs. 10 and 11). The

strategy was to measure precise altitudes on the lowest shoreline

angles. In the vicinity of Dongfang City we studied a 15 km-long

stretch of coast. We found a sequence of two notches in the port of

Fig. 7. View of the marine terrace (Sequence B) from the NE part of Haishan Island. Photo is taken looking to the south.

Fig. 8. Marine terraces (Sequence C, Shigongliao and D Zhelang) and Holocene littoral deposits between Houmen and Guang'Ao.
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Dongfang town and the best location for marine terrace measurement

is located between the village of XinJie and the Si Ling mount (Fig. 11).

In this zone the marine terrace extend at least 20 km inland but

probably much more, up to the vicinity of the Wanglao village. On

landsat images, it seems that a minimum of two other terraces with

distinct shoreline angle are present (see dashed lines on Fig. 11).

Between the sea and Si Ling mount we studied a sequence of 2

marine terraces (Fig. 4) above the terrace (TH) previously described as

Holocene (Guangdong Geological Survey, 1964; Wang et al., 2000).

These marine terraces are evident in the landscape but are cultivated

for watermelons resulting in partial destruction of their morphologies

and deposits. Aelioan deposits also extensively cover these terraces.

The Holocene terrace (TH) extends over 500 m (Fig. 12) with its

shoreline at an altitude of 5±1 m. T1 marine terrace extends over

more than 1 km and its shoreline angle lies at an altitude of 11±2 m.

T2 terrace is wider than T1 and extends over nearly 2 km with a

shoreline angle at an altitude of 22±4 m.

To the west of Dongfang, in the port area is a sequence of two

notches; the lowest has an associated paleo-abrasion platform. The

notches are carved in the Mesozoic granites. The lowest notch is not

well preserved due to human activity. Its altitude is measured at 5±

2 m near a paleo sea-cave (which is used as a small temple). A fossil

abrasion platform is probably associated with this notch, 2 m above

the modern platform but it is nearly totally destroyed. Above this

notch, the upper notch is present 10±3 m above mean sea level. The

upper notch is present over tens of meters around the cape. The

lowest notch is about 1 m high and from 0.5 to 1.5 m deep. The

second notch is about 3 m high and 2–3 m deep. By comparison to

the general morpho-stratigraphy of the western part of Hainan

Island, we tentatively correlate the lowest notch with the Holocene

marine terrace encountered to the north and probably to the south,

based on: 1) the altitudinal and structural continuity between the

notch and the Holocene marine terrace and 2) the fact that no fault

is registered in this area. In this zone, we also tentatively correlate

the upper notch with the T1 marine terrace for the reasons

mentioned above.

4.2. Chronostratigraphic interpretation and uplift rates

4.2.1. Middle and Late Pleistocene

Following standard practice (Lajoie, 1986; Johnson and Libbey,

1997; Pedoja et al., 2006b), we generally correlated the lowest

prominent marine terrace with MIS 5; and in order to get the mini-

mum uplift rate, the shoreline of this terrace was correlated with the

peak or maximum of this interglacial (MISS 5e), pending further work

to demonstrate unequivocal deposits associated with this age. In most

of the cases, the lowest prominent terrace is the one that we, during

field works named T1, with exception of the Shigongliao micro-

peninsula andwestern Hainan Island (Sequences C and E respectively)

where the lowest terrace is not correlated to MIS 5e (see further).

Fig. 9. View of the marine terrace (Sequence C) from Shigongliao (Shanwei vicinity). A) General view of T2. B) Morphology of a paleo-stack in T2 (altitude 18 m).
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On the ShiHu micro-peninsula (Sequence A), calculated uplift rates

for T1 range from 0.10 to 0.26 mm/yr (Table 1) (or 0.18±0.08 mm/yr,

Fig. 13A). If a constant uplift rate of 0.18 mm/yr is extrapolated back in

time, the 40±7melevationof T2 and the 60±10melevation of T3would

suggest that these terraces were formed between 183–261 ka (T2), and

277–388 ka (T3) (Fig.13A). As a preliminary hypothesis we propose that

T2 and T3 could be correlatedwith highstands associated toMIS 7 and 9

respectively. This extrapolation agrees with local morpho-stratigraphy

(i.e. weak development of T2 compared to T1 or T3).

On the northeast part of the Haishan Island (Sequence B),

calculated uplift rate for T1 ranges from 0.08 to 0.20 mm/yr

(Table 1) (mean of 0.14±0.06 mm/yr, Fig. 13B). If a constant mean

uplift rate of 0.14 mm/yr is extrapolated back in time, the 28±3 m

elevation of T2 and the 40±5 m elevation of T3 would suggest that

these terraces were formed between 178 and 221 ka (T2) and 250 ka

and 321 ka (T3) (Fig. 13B). Note that this interpretation is made under

the constraint of uncertainty about whether T2 represents a separate

terrace, which future work may resolve. Combining this extrapolation

with the local morpho-stratigraphy (i.e. strong development of T1 and

T3) we suggest, in any case, correlating T3withMIS 9 (Fig. 13B). The T2

terrace if accepted as a terrace would not introduce any drastic change

in the uplift velocity from T3 to T1 (see Table 1 and Fig. 13B for the

resultant uplift rates). In our point of view, the apparent uplift

reduction from T3 (0.14 mm/yr, MIS 9) to T1 (0.10 mm/yr, MISS 5e) is

not significant as the margins of errors are to be taken into account

(Table 1).

On the Shigongliao micro-peninsula (Sequence C), we do not

follow standard practice because T1 terrace (12±4 m) is not the

prominent terrace in this zone. As a consequence of this local morpho-

stratigraphy and comparing with nearby morpho-stratigraphy (Zhe-

lang) T2 marine terrace is correlated with MISS 5e. Uplift rates for T2

ranges from 0.10 to 0.26 mm/yr (Table 1) (0.18±0.08 mm/yr). T1

marine terrace could be a 1) human artefact, 2) Holocene terrace 3) a

small platform associated with a highstand posterior to MISS 5e (i.e.

MISS 5a orMISS 5c). Further studies are necessary in this zone in order

to better decipher the coastal morphology.

On the Zhelangmicro-peninsula (Sequence D) calculated uplift rate

for T1 ranges from 0.08 to 0.22 mm/yr (Table 1) (or 0.15±0.07 mm/yr).

It seems probable that the nearby Shigongliao and Zhelang micro-

peninsula of experienced the same uplift velocities (0.18±0.08 and

0.15±0.07, Table 1) during late Pleistocene as no fault is known on

the geologic map of the zone nor have been observed on satellite

image.

On the western part of Hainan Island (Sequence E), the lowest

marine terrace (5±4 m) which is not the prominent terrace in this

zone, has been interpreted as Holocene (Wang et al., 2000). As a

consequence of the local morpho-stratigraphy we named this terrace

TH and correlate the prominent T1 marine terrace (11±2) with MISS

5e in the absence of datable remains. Calculated uplift rates for T1

range from 0.02 to 0.11 mm/yr (Table 1) (or 0.07±0.05 mm/yr). For the

formation of T2 terrace, there are two hypotheses to identify the

appropriate MIS (Table 1). The first hypothesis correlates T2 with MIS

7 (penultimate interglacial, ∼220 ka, “weaker” than MISS 5e). The

second hypothesis correlates T2 with MIS 9 (“strong” interglacial,

∼330 ka). For the transect where T2 was measured (Sequence E), the

latter hypothesis (T2=MIS 9) produces more uniform uplift rates

(Table 1). This result is as expected, because MIS 7 was weaker than

MIS 5 or 9, and its terraces are typically only preserved where uplift

rates are more rapid (Zazo, 1999); these interpretations will require

corroboration with datable evidence which was not found in this

study.

4.3. Holocene

On the northern coast of the South China Sea, wave-built deposits

and Holocene morphologies are found at altitudes that do not

necessarily imply important tectonic movements. As stated above,

we interpret mid-Holocene highstands at 4±1 and 1.5±1 m. The

Haishan and Shanwei Holocene wave-built terrace are found at 8±1

and 7±2 m respectively, could be correlated with the maximum 5 m

higher than present Holocene highstand. As an element of compar-

ison, we extrapolate Late Pleistocene uplift rates from the nearest

marine terrace sequence. In Haishan, an extrapolation of the MISS 5e

uplift rate from Sequence B (0.08 to 0.20 mm/yr or m/ka) would imply

0.40 to 1 m vertical displacement for the last 5000 yr. In Shanwei an

extrapolation of the MISS 5e uplift rate would lead to a 0.50–1.30 m

range for the last 5000 yr. These displacements combined 1) with the

assumed 4±1 m mid-Holocene highstand and 2) with lithological

factors that tends to produce rough shoreline angles (unlike lime-

stones, which preserve notches more effectively), could explain the

present elevation of this Holocene wave-built terrace.

5. Discussion

Abrasion platforms carved into granites are expected to be proble-

matic to interpret; in contrast, limestones produce reliably recognisable

submarine abrasion platforms particularly if the inner margin is

identifiable using fixed biological indicators. However, the terraces

observed in this studywere cut into granite to produce flat surfaces that

Fig. 10. Log section of sand deposit in the western entrance of Shanwei City (see Fig. 8

for location).
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terminate seawards in small downsloping cliffs, and landwards in

upsloping cliffs. Examination of close-up photos in Figs. 3C, D and 8B

showapproximately horizontal layering in the granite. It is possible that

weathering and erosion of granites could lead to such morphologies in

the absence of coastal effects; but the fact that these terraces occur in

coastal locations (and not inland), and that they can be approximately

correlated in terms of height, are good indicators that they are actually

marine terraces. We therefore consider them asmarine terraces for this

assessment.

Prior to confirmation of radiometric ages of the geomorphology

and sediments along the south China coastline, this preliminary study

develops the most appropriate chronostratigraphical hypothesis to

determinate the Middle and Late Pleistocene coastal mean uplift rates

on the northern South China Sea. Resulting net uplift rates calculated

for MIS 5, 7, 9, (Fig. 14) do not give evidence of significant change of

uplift rates through time: variations are not representative of any

tendency with respect to the margin of errors (Fig. 14, Table 1). Thus,

uplift rate variations along the Chinese coast can be analyzed

relatively to MISS 5e, which is the most recent interglacial and the

best constrained with respect to chrono-stratigraphy. Taking into

account the margins of errors, the MISS 5e uplift rate range between

0.02 mm/yr (Sequence E) and 0.26 mm/yr (Sequence A) (Fig. 10).

Fig. 11. Distribution of Quaternary (Holocene and Late Pleistocene) morphologies and deposits on the western and Southern part of Hainan Island. Cartography made on landsat images.

Fig. 12. Distribution of Late Quaternary notches and wave-built terraces (Sequence E) in the area of Dongfang City, western part of Hainan Island.
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In order to investigate the characters of the South China coastal

uplift, comparisons may be made with other passive margins world-

wide; five have been chosen because their regional scale that is similar

to the South China area, and outlined as follows.1) On the northeastern

coast of Brazil, the MIS 5e terrace lies at altitude generally ranging

between 1 and 10 m and with a maximum of 20 m (Magnolia et al.,

2002); also there is considerable similarity between the Holocene

sea-level curve of Brazil and the South China Sea areas (Baker et al.,

2003). Following our practice to calculate uplift rates, these altitudes

lead us to propose rate of vertical deformation ranging from 0.12 to

0.20 mm/yr. The authors analyze their data as consistent with a

scenario in which northeastern Brazil has been subjected to

differential subsidence or uplift motions in late Quaternary. These

vertical motions could be related to the local tectonic setting of

Cretaceous fault-bounded structural blocks, some of them having

been active in the Quaternary. 2) On the passive margin of Argentinean

Patagonia, Rostami et al. (2000) determined, through the study of

marine terraces sequence, a mean uplift rate of 0.09 mm/yr since the

Middle Pleistocene. The Last Interglacial Maximum terraces (MISS

5e) are found at altitude of 16–17 m along a 1000-km-long stretch of

coast. For these authors, it is probably the proximity to the

subduction zone of western South American that is responsible for

the tectonic uplift of Patagonian Argentina. 3) On thewestern coast of

Africa, in Mauritania and Senegal, very small uplift is registered

through some Late Pleistocene marine deposits and morphologies

(Giresse et al., 2000). The MIS 5 coastal deposits are found at

maximum altitudes of 6 to 10 m. Taking into account our

methodology to determine uplift rates, this would imply maximum

uplift rate ranges from 0.02 to 0.08 mm/yr. (Giresse et al., 2000)

consider that no uplift occurred on the West African passive margin.

4) On the passivemargin of India, precisely on the southeastern coast,

Banerjee (2000) described a sequence of marine terraces, carved on

and locally blanketed by Late Pleistocene biotic and terrigenous

accumulations, and occurring up to 4.9 m above High Tide Level.

Banerjee (2000) interpreted these terraces to signify discrete still-

stand episodes followed by abrupt intervals of rising/falling sea level

rather than tectonic movements. 5) Bryant (1992) made a recompila-

tion of data about sea-level trends in Australia. The data from the last

interglacial period indicates that the southern part of the Island

experienced a 5-m uplift. New South Wales and Western Australia

remain stable with the noticeable exception of the west side of Cape

Rangewhere a coralline terrace associatedwithMISS 5ewas found at

a maximum elevation of 18 m (Van de Graaf et al., 1976); this gives

uplift rates ranging from 0.08 to 0.15 mm/yr. For these authors, uplift

is related to faulted blocks. At a global scale, passive margin appears

to be subjected to uplift as well as subsidence separated by hinge

lines (see coast of Eastern South America, Rostami et al., 2000) with a

relatively weak or even no uplift during Middle and Late Quaternary

(West Africa, South India).

On the northern coast of the South China sea, the pattern of

deformation is similar to other places: patches of uplifted coastal

segments are separated by subsiding areas which are the location of

few large rivers such as the Pearl River or the Lianjiang River northeast

of Shanwei. Compared to other passive margins the most striking

characteristics of the Late Pleistocene uplift of the northern coast of

South China is its intensity over a large distance: 0.1 to 0.2 mm/yr over

1200 km).

The geographical homogeneity must be discussed herein be-

cause our preliminary results consist in mean uplift rates for only 4

places on the South China Sea Coast of China. In particular, our study

does not include the southwest Guangdong and Guangxi coasts,

implying a 400 km long data gap on which further studies must

focus. In any case, satellite image and map analysis and Chinese

literature reveals the occurrence of Middle and Late Pleistocene

morphologies on the Bailong peninsula in Xiniujiao, Tieshan Harbor

and Weizhou Island (Collective, 1969). In any case, as the occurrence

of marine terrace flights reveals, itself, coastal active tectonics, we

interpret that the northern coast of the South China Sea from

Hainan to southern Fujian is experiencing Middle and Late Pleisto-

cene coastal uplift marked on peninsulas. Thus in term of

geographical extension the South China Coast uplift can only be

compared to the Patagonian uplift in eastern South America, which

following Rostami et al. (2000) is 1) slightly weaker and 2) result

from a regional parameter; i.e. to the subduction of the Pacific plates

under Western South America.

One major source of questioning comes from the fact that that

uplifts are very similar even if the flights are not in the same regional

geodynamical context. For example, Southern Fujian coast contains

the back arc of an active plate boundary, while Hainan Island zone can

be considered as strike-slip passive margin (Wei and Chung, 1995)

and eastern Guangdong a faulted passive margin. But, the intensity of

deformation appears to be very similar. Furthermore the Fujian

Province of China belongs to the foreland of the collision zone where

the encroachment of the Luzon arc on the continental margin of

China took place. Consequently, subsidence should be suspected be-

cause of the flexure of the continental crust due to the load of the

Luzon arc.

Furthermore, when compared to similar case of coastal vertical

deformation, uplift rates from the northern coast of South China Sea

are globally slightly higher. Why? Is there a geodynamical factor

producing a convergence in this zone? At this point, it must be pointed

out that we do not know if rates can be considered for longer period of

time (what could help to prove a large-scale origin?). No Pliocene

littoral deformed strata are described inland. Is this uplift continuous

through time? For how long does it last? What is the real accuracy of

the Late Quaternary uplift when compared to longer geological times?

We need to compare our uplift rates with the Holocene uplift rate

and the modern sea-level relative change.

Fig. 13. View of the Holocene wave-built terrace (TH) and its shoreline angle near Xinjie village (western part of Hainan Island).
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Huang and Zhang (2005) published a recompilation of 14C data

available for coastal Holocene morphologies and deposits from the

South China Sea coast. According to them, the west coast of

Guangdong province, the south and southwest coast of Hainan Island

are experiencing uplift of 1.0–1.5 mm/a, 1–2 mm/an and 0–1 mm/an.

Relative sea-level change has been studied mainly by tide-gauge

analysis (Emery and Aubrey, 1986; Huang and Zhang 2004). For these

authors, rates of these relative changes, and more particularly the

coastal uplift are estimated to be as high as 5 mm/yr and are

frequently of 1 to 2 mm/yr. Emery and Aubrey (1986) described this

low-frequency positive vertical movements in the areas of massifs and

ancient foldbelts. In area of Cenozoic basins, the subsidence can be up

to 9 mm/yr. Although the tide-gauge records are sparse, inferences

from them are supported by the stratigraphy and structures of the

region and by raised marine terraces (described in this paper). This

discrepancy between Holocene and/or actual uplift rates and Late

Pleistocene one has been described all around the Pacific rim (Ota and

Yamaguchi, 2004) but is still not perfectly understood.

The Chinese marine terrace flights raise more questions than they

answer. Why are Fujian and northern Fujian uplifting although they

are in a back arc position? Do different regional contexts tend to

result in uniform uplift rates? Or is there a large-scale factor

influencing the uplift? At this stage of knowledge, Middle and Late

Pleistocene coastal positive vertical deformation are extensively

present on the South China cast but, due to the lack of data about

precise geodynamical context, the origin of active tectonics on

segment of coast be assessed only by suggestion. In particular, a

large-scale phenomenon (denudation process, bulge due to the Indo-

Asian collision) can be suspected (Huang and Zhang, 2004, this

study) but is not proved.

6. Conclusions

The coast of the northern South China Sea is uplifted along a

passive margin. Taking into account margins of error, late Quaternary

uplift rates range from 0.02 mm/yr up to a maximum of 0.26 mm/yr.

The means for the last ∼125 ka range from 0.07 to 0.18 mm/yr.

Compared to other example of Quaternary coastal uplift along passive

margin, the main uplift registered along the northern coast of the

South China Sea is higher. The uplift rates quantified in this study can

be used to correct any Holocene sea-level curve for this far-field

location. Such studies of Pleistocene coastal evolution and active

tectonics will improve the understanding of other deforming passive

margins.
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