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Asymptotic normality of nonlinear least
squares under singular experimental designs

A. Pázman and L. Pronzato

Summary. We study the consistency and asymptotic normality of the LS estima-
tor of a function h(θ) of the parameters θ in a nonlinear regression model with
observations yi = η(xi, θ) + εi, i = 1, 2 . . . and independent errors εi. Optimum ex-
perimental design for the estimation of h(θ) frequently yields singular information
matrices, which corresponds to the situation considered here. The difficulties caused
by such singular designs are illustrated by a simple example: depending on the true
value of the model parameters and on the type of convergence of the sequence of
design points x1, x2 . . . to the limiting singular design measure ξ, the convergence of
the estimator of h(θ) may be slower than 1/

√
n, and, when convergence is at a rate

of 1/
√

n and the estimator is asymptotically normal, its asymptotic variance may
differ from that obtained for the limiting design ξ (which we call irregular asymptotic

normality of the estimator). For that reason we focuss our attention on two types of
design sequences: those that converge strongly to a discrete measure and those that
correspond to sampling randomly from ξ. We then give assumptions on the limiting
expectation surface of the model and on the estimated function h which, for the
designs considered, are sufficient to ensure the regular asymptotic normality of the
LS estimator of h(θ).

1.1 Introduction

Although the singularity of regression models has been somewhat neglected
in the literature on parameter estimation and experimental design, the diffi-
culties it induces for statistical inference have been noticed and investigated
in several domains of applications, see, e.g., Stoica (2001) for signal process-
ing, Hero et al. (1996) for image processing (emission tomography) or Sjöberg
et al. (1995) for general black-box modelling of dynamical systems. There,
the singularity comes from an over-parametrization and the attention is di-
rected to the Cramèr-Rao bound. The motivation of this paper is different
and comes from optimum design theory. In nonsingular nonlinear models, a
standard way to design an optimum experiment for parameter estimation is to
optimize a criterion based on the asymptotic normality of the estimator. This
is justified by the fact that the asymptotic variance of the estimator depends
on the limiting design measure (it is the inverse of the associated information
matrix), but not on the way this measure is approached by the sequence of
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design points. Can we use a similar approach also for singular models? It is the
purpose of this paper to present easily interpreted conditions which allow this.
It is important since optimum designs may produce singular models. Indeed,
when the interest is in a function h(θ) of the parameters θ of the model, or
more simply in a subset of θ, the information matrix at the optimum design
is often singular, see, e.g., Silvey (1980, p. 58) and Example 1 below for the
case of c-optimality. We then say that the design is singular.

Singular designs cause no special difficulty in linear regression (which
partly explains why singularity issues have been disregarded in the design
literature), as briefly shown hereafter: a linear combination c⊤θ of the param-
eters is either estimable or not, depending on the direction of c.

1.1.1 Singular designs in linear models

The standard set-up for an optimum experimental design problem in a linear
model is as follows. Given a set X ⊂ R

k, the design space, a design (an
exact design, or a design of size N) is a choice x1, . . . , xN of points from X .
According to this design, we observe N random variables y(x1), . . . , y(xN )
modelled by

y (xi) = f⊤(xi)θ̄ + εi , i = 1, . . . , N (1.1)

where the errors εi are independent and IE(εi) = 0, Var(εi) = σ2 for all i.
Here, the vectors f(xi) ∈ R

p are known, σ2 ∈ R
+ is unknown and θ̄ ∈ R

p

is the unknown true value of the model parameters θ. We emphasize that
throughout the paper the choice of design points x1, . . . , xN is independent
of the observed variables y(xi) (that is, the design is not sequential). If the
information matrix

M(x1, . . . , xN ) =

N
∑

i=1

f(xi)f
⊤(xi)

is nonsingular, then the least squares estimator (LSE) of θ,

θ̂N ∈ argmin
θ

N
∑

i=1

[

y(xi) − f⊤(xi)θ
]2

(1.2)

is unique and its variance is

Var(θ̂N ) = σ2M−1(x1, . . . , xN ) .

On the other hand, if M(x1, . . . , xN ) is singular then θ̂N is not defined

uniquely. However, c⊤θ̂N does not depend on the choice of the solution θ̂N of
(1.2) if and only if c ∈ Range[M(x1, . . . , xN )]. Then

Var(c⊤θ̂N ) = σ2c⊤M−(x1, . . . , xN )c (1.3)
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where the choice of the g-inverse matrix M− is arbitrary. This last expression
can be used as a criterion (the criterion of c-optimality) for an optimal choice
of the N -point design x1, . . . , xN , and the design minimizing this criterion
may be singular, see Silvey (1980); Pázman (1980) for some properties and

Wu (1980, 1983) for a detailed investigation of the consistency of c⊤θ̂N when
N → ∞.

1.1.2 Designs in nonlinear models

Consider now the same set-up with, however, one noticeable difference, namely
that the observations are modelled by

y(xi) = η(xi, θ̄) + εi , i = 1, . . . , N

where the function η(·, ·) : X ×Θ → R is nonlinear in the parameters θ ∈ Θ ⊂
R

p with unknown true value θ̄. One can often suppose, at least approximately,
that the parameter space Θ is bounded and closed, hence compact. Also, it is
standard in experimental design to take X as a compact subset of R

k. Besides
these classical assumptions we shall also assume that Θ has no isolated points,
i.e., that Θ ⊂ int(Θ) (the closure of the interior of Θ), and that Θ ⊂ Θ0, with
Θ0 and open subset of R

p such that for any x ∈ X the function η(θ, x) is
defined and two times continuously differentiable on Θ0.

The LSE of θ, defined by

θ̂N ∈ argmin
θ∈Θ

N
∑

i=1

[y(xi) − η(xi, θ)]
2

,

is a random vector with rather complicated statistical properties even in seem-
ingly simple situations. In the case of normal errors, optimum design can be
based on fairly accurate approximations of the distribution of θ̂N for small
N , see Pázman and Pronzato (1992); Pronzato and Pázman (1994). However,
this is technically difficult and the standard approach (for large N) is to use

the much simpler asymptotic normal approximation of the distribution of θ̂N .
Under suitable conditions on the sequence of design points x1, x2, . . . and on
the model response η(x, θ), see Jennrich (1969); Gallant (1987); Ivanov (1997),

θ̂N is proved to be strongly consistent (limN→∞ θ̂N = θ̄ a.s.) and to converge
in distribution to a normal random vector

√
N(θ̂N − θ̄)

d→ ν ∼ N
(

0, σ2M−1
∞ (θ̄)

)

, N → ∞ . (1.4)

Here, the limit information matrix M∞(θ), defined by

M∞(θ) = lim
N→∞

1

N

N
∑

i=1

fθ(xi)f
T
θ (xi) ,

with the notation
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fθ(x) =
∂η(x, θ)

∂θ
, (1.5)

is supposed to exist and to be nonsingular at θ̄. We denote by ξ the probability
measure (called the design measure, or simply the design, a concept introduced
by Kiefer and Wolfowitz (1959)), that corresponds to the limit of relative
frequencies of the sequence x1, x2 . . . when it exists. In that case, we can write

M∞(θ) = M(ξ, θ) =

∫

X
fθ(x)f⊤θ (x) ξ(dx) (1.6)

and σ2M−1(ξ, θ̄) forms an approximation of N Varθ̄(θ̂
N ) for large N . This

is basic in experimental design theory; for instance D-optimum design corre-
sponds to maximizing detM(ξ, θ̄) with respect to ξ, see Fedorov (1972); Silvey
(1980); Pázman (1986); Atkinson and Donev (1992).

On the other hand, when M(ξ, θ̄) is singular the estimator θ̂N may not
be asymptotically normal, or even not consistent and not uniquely defined.
Still, it might seem possible to base the design on a generalization of the
c-optimality criterion used for linear models, of the form

Φ[M(x1, . . . , xN ; θ)] = Varθ[h(θ̂N )] + O(1/N2)

for a suitable choice of the function h(·), where Varθ denotes the variance con-
ditional to θ being the true value of the model parameters. In the regular case,
this is justified by the delta-method, see Lehmann and Casella (1998, p. 61):
under some regularity conditions on h(θ), from the asymptotic normality (1.4)

of θ̂N one obtains the approximation

N Varθ[h(θ̂N )] = σ2 ∂h(θ)

∂θ⊤
M−1(ξ, θ)

∂h(θ)

∂θ
+ O(1/N) , (1.7)

an expression similar to that used for c-optimality in linear models, see (1.3).

Also, the estimator h(θ̂N ) is asymptotically normal,

√
N [h(θ̂N ) − h(θ̄)]

d→ ν ∼ N
(

0, σ2

[

∂h(θ)

∂θ⊤
M−1(ξ, θ)

∂h(θ)

∂θ

]

θ̄

)

, N → ∞ ,

which we shall call regular asymptotic normality (with M−1 replaced by a
g-inverse when M is singular, see Sect. 1.5).

The question is for which functions h(·), and under which conditions on
the model η(·, ·) and design sequence x1, x2 . . . a formula similar to (1.7) is
justified and regular asymptotic normality also holds in the singular case? We
shall show that essentially three types of conditions must be fulfilled:

i) conditions on the convergence of the design sequence x1, x2 . . . to the
design measure ξ, as discussed in Sect. 1.2;

ii) conditions on θ̄, the true value of the model parameters θ, in relation
to the geometry of the model (Sect. 1.4);
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iii) conditions on the function h(·).
The consistency of θ̂N and h(θ̂N ) is considered in Sect. 1.3, based on the

conditions of Sect. 1.2 on the design sequence. The regular asymptotic normal-
ity of h(θ̂N ) is investigated in Sect. 1.5. The extension to a multidimensional
function of interest H(θ) is considered in Sect. 1.6.

1.2 The convergence of the design sequence to a design
measure

The investigation of the asymptotic properties of the estimator in a regres-
sion model requires the specification of the asymptotic behavior of the design
sequence (xi)i. Rather than formulating conditions in terms of finite tail prod-
ucts, as in the seminal paper of Jennrich (1969), we shall state conditions in
terms of limiting design measures. To each truncated subsequence x1, . . . , xN ,
we associate the empirical design measure ξN and its cumulative distribution
function (c.d.f.)

IFξN
(x) =

N
∑

i=1, xi≤x

1

N

(where the inequality xi ≤ x must be understood componentwise). The se-
quence (ξN )N is said to converge weakly to a limit design measure ξ with
the c.d.f. IFξ if limN→∞ IFξN

(x) = IFξ(x) at every continuity point of IFξ

(which corresponds to the weak convergence of probability measures, see, e.g.,
Billingsley (1971), Shiryaev (1996, p. 314)). However, even in linear models,
weak convergence is not enough to ensure regular asymptotic normality of
the estimator when the limiting design is singular. This is illustrated by the
example below.

Example 1. Consider the linear regression model (1.1) with p = 2 and f(x) =
(x x2)⊤. The true value θ̄ of the model parameters θ = (θ1 θ2)

⊤ is assumed
to satisfy θ̄1 ≥ 0, θ̄2 < 0. The errors εi are i.i.d., with zero mean and variance
1. We are interested in the estimation of the point x where η(x, θ) = f⊤(x)θ
is maximum, that is, h = h(θ) = −θ1/(2θ2), with h ≥ 0 and

∂h(θ)

∂θ
= − 1

2θ2

(

1
2h

)

.

Let θ∗ be a prior guess for θ with θ∗1 ≥ 0, θ∗2 < 0, h∗ = −θ∗1/(2θ∗2) denote the
corresponding prior guess for h and define x∗ = 2h∗. The c-optimum design
ξ∗ supported in X = [0, 1] that minimizes [∂h(θ)/∂θ⊤ M−(ξ) ∂h(θ)/∂θ]θ∗ is
easily computed from Elfving’s Theorem (1952), and is given by

ξ∗ =

{

γ∗δ√2−1 + (1 − γ∗)δ1 if 0 ≤ x∗ ≤
√

2 − 1 or 1 ≤ x∗
δx∗

otherwise
(1.8)
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with δx the delta measure that puts weight 1 at x and

γ∗ =

√
2

2

1 − x∗

2(
√

2 − 1) − x∗
.

Here we suppose that the prior guess θ∗ is such that
√

2 − 1 < x∗ ≤ 1 so
that the c-optimum design ξ∗ puts mass 1 at x∗. When ξ∗ is used, θ1x∗ +θ2x

2
∗

is estimable since u∗ = (x∗ x2
∗)

⊤ is in the range of

M(ξ∗) =

(

x2
∗ x3

∗
x3
∗ x4

∗

)

.

The variance of u⊤
∗ θ̂N for ξ∗, which we denote Var(u⊤

∗ θ̂N |ξ∗), satisfies

N Var(u⊤
∗ θ̂N |ξ∗) = u⊤

∗ M−(ξ∗)u∗ = 1 ,

with M− any g-inverse of M.
We consider design sequences that converge to ξ∗ and investigate the case

when convergence is weak. Suppose that the design points satisfy

xi =

{

x∗ if i = 2k − 1
x∗ + (1/k)α if i = 2k

(1.9)

for some α ≥ 0, i = 1, 2, . . ., with
√

2 − 1 < x∗ ≤ 1. From Corollary 1 of Wu
(1980), one can show that the LSE θ̂N is strongly consistent when α ≤ 1/2,
which we suppose in the rest of the example (see Pázman and Pronzato (2006)
for details when α = 1/4).

The variance of u⊤
∗ θ̂N , with u∗ = (x∗ x2

∗)
⊤, for the design ξN satisfies

N Var(u⊤
∗ θ̂N |ξN ) = u⊤

∗ M−1(ξN )u∗ with,

M(ξN ) =

(

µ2(N) µ3(N)
µ3(N) µ4(N)

)

and, for N = 2M , µi(N) = xi
∗/2 + (1/N)

∑M
k=1[x∗ + (1/k)α]i, i = 2, 3, 4. We

then obtain

lim
N→∞

N Var(u⊤
∗ θ̂N |ξN ) = V (α) =

2(1 − α)2

α2 + (1 − α)2
, (1.10)

which is monotonically decreasing in α for α varying between 0 and 1/2, with
V (0) = 2 and V (1/2) = 1. For any α ∈ [0, 1/2) we thus have

lim
N→∞

N Var(u⊤
∗ θ̂N |ξN ) = V (α) > N Var(u⊤

∗ θ̂N |ξ∗) = 1 ,

that is, the limiting variance for ξN is always larger than the variance for the
limiting design ξ∗ (this is due to the discontinuity of the function M(ξ) 7→
N Var(u⊤

∗ θ̂N |ξ) at M(ξ∗), see Pázman (1980, 1986 p. 67)).
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Moreover, we can easily show that Lindeberg’s condition is satisfied for
any linear combination of θ, see e.g. Shiryaev (1996), and, for any u 6= 0

√
N

u⊤(θ̂N − θ̄)

(u⊤M−1(ξN )u)1/2

d→ ζ ∼ N (0, 1) , N → ∞ .

Since u⊤
∗ M−1(ξN )u∗ tends to V (α),

√
Nu⊤

∗ (θ̂N − θ̄)
d→ ζ∗ ∼ N (0, V (α)) . N → ∞ ,

On the other hand, u⊤M−1(ξN )u grows as N2α for u not parallel to u∗. For
instance, for u = u0 = (1 0)⊤ we obtain

N1/2−αu⊤
0 (θ̂N − θ̄)

d→ ζ0 ∼ N (0,W (α)) , N → ∞ ,

with

W (α) = 22(1−α) (1 − 2α)(1 − α)2

α2 + (1 − α)2
. (1.11)

Come back now to the estimation of h(θ) = −θ1/(2θ2).
When θ̄1 + x∗θ̄2 6= 0, that is when h(θ̄) 6= h∗, which corresponds to the

typical situation, we have

h(θ̂N ) = h(θ̄) + (θ̂N − θ̄)⊤
[

∂h(θ)

∂θ |θ̄
+ op(1)

]

with ∂h(θ)/∂θ|θ̄ = −1/(2θ̄2)[1 2h(θ̄)]⊤ not parallel to u∗, and

N1/2−α [h(θ̂N ) − h(θ̄)]
d→ ζ ∼ N (0, vθ̄) , N → ∞ ,

with vθ̄ = W (α)[x∗ − 2h(θ̄)]2/(4θ̄2
2x

2
∗) where W (α) is given by (1.11); h(θ̂N )

is thus asymptotically normal but converges as Nα−1/2.
In the particular situation where the prior guess h∗ coincides with the true

value h(θ̄), θ̄1 + x∗θ̄2 = 0 and we write

h(θ̂N ) = h(θ̄) + (θ̂N − θ̄)⊤
∂h(θ)

∂θ |θ̄

+
1

2
(θ̂N − θ̄)⊤

[

∂2h(θ)

∂θ∂θ⊤ |θ̄
+ op(1)

]

(θ̂N − θ̄) (1.12)

with
∂h(θ)

∂θ |θ̄
= − 1

2θ̄2x∗
u∗ and

∂2h(θ)

∂θ∂θ⊤ |θ̄
=

1

2θ̄2
2

(

0 1
1 2x∗

)

.

Define δN = θ̂N − θ̄ and EN = 2θ̄2
2 δ⊤N ∂2h(θ)/(∂θ∂θ⊤)|θ̄ δN . The eigenvector

decomposition of ∂2h(θ)/(∂θ∂θ⊤)|θ̄ gives

EN = β
[

(v⊤
1 δN )2 − (v⊤

2 δN )2
]
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with v1,2 = (1 x∗±
√

1 + x2
∗) and β = (x∗+

√

1 + x2
∗)/[2(1+x2

∗+x∗
√

1 + x2
∗)].

We then obtain

N1/2−αv⊤
1,2δN

d→ ζ1,2 ∼ N (0, [1 + 1/x2
∗]W (α)) , N → ∞ .

From (1.12), the limiting distribution of h(θ̂N ) is not normal when α ≥ 1/4.
When α < 1/4 we have

√
N EN = op(1), N → ∞, and (1.12) implies

√
N [h(θ̂N ) − h(θ̄)]

d→ ζ ∼ N (0, V (α)/(4θ̄2
2x

2
∗)) , N → ∞ ,

with V (α) given by (1.10). Note that the limiting variance is larger than

[∂h(θ)/∂θ⊤ M−(ξ∗) ∂h(θ)/∂θ]θ̄ = 1/(4θ̄2
2x

2
∗) .

To summarize, the estimation of h(θ) requires α ≤ 1/2 in the design

(1.9), h(θ̂N ) is then generally asymptotically normal but converges as slowly
as Nα−1/2. In the special case where the design is optimum for the true
value h(θ̄), h(θ̂N ) is not asymptotically normal when 1/4 ≤ α ≤ 1/2; it is
asymptotically normal for α < 1/4 and converges as 1/

√
N , but the limiting

variance differs from that computed from the limiting optimum design ξ∗. ¤

Regular asymptotic normality may thus fail to hold when the design se-
quence converges weakly to a singular design. Stronger types of convergence
are required and we shall consider two situations that arise quite naturally.

The first one concerns the case where the limiting design ξ is discrete.
Since, from Caratheodory’s Theorem, optimum designs can be written as dis-
crete probability measures (see e.g. (Fedorov, 1972; Silvey, 1980)), sequences
of design points that converge to discrete measures are of special interest. In
that case, we shall require strong convergence (or convergence in variation, see
Shiryaev (1996, p. 360)) of the empirical measure ξN .

Definition 1. Let ξ be a discrete probability measure on X , with finite support

Sξ = {x ∈ X : ξ({x}) > 0} .

We say that the design sequence (xi)i converges strongly to ξ when

lim
N→∞

ξN ({x}) = ξ({x}) for any x ∈ X .

In the second situation the limiting design measure ξ is not necessary
discrete and ξN converges weakly to ξ, but we require that the design sequence
is a random sample from ξ.

Definition 2. Let ξ be a probability measure on X . We say that the design
sequence (xi)i is a randomized design with measure ξ if the points xi ∈ X are
independently sampled according to the probability measure ξ.
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The following example shows, however, that strong convergence of the
design sequence is not enough to ensure the regular asymptotic normality of
the estimator and further conditions on the model are required. They will be
presented in Sect. 1.4 and 1.5.

Example 2. This is a slight extension of the example considered in (Pázman
and Pronzato, 2006). We consider the same linear regression model as in
Example 1, but now the design is such that N −m observations are taken at
x = x∗ = 2h∗ ∈ (0, 1], with h∗ = −θ∗1/(2θ∗2) a prior guess for the location of
the maximum of the function θ1x + θ2x

2, and m observations are taken at
x = z ∈ (0, 1], z 6= x∗. We shall suppose that either m is fixed1 or m → ∞ with
m/N → 0 as N tends to infinity. In both cases the sequence (xi)i converges
strongly to δx∗

as N → ∞, in the sense of Definition 1. Note that δx∗
= ξ∗,

the c-optimum design measure for h(θ∗), when
√

2 − 1 < x∗ ≤ 1, see (1.8).

The LSE θ̂N is given by

θ̂N = θ̄ +
1

x∗z(x∗ − z)

[

βm√
m

(

x2
∗

−x∗

)

+
γN−m√
N − m

(

−z2

z

)]

(1.13)

where βm = (1/
√

m)
∑

xi=z εi and γN−m = (1/
√

N − m)
∑

xi=x∗

εi are inde-
pendent random variables that tend to be distributed N (0, 1) as m → ∞ and

N − m → ∞. Obviously, θ̂N is consistent if and only if m → ∞. However,
h(θ̂N ) is also consistent when m is finite provided that θ̄1 + x∗θ̄2 = 0. Indeed,
for m finite we have

θ̂N a.s.→ θ̂# = θ̄ +
1

z(x∗ − z)

βm√
m

(

x∗
−1

)

, N → ∞ ,

and h(θ̂#) = −θ̂#
1 /(2θ̂#

2 ) = x∗/2 = h(θ̄). Also,

√
N [h(θ̂N )−h(θ̄)] =

√
N [h(θ̂N )−h(θ̂#)] =

√
N(θ̂N−θ̂#)⊤

[

∂h(θ)

∂θ |θ̂#
+ op(1)

]

with ∂h(θ)/∂θ|θ̂# = −1/(2θ̂#
2 )[1 x∗]⊤ and

√
N(θ̂N − θ̂#) =

√
N

x∗(x∗ − z)

γN−m√
N − m

(

−z
1

)

.

Therefore,
√

N [h(θ̂N ) − h(θ̄)]
d→ ν/(2ζ) with ν ∼ N (0, 1/x2

∗) and ζ ∼ N (θ̄2,

1/[mz2(x∗ − z)2]), and h(θ̂N ) is not asymptotically normal.

1 Taking only a finite number of observations at another place than x∗ might seem
an odd strategy; note, however, that the algorithm of Wynn (1972) for the min-
imization of [∂h(θ)/∂θ⊤ M−(ξ) ∂h(θ)/∂θ]θ∗ generates such a sequence of design
points when the design space is X = [−1, 1], see (Pázman and Pronzato, 2006),
or when X is a finite set containing x∗.
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Suppose now that m = m(N) → ∞ with m/N → 0 as N → ∞. If
θ̄1 + x∗θ̄2 6= 0 we can write

√
m[h(θ̂N ) − h(θ̄)] =

√
m(θ̂N − θ̄)⊤

[

∂h(θ)

∂θ |θ̄
+ op(1)

]

and using (1.13) we get

√
m[h(θ̂N ) − h(θ̄)]

d→ ζ ∼ N
(

0,
(θ̄1 + x∗θ̄2)

2

4θ̄4
2z

2(x∗ − z)2

)

, N → ∞ .

h(θ̂N ) thus converges as 1/
√

m and is asymptotically normal with a limiting
variance depending on z. If θ̄1 + x∗θ̄2 = 0,

√
N [h(θ̂N ) − h(θ̄)] =

√
N

(

− θ̂N
1

2θ̂N
2

− x∗
2

)

= −
√

N

2

γN−m√
N − m

1

x∗θ̂N
2

and √
N [h(θ̂N ) − h(θ̄)]

d→ ζ ∼ N (0, 1/(4θ̄2
2x

2
∗)) .

This is the only situation within Examples 1 and 2 where regular asymptotic
normality holds: h(θ̂N ) converges as 1/

√
N , is asymptotically normal and has

a limiting variance that can be computed from the limiting design ξ∗, that is,
which coincides with [∂h(θ)/∂θ⊤ M−(ξ∗) ∂h(θ)/∂θ]θ̄. Note that assuming that
θ̄1 + x∗θ̄2 = 0 amounts to assuming that the prior guess h∗ = x∗/2 coincides
with the true location of the maximum of the model response, which is rather
unrealistic. ¤

1.3 Consistency of estimators

The (strong) consistency results presented below are based on the following
two lemmas which respectively concern designs satisfying the conditions of
Definitions 1 and 2. The proofs are given in Appendix.

Lemma 1. Let the sequence (xi)i converge strongly to a discrete design ξ in
the sense of Definition 1. Assume that a(x, θ) is a bounded function on X ×Θ
and that (αi)i is an i.i.d. sequence of random variables having finite mean and
variance. Then

lim
N→∞

1

N

N
∑

k=1

a(xk, θ)αk = IE{α1}
∑

x∈Sξ

a(x, θ)ξ({x})

a.s. with respect to α1, α2 . . . and uniformly on Θ.
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Lemma 2. Let (zi)i be a sequence of i.i.d. random vectors from R
r and a(z, θ)

be a Borel measurable real function on R
r × Θ, continuous in θ ∈ Θ for any

z, with Θ a compact subset of R
p. Assume that

IE

{

max
θ∈Θ

|a(z1, θ)|
}

< ∞ ,

then IE {a(z1, θ)} is continuous in θ ∈ Θ and

lim
N→∞

1

N

N
∑

i=1

a(zi, θ) = IE {a(z1, θ)}

a.s. and uniformly on Θ.

Next result (Theorem 1) is quite standard and concerns the set of pos-
sible limiting points of the sequence of LSE of θ. We shall denote yN =
(y(x1), . . . , y(xN )), y = (y(xi))i the sequence of observations y(xi) = η(xi, θ̄)+
εi, where θ̄ is the unknown true value of the model parameters, and

JN (θ, yN ) =
1

N

N
∑

i=1

[y(xi) − η(xi, θ)]
2

,

J(θ) =

∫

X

[

η(x, θ̄) − η(x, θ)
]2

ξ(dx) + σ2 . (1.14)

We shall assume the following.

Assumption A1: Θ is a compact subset of R
p and η(x, θ) is bounded on

X × Θ and continuous in θ for any x ∈ X , with X ⊂ R
k.

Theorem 1. Let the sequence (xi)i either converge to ξ in the sense of Defi-
nition 1, or be generated by ξ according to Definition 2. Then, under A1, with
probability one all limit points of the sequence (θ̂N (yN ))N of LSE,

θ̂N (yN ) ∈ argmin
θ∈Θ

JN (θ, yN ) , (1.15)

are elements of the set
Θ# = argmin

θ∈Θ
J(θ) .

Proof. Lemmas 1 and 2 allow to proceed essentially in a standard way. We
can write

1

N

N
∑

k=1

[y(xk) − η(xk, θ)]
2

=
1

N

N
∑

k=1

ε2
k +

2

N

N
∑

k=1

[

η(xk, θ̄) − η(xk, θ)
]

εk

+
1

N

N
∑

k=1

[

η(xk, θ̄) − η(xk, θ)
]2

,
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with εk = y(xk)−η(xk, θ̄). The first term of the right-hand side converges a.s.
to σ2 by the strong law of large numbers. As required in Lemma 1, η(x, θ̄) −
η(x, θ) is bounded on X × Θ, hence

lim
N→∞

1

N

N
∑

k=1

[

η(xk, θ̄) − η(xk, θ)
]

εk =
∑

x∈Sξ

[

η(x, θ̄) − η(x, θ)
]

ξ({x}) IE {ε1}

= 0

a.s. and uniformly on Θ. Similarly, taking z = (x, ε) and a(z, θ) = [η(x, θ̄)
−η(x, θ)]ε in Lemma 2, we obtain

lim
N→∞

1

N

N
∑

k=1

[

η(xk, θ̄) − η(xk, θ)
]

εk = IEξ

{

η(x, θ̄) − η(x, θ)
}

IE {ε1} = 0

a.s. and uniformly on Θ. By the same arguments we also obtain

lim
N→∞

1

N

N
∑

k=1

[

η(xk, θ̄) − η(xk, θ)
]2

=

∫

X

[

η(x, θ̄) − η(x, θ)
]2

ξ(dx)

a.s. and uniformly on Θ. We have thus proved that the sequence (JN (θ, yN ))N

converges a.s. and uniformly on Θ to J(θ).

Let θ# = θ#(y) be a limit point of (θ̂N (yN ))N (which exists since Θ is

compact). There exists a subsequence (θ̂Nt)t of this sequence that converges

to θ#. From the definitions of JN (θ, yN ) and θ̂N (yN ), we can write

JNt
(θ̄, yNt) =

1

Nt

Nt
∑

k=1

ε2
k ≥ JNt

(θ̂Nt , yNt) .

The left-hand side converges to σ2 a.s. as t → ∞ while the right-hand

side converge a.s. to J(θ#) =
∫

X
[

η(x, θ̄) − η(x, θ#)
]2

ξ(dx) + σ2 (since
JN (θ, yN ) converges a.s. and uniformly in θ to J(θ)). This implies that
∫

X
[

η(x, θ̄) − η(x, θ#)
]2

ξ(dx) = 0, i.e. that θ# ∈ Θ#.

One may notice that Theorem 1 does not mean that θ̂N can take any value
in Θ#. For instance, in Example 2 we have Θ# = {θ : θ1 + x∗θ2 = θ̄1 + x∗θ̄2}
although θ̂N converges a.s. to θ̄ when the number m of observations at z 6= x∗
tends to infinity, see also Wu (1981)2.

Next result concerns the consistency of h(θ̂N ). We shall require the follow-
ing.

2 This reference presents sufficient conditions for consistency that are weaker than
those considered here, in the sense that they do not require the design sequence
(xi)i to obey Definitions 1 or 2. However, this may lead to irregular asymptotic
normality, as shown in Examples 1 and 2, and is not considered in this paper.
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Assumption A2: The function h(θ) is continuous in θ ∈ Θ and such that

∫

X

[

η(x, θ) − η(x, θ̄)
]2

ξ(dx) = 0 ⇒ h(θ) = h(θ̄) .

Theorem 2 (Consistency of h(θ̂N )). Under the assumptions of Theorem 1

we suppose that h(·) satisfies A2. Let (θ̂N (yN ))N be any sequence defined by
(1.15). Then

lim
N→∞

h[θ̂N (yN )] = h(θ̄) a.s.

Proof. As in the proof of Theorem 1 we extract from (θ̂N (yN ))N a subse-

quence (θ̂Nt)t converging to θ# = θ#(y) ∈ Θ#. From the continuity of h(·),
limt→∞ h(θ̂Nt) = h(θ#), and, from Theorem 1 and A2, h(θ#) = h(θ̄) a.s.

Therefore, every converging subsequence of (h[θ̂N (yN )])N has a.s. the same

limit h(θ̄), which is the limit of the whole sequence (h[θ̂N (yN )])N .

1.4 On the geometry of the model under the design
measure ξ

We shall assume the following in the rest of the paper.

Assumption A3: θ̄ ∈ int(Θ) and, for any x ∈ X , η(x, θ) is two times
continuously differentiable with respect to θ ∈ Θ0; these first two derivatives
are bounded on X × Θ.

Let ξ be a design measure, and L2(ξ) be the Hilbert space of real valued
functions φ on X which are square integrable, i.e.,

∫

X
φ2(x) ξ(dx) < ∞ .

Two functions φ and φ∗ are equivalent in L2(ξ) if
∫

X [φ(x) − φ∗(x)]
2

ξ(dx) =
0, that is, φ(x) = φ∗(x) ξ-a.s., which we shall denote

φ
ξ
= φ∗ .

Note that for a discrete measure ξ the equivalence φ
ξ
= φ∗ means that φ(x) =

φ∗(x) on the support of ξ. The elements of L2(ξ) are thus classes of equivalent
functions rather than functions; by the sentence “the function φ belongs to a
subset A of L2(ξ)” we mean that the whole class containing φ belongs to A,

which we shall denote φ
ξ
∈ A. The notation A

ξ
⊂ B is defined similarly. The

inner product and the norm in L2(ξ) are respectively defined by
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〈φ, φ∗〉ξ =

∫

X
φ(x) φ∗(x) ξ(dx) and ‖φ‖ξ =

[∫

X
φ2(x) ξ(dx)

]1/2

.

Under A3, the functions η(·, θ) and

{fθ}i(·) = ∂η(·, θ)/∂θi , i = 1, . . . , p , (1.16)

belong to L2(ξ). We shall denote

θ
ξ∼ θ∗

when the values θ and θ∗ satisfy η(·, θ) ξ
= η(·, θ∗). Notice that θ

ξ∼ θ∗ does not

imply that {fθ}i
ξ
= {fθ∗

}i (this is the object of Lemma 3 below). Also note

that θ
ξ∼ θ̄ is equivalent to θ ∈ Θ# as defined in Theorem 1.

For any θ ∈ Θ0 we define an operator Pθ which acts upon any φ ∈ L2(ξ)
as follows,

(Pθφ) (x′) = f⊤θ (x′)M+(ξ, θ)

∫

X
fθ(x) φ(x) ξ(dx)

where M+ denotes the Moore-Penrose g-inverse of M, M(ξ, θ) is defined in
(1.6) and fθ(x) in (1.5). We keep the same notation Pθφ when φ is vector
valued with components in L2(ξ). We denote

Lθ =
{

α⊤fθ(·) : α ∈ R
p
}

.

From MM+M = M and M+MM+ = M+ we obtain

φ ∈ L2(ξ) ⇒ Pθφ
ξ
∈ Lθ ,

φ ∈ Lθ ⇒ Pθφ
ξ
= φ ,

φ , φ∗ ∈ L2(ξ) ⇒ 〈φ, Pθφ
∗〉ξ = 〈Pθφ, φ∗〉ξ ,

hence Pθ is the orthogonal projector onto Lθ.
We shall need the following technical assumptions on the geometry of the

model.

Assumption A4: For any point θ∗
ξ∼ θ̄ there exists a neighborhood V(θ∗)

such that
∀θ ∈ V(θ∗) , rank[M(ξ, θ)] = rank[M(ξ, θ∗)] .

Assumption A5: Define

Sǫ =
{

θ ∈ int(Θ) :
∥

∥η(·, θ) − η(·, θ̄)
∥

∥

2

ξ
< ǫ

}

.

There exists ǫ > 0 such that for every θ#, θ∗ ∈ Sǫ we have
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[

∂

∂θ

∥

∥η(·, θ) − η(·, θ#)
∥

∥

2

ξ

]

θ=θ∗

= 0 ⇒ θ# ξ∼ θ∗ .

The assumptions A4 and A5 admit a straightforward geometrical and
statistical interpretation in the case where the measure ξ is discrete. Let
{

x(1), . . . , x(k)
}

denote the support of ξ and define

η(θ) = (η(x(1), θ), . . . , η(x(k), θ))⊤ .

The set E = {η(θ) : θ ∈ Θ} is then the expectation surface of the model under

the design ξ and θ∗
ξ∼ θ̄ is equivalent to η(θ∗) = η(θ̄). When A4 is not satisfied,

it means that the surface E possesses edges, and the point η(θ̄) belongs to such
an edge (although θ̄ ∈ int(Θ)). When A5 is not satisfied, it means that the
surface E intersects itself at the point η(θ̄) and therefore there are points
η(θ) arbitrarily close to η(θ̄) with θ far from θ̄. In any of such circumstances
asymptotic normality of the least squares estimator does not hold (from the
geometrical interpretation of least squares estimation as the projection of the
vector of observations onto the expectation surface E).

The geometrical assumptions above yield the following.

Lemma 3. Under A4 and A5, ᾱ
ξ∼ θ̄ implies

∀φ, φ∗ ∈ L2(ξ) , 〈φ, Pᾱφ∗〉ξ = 〈φ, Pθ̄φ
∗〉ξ .

The proof is given in Appendix.
One may notice that Assumptions A4 and A5 are only used to prove

ᾱ
ξ∼ θ̄ ⇒ Lᾱ

ξ
= Lθ̄ ,

to be used in Theorem 3, see the proof of Lemma 3. This result could also be
obtained in a different way. Indeed, from the properties of the projector Pθ̄

we have

Lᾱ

ξ
⊂ Lθ̄ ⇔ Pθ̄{fᾱ}i

ξ
= {fᾱ}i , i = 1, . . . , p ,

⇔ ‖Pθ̄{fᾱ}i − {fᾱ}i‖2
ξ = 0 , i = 1, . . . , p ,

⇔ {M(ξ, ᾱ)}ii −
{

N(ξ, ᾱ, θ̄)M+(ξ, θ̄)N(ξ, θ̄, ᾱ)
}

ii
= 0 , i = 1, . . . , p ,

where we used the notation

N(ξ, ᾱ, θ̄) =

∫

X
fᾱ(x) f⊤θ̄ (x) ξ(dx) .

Therefore, in Theorem 3 below instead of Assumptions A4 and A5 we can use
equivalently the following, which may be easier to check although it does not
have a geometrical interpretation.
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Assumption B1: ᾱ
ξ∼ θ̄ implies

{M(ξ, ᾱ)}ii =
{

N(ξ, ᾱ, θ̄)M+(ξ, θ̄)N(ξ, θ̄, ᾱ)
}

ii
,

{

M(ξ, θ̄)
}

ii
=

{

N(ξ, θ̄, ᾱ)M+(ξ, ᾱ)N(ξ, ᾱ, θ̄)
}

ii
,

for every i = 1, . . . , p.

1.5 The regular asymptotic normality of h(θ̂N)

Definition 3. We say that h(θ̂N ) satisfies the property of regular asymptotic

normality when
√

N [h(θ̂N )−h(θ̄)] converges in distribution to a variable dis-
tributed N (0,

[

∂h(θ)/∂θ⊤ M−(ξ, θ) ∂h(θ)/∂θ
]

θ̄
).

Examples 1 and 2 demonstrate that for a singular ξ regular asymptotic
normality does not hold in general when h(·) is a nonlinear function of θ. We
thus introduce an assumption on h(·) in addition to A2.

Assumption A6: The function h(·) is defined and has a continuous

nonzero vector of derivatives ∂h(θ)/∂θ on Θ0. Moreover, for any θ
ξ∼ θ̄ there

exists a linear mapping Aθ from L2(ξ) to R (a continuous linear functional
on L2(ξ)), such that Aθ = Aθ̄ and that

∂h(θ)

∂θi
= Aθ [{fθ}i] , i = 1, . . . , p ,

where {fθ}i is defined by (1.16).

This receives a simple interpretation when ξ is a discrete design mea-
sure with support

{

x(1), . . . , x(k)
}

. Suppose that Assumption A2 holds for
every θ̄ ∈ Θ. Then A6 is equivalent to the assumption that there exists
a function Ψ , with continuous gradient, such that h(θ) = Ψ [η(θ)], with
η(θ) = (η(x(1), θ), . . . , η(x(k), θ))⊤, and we obtain

∂h(θ)

∂θ⊤
=

∂Ψ(t)

∂t⊤ |t=η(θ)

∂η(θ)

∂θ⊤
.

A6 thus holds for every θ̄ ∈ int(Θ) with Aθ = ∂Ψ(t)/∂t⊤|t=η(θ).
It is useful to discuss A2 and A6 in the context of Example 2. There the

limiting design is ξ∗ = δ(x∗), the measure that puts mass one at x∗. Therefore,

θ
ξ∗∼ θ̄ ⇔ θ1 + x∗θ2 = θ̄1 + x∗θ̄2. It follows that θ

ξ∗∼ θ̄ ⇒ h(θ) = h(θ̄) only
if θ̄1 + x∗θ̄2 = 0, and this is the only case where A2 holds. We have seen in
Example 2 that regular asymptotic normality does not hold when θ̄1 +x∗θ̄2 6=
0, hence the importance of A2. Consider now the derivative of h(θ). We have
∂h(θ)/∂θ = −1/(2θ2)[1 − θ1/θ2]

⊤ and ∂η(x∗, θ)/∂θ = (x∗ x2
∗)

⊤. Therefore,

even if θ̄1 + x∗θ̄2 = 0, we obtain θ
ξ∗∼ θ̄ ⇒ ∂h(θ)/∂θ = −1/(2θ2)[1 x∗]⊤ =
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−1/(2x∗θ2)∂η(x∗, θ)/∂θ, and A6 does not hold if θ 6= θ̄. When m is fixed
in Example 2, Θ# = argminJ(θ), with J(θ) given by (1.14), contains other
points than θ̄; then A6 does not hold and there is no regular asymptotic
normality for h(θ̂N ). On the contrary, when m → ∞ Θ# = {θ̄} and A6 holds
trivially: this is the only situation in the example where regular asymptotic
normality holds.

When ξ is a continuous design measure, an example where A6 holds is
when

h(θ) = Ψ [h1(θ), . . . , hk(θ)]

with Ψ a continuously differentiable function of k variables, and with

hi(θ) =

∫

X
gi[η(x, θ), x] ξ(dx) , i = 1, . . . , k ,

for some functions gi(t, x) differentiable with respect to t for any x in the
support of ξ. Then, supposing that we can interchange the order of derivatives
and integrals, we obtain

∂h(θ)

∂θi
=

k
∑

j=1

[

∂Ψ(v)

∂vj

]

vj=hj(θ)

∫

X

[

∂gj(t, x)

∂t

]

t=η(x,θ)

{fθ}i(x) ξ(dx) ,

and for any φ ∈ L2(ξ)

Aθ(φ) =

k
∑

j=1

[

∂Ψ(v)

∂vj

]

vj=hj(θ)

∫

X

[

∂gj(t, x)

∂t

]

t=η(x,θ)

φ(x) ξ(dx)

so that A6 holds when A2 is satisfied.
We can now formulate the main result of the paper, concerning regular

asymptotic normality.

Theorem 3. Let the sequence (xi)i either converge to ξ in the sense of Defi-
nition 1, or be generated by ξ according to Definition 2. Suppose that the model
response η(x, θ) satisfies assumptions A1, A3 and that the function of interest

h(θ) satisfies A2, A6. Let (θ̂N (yN ))N be a sequence of solutions of (1.15).
Then, under A4, A5, or under B1, regular asymptotic normality holds: the

sequence
√

N
{

h[θ̂N (yN )] − h(θ̄)
}

converges in distribution as N → ∞ to a

random variable distributed

N
(

0, σ2

[

∂h(θ)

∂θ⊤
M−(ξ, θ)

∂h(θ)

∂θ

]

θ=θ̄

)

where the choice of the g-inverse is arbitrary.

Proof. From the properties of Pθ we have for every θ
ξ∼ θ̄
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∂h(θ)

∂θi
= Aθ [Pθ{fθ}i] = u⊤(θ){M(ξ, θ)}.i , (1.17)

where
uj(θ) = Aθ

[

f⊤θ {M+(ξ, θ)}.j

]

.

From Lemma 3, we have

θ∗
ξ∼ θ̄ ⇒ u⊤(θ∗)fθ∗

ξ
= u⊤(θ̄)fθ̄ . (1.18)

Indeed, for any φ in L2(ξ) we can write

〈u⊤(θ∗)fθ∗ , φ〉ξ =

p
∑

j=1

Aθ∗

[

f⊤θ∗{M+(ξ, θ∗)}.j

]

∫

X
{fθ∗}j(x)φ(x) ξ(dx) .

From the linearity of Aθ∗ this is equal to

Aθ∗





p
∑

j=1

f⊤θ∗{M+(ξ, θ∗)}.j

∫

X
{fθ∗}j(x) φ(x) ξ(dx)



 = Aθ∗ [Pθ∗φ]

= Aθ̄[Pθ̄φ] = 〈u⊤(θ̄)fθ̄, φ〉ξ

so that u⊤(θ∗)fθ∗

ξ
= u⊤(θ̄)fθ̄.

Let (θ̂N (yN ))N be a sequence of solutions of (1.15) and (θ̂Nt)t be a sub-

sequence converging to a limit point θ# = θ#(y)
ξ∼ θ̄, see Theorem 1. By the

Taylor formula we have

0 =
∂JNt

(θ, yNt)

∂θ |θ̂Nt

=
∂JNt

(θ, yNt)

∂θ |θ#
+

[

∂2JNt
(θ, yNt)

∂θ∂θ⊤

]

βt

(θ̂Nt − θ#) , (1.19)

where βt = βt(y) lies on the segment joining θ̂Nt with θ#(y). (Notice that
limt→∞ βt(y) = θ#(y) a.s.) Now,

−
√

Nt u
⊤(θ#)

[

∂JNt
(θ, yNt)

∂θ

]

θ#

=

2√
Nt

Nt
∑

i=1

u⊤(θ#)

[

∂η(xi, θ)

∂θ

]

θ#

[

y(xi) − η(xi, θ
#)

]

. (1.20)

Consider first the case where (xi)i converges strongly to a discrete design
in the sense of Definition 1. We decompose the sum on the right-hand side of
(1.20) into two sums: the first one corresponds to indices i such that xi /∈ Sξ,
the support of ξ, the second one is for xi ∈ Sξ. The first sum then tends to zero
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in probability. For the second, we use (1.18) and the fact that η[xi, θ
#(y)] =

η(xi, θ̄) for xi ∈ Sξ to obtain

2√
Nt

Nt
∑

i=1, xi∈Sξ

u⊤(θ̄) fθ̄(xi) εi ,

which, by the central limit theorem, converges in distribution to N (0, 4D)
with

D = σ2 u⊤(θ̄)M(ξ, θ̄)u(θ̄) . (1.21)

Consider alternatively the case of a randomized design in the sense of
Definition 2. For almost every sequence of errors ε1, ε2 . . . we have

ξ({x : η(x, θ̄) = η[x, θ#(y)]}) = 1 ,

see Theorem 1, and

ξ
({

x : u⊤[θ#(y)]fθ#(y)(x) = u⊤(θ̄)fθ̄(x)
})

= 1 ,

see (1.18). Hence (1.20) implies that for each t

−
√

Nt u
⊤(θ#)

[

∂JNt
(θ, yNt)

∂θ

]

θ#

=
2√
Nt

Nt
∑

i=1

u⊤(θ̄) fθ̄(xi) εi , ξ-a.s.

From the independence of xi and εi, IE{εi} = 0 and Var{εi} = σ2 we obtain,
again by the central limit theorem, that the last sum converges in distribution
to a variable distributed N (0, 4D).

Therefore, for both types of designs we have

−
√

Nt u
⊤(θ#)

[

∂JNt
(θ, yNt)

∂θ

]

θ#

d→ ν ∼ N (0, 4D) , t → ∞ , (1.22)

with D given by (1.21).
Moreover, Lemmas 1 and 2 imply that ∂2JNt

(θ, yNt)/∂θ∂θ⊤ converges a.s.
and uniformly in θ to

−2

∫

X

[

η(x, θ̄) − η(x, θ)
] ∂2η(x, θ)

∂θ∂θ⊤
ξ(dx) + 2M(ξ, θ)

as t → ∞. Therefore, for both types of designs we have

u⊤(θ#)

[

∂2JNt
(θ, yNt)

∂θ∂θ⊤

]

βt(y)

a.s.→ 2u⊤(θ#)M(ξ, θ#)

= 2

[

∂h(θ)

∂θ⊤

]

θ#

, t → ∞ .

Hence from (1.19) and (1.22) we obtain
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2
√

Nt

[

∂h(θ)

∂θ⊤

]

θ#

(θ̂Nt − θ#)
d→ ν ∼ N (0, 4D) , t → ∞ . (1.23)

Applying the Taylor formula again, we obtain

√

Nt

[

h(θ̂Nt) − h(θ̄)
]

=
√

Nt

[

h(θ̂Nt) − h(θ#)
]

=
√

Nt

[

∂h(θ)

∂θ⊤

]

δt(y)

(θ̂Nt − θ#) , t → ∞ ,

where δt(y) is on the segment connecting θ̂Nt with θ#, hence δt(y)
a.s.→ θ# and

[

∂h(θ)/∂θ⊤
]

δt(y)

a.s.→
[

∂h(θ)/∂θ⊤
]

θ# , t → ∞. Finally, we obtain from (1.23)

√

Nt

[

h(θ̂Nt) − h(θ̄)
]

d→ ν

2
∼ N (0, D) , t → ∞ ,

and, according to (1.17), [∂h(θ)/∂θ]θ̄ is in the range of M(ξ, θ̄), which gives

D = σ2 u⊤(θ̄)M(ξ, θ̄)u(θ̄) = σ2

[

∂h(θ)

∂θ⊤
M−(ξ, θ)

∂h(θ)

∂θ

]

θ̄

for any choice of the g-inverse M−(ξ, θ̄).

1.6 Estimation of a multidimensional function H(θ)

Let H(θ) = [h1(θ), . . . , hq(θ)]
⊤

be a q-dimensional function defined on Θ. We
shall assume the following.

Assumption A2∗: The functions hi(θ) are continuous in Θ, i = 1, . . . , q,
and such that

θ
ξ∼ θ̄ ⇒ H(θ) = H(θ̄) .

We then have the following straightforward extension of Theorem 2.

Theorem 4. Under the assumptions of Theorem 2, but with A2∗ replacing
A2, we have

lim
N→∞

H[θ̂N (yN )] = H(θ̄) a.s.

for (θ̂N (yN ))N any sequence defined by (1.15).

Consider now the following assumption; its substitution for A6 in Theorem
3 gives Theorem 5 below.

Assumption A6∗: The vector function H(θ) has a continuous Jacobian

∂H(θ)/∂θ⊤ on Θ0. Moreover, for each θ
ξ∼ θ̄ there exists a continuous linear

mapping Bθ from L2(ξ) to R
q such that Bθ = Bθ̄ and that
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∂H(θ)

∂θi
= Bθ [{fθ}i] , i = 1, . . . , p ,

where {fθ}i is given by (1.16).

Theorem 5. Under the assumptions of Theorem 3, but with A2∗ and A6∗

replacing A2 and A6, for (θ̂N (yN ))N a sequence of solutions of (1.15),√
N

{

H[θ̂N (yN )] − H(θ̄)
}

converges in distribution as N → ∞ to a random

vector distributed normally

N
(

0, σ2

[

∂H(θ)

∂θ⊤
M−(ξ, θ)

∂H⊤(θ)

∂θ

]

θ̄

)

where the choice of the g-inverse is arbitrary.

Proof. Take any c ∈ R
q, and define hc(θ) = c⊤H(θ). Evidently hc(θ) satisfies

the assumptions of Theorem 3, and
√

N
{

hc[θ̂
N (yN )] − hc(θ̄)

}

converges in

distribution as N → ∞ to a random variable distributed

N
(

0, σ2 c⊤
[

∂H(θ)

∂θ⊤
M−(ξ, θ)

∂H⊤(θ)

∂θ

]

θ̄

c

)

.

Appendix. Proofs of Lemmas 1-3

Proof of Lemma 1. We can write
∣

∣

∣

∣

∣

∣

1

N

N
∑

k=1

a(xk, θ)αk − IE{α1}
∑

x∈Sξ

a(x, θ) ξ({x})

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

k=1, xk /∈Sξ

a(xk, θ)αk

∣

∣

∣

∣

∣

∣

+
∑

x∈Sξ

sup
θ∈Θ

|a(x, θ)|

∣

∣

∣

∣

∣

∣

N(x)

N





1

N(x)

N
∑

k=1, xk=x

αk



 − IE{α1} ξ({x})

∣

∣

∣

∣

∣

∣

,

where N(x)/N is the relative frequency of the point x in the sequence
x1, x2, . . . , xN . The last sum for x ∈ Sξ tends to zero a.s. and uniformly

on Θ, since N(x)/N tends to ξ({x}), and [1/N(x)]
∑N

k=1, xk=x αk converges
a.s. to IE{α1}. The first sum on the right-hand side is bounded by

sup
x∈X , θ∈Θ

|a(x, θ)| N(X \ Sξ)

N

1

N(X \ Sξ)

∑

k=1, xk∈X\Sξ

αk .
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This expression tends a.s. to zero, since N(X \ Sξ)/N tends to zero, and the
law of large numbers applies for the remaining part in case N(X \ Sξ) → ∞.

Proof of Lemma 2. We use a construction similar to that in (Bierens, 1994,
p. 43). Take some fixed θ1 ∈ Θ and consider the set

B(θ1, δ) =
{

θ ∈ Θ :
∥

∥θ − θ1
∥

∥ ≤ δ
}

.

Define āδ(z) and aδ(z) as the maximum and the minimum of a(z, θ) over the
set B(θ1, δ).

The expectations IE{|aδ(z)|} and IE{|āδ(z)|} are bounded by

IE{max
θ∈Θ

|a(z, θ)|} < ∞ .

Also, āδ(z) − aδ(z) is an increasing function of δ. Hence, we can interchange
the order of the limit and expectation in the following expression

lim
δց0

[IE{āδ(z)} − IE{aδ(z)}] = IE

{

lim
δց0

[āδ(z) − aδ(z)]

}

= 0 ,

which proves the continuity of IE{a(z, θ)} at θ1 and implies

∀β > 0 , ∃δ(β) > 0 such that
∣

∣

∣
IE{āδ(β)(z)} − IE{aδ(β)(z)}

∣

∣

∣
<

β

2
.

Hence we can write for every θ ∈ B(θ1, δ(β))

1

N

∑

k

aδ(β)(zk) − IE{aδ(β)(z)} − β

2
≤ 1

N

∑

k

aδ(β)(zk) − IE{āδ(β)(z)}

≤ 1

N

∑

k

a(zk, θ) − IE{a(z, θ)}

≤ 1

N

∑

k

āδ(β)(zk) − IE{aδ(β)(z)}

≤ 1

N

∑

k

āδ(β)(zk) − IE{āδ(β)(z)} +
β

2
.

From the strong law of large numbers, we have that ∀γ > 0, ∃N1(β, γ) such
that

Prob

{

∀N > N1(β, γ) ,

∣

∣

∣

∣

∣

1

N

∑

k

āδ(β)(zk) − IE{āδ(β)(z)}
∣

∣

∣

∣

∣

<
β

2

}

> 1 − γ

2
,

Prob

{

∀N > N1(β, γ) ,

∣

∣

∣

∣

∣

1

N

∑

k

aδ(β)(zk) − IE{aδ(β)(z)}
∣

∣

∣

∣

∣

<
β

2

}

> 1 − γ

2
.
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Combining with previous inequalities, we obtain

Prob

{

∀N > N1(β, γ) , max
θ∈B(θ1,δ(β))

∣

∣

∣

∣

∣

1

N

∑

k

a(zk, θ) − IE{a(z, θ)}
∣

∣

∣

∣

∣

< β

}

> 1 − γ .

It only remains to cover Θ with a finite numbers of sets B(θi, δ(β)), i =
1, . . . , n(β), which is always possible from the compactness assumption. For
any α > 0, β > 0, take γ = α/n(β), N(β) = maxi Ni(β, γ). We obtain

Prob

{

∀N > N(β) , max
θ∈Θ

∣

∣

∣

∣

∣

1

N

∑

k

a(zk, θ) − IE{a(z, θ)}
∣

∣

∣

∣

∣

< β

}

> 1 − α ,

which completes the proof.

Proof of Lemma 3. Since Pθ is the orthogonal projector onto Lθ it is sufficient

to prove that ᾱ
ξ∼ θ̄ implies that any element of Lᾱ is in Lθ̄.

From {fθ̄}1, . . . , {fθ̄}p we choose r functions that form a linear basis of Lθ̄.
Without any loss of generality we can suppose that they are the first r ones.
Decompose θ into θ = (β, γ), where β corresponds to the first r components
of θ and γ to the p − r remaining ones. Define similarly θ̄ = (β̄, γ̄). From A4,
the components of ∂η[x, (β, γ)]/∂γ are linear combinations of components of
∂η[x, (β, γ)]/∂β not only for θ = θ̄ but also for θ in some neighborhood of θ̄.

Define the following mapping G from R
r+p to R

r by

G(β, α) =

∫

X

∂η[x, (β, γ̄)]

∂β
{η[x, (β, γ̄)] − η(x, α)} ξ(dx) .

From ᾱ
ξ∼ θ̄ we obtain G(β̄, ᾱ) = 0. The matrix

∂G(β, α)

∂β⊤
|β̄,ᾱ

=

∫

X

∂η[x, (β, γ̄)]

∂β |β̄

∂η[x, (β, γ̄)]

∂β⊤
|β̄

ξ(dx)

is a nonsingular r × r submatrix of M(ξ, θ̄), with rank[M(ξ, θ)] = r for θ in
a neighborhood of θ̄. From the Implicit Function Theorem, see Spivak (1965,
Th. 2-12, p. 41), there exist neighborhoods V(ᾱ), W(β̄) and a differentiable
mapping ψ : V(ᾱ) → W(β̄) such that ψ(ᾱ) = β̄ and that α ∈ V(ᾱ) implies
G[ψ(α), α] = 0. It follows that

∂

∂β

∫

X
{η[x, (β, γ̄)] − η(x, α)}2

β=ψ(α) ξ(dx) (1.24)

= 2

∫

X

[

∂η[x, (β, γ̄)]

∂β

]

β=ψ(α)

{η[x, (ψ(α), γ̄)] − η(x, α)} ξ(dx) = 0 .

Since the components of ∂η[x, (β, γ)]/∂γ are linear combinations of the com-
ponents of ∂η[x, (β, γ)]/∂β for any θ = (β, γ) in some neighborhood of θ̄, we
obtain from (1.24)
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∂

∂γ

∫

X
{η[x, (β, γ)] − η(x, α)}2

β=ψ(α),γ=γ̄ ξ(dx) =

2

∫

X

[

∂η[x, (β, γ)]

∂γ

]

β=ψ(α),γ=γ̄

{η[x, (ψ(α), γ̄)] − η(x, α)} ξ(dx) = 0 .

Combining with (1.24) we obtain that

{

∂

∂θ

∫

X
[η(x, θ) − η(x, α)]2 ξ(dx)

}

θ=[ψ(α),γ̄]

= 0

for all α belonging to some neighborhood U(ᾱ). We can make U(ᾱ) small

enough to satisfy the inequality
∥

∥η[x, (ψ(α), γ̄)] − η(x, θ̄)
∥

∥

2

ξ
< ǫ required in

A5. It follows that (ψ(α), γ̄)
ξ∼ α, that is, η(·, α)

ξ
= η[·, (ψ(α), γ̄)] for all α in

a neighborhood of ᾱ. By taking derivatives we then obtain

[

∂η(·, α)

∂α⊤

]

ᾱ

ξ
=

[

∂η[·, (ψ(α), γ̄)]

∂α⊤

]

ᾱ

ξ
=

[

∂η[·, (β, γ̄)]

∂β⊤

]

(ψ(ᾱ),γ̄)

[

∂ψ(α)

∂α⊤

]

ᾱ

,

that is, Lᾱ

ξ
⊂ L(ψ(ᾱ),γ̄) = Lθ̄.

By interchanging ᾱ with θ̄ we obtain Lθ̄

ξ
⊂ Lᾱ.
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