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GENERATING PAIRS OF 2-BRIDGE KNOT GROUPS

MICHAEL HEUSENER AND RICHARD WEIDMANN

Abstract. We study Nielsen equivalence classes of generating
pairs of Kleinian groups and HNN-extensions. We establish the
following facts:
(1) Hyperbolic 2-bridge knot groups have infinitely many Nielsen

classes of generating pairs.
(2) For any n ∈ N there is a closed hyperbolic 3-manifold whose

fundamental group has n distinct Nielsen classes of generat-
ing pairs.

(3) Two pairs of elements of a fundamental group of an HNN-
extension are Nielsen equivalent iff they are so for the obvious
reasons.

Introduction

The main purpose of this note is to study Nielsen equivalence classes
of generating pairs of fundamental groups of hyperbolic 2-bridge knot
spaces and of closed hyperbolic 3-manifolds obtained from those spaces
by Dehn fillings.

It is a result of Delzant (following Gromov) [D] that any torsion-free
hyperbolic group has only finitely many Nielsen classes of generating
pairs. In the case of closed hyperbolic 3-manifolds Delzant’s proof
actually provides an explicit upper bound for this number in terms of
the injectivity radius as observed by Agol, see [Sou1] for an account of
Agol’s ideas. The finiteness of Nielsen classes of generating tuples of
fundamental groups of closed hyperbolic 3-manifolds of arbitrary size
was established in [KW].

The examples constructed in this article show that this finiteness
fails for cusped hyperbolic 3-manifolds. We establish the following:

Theorem 0.1. Let k be a hyperbolic 2-bridge knot with knot exterior

M . Then π1(M) has infinitely many Nielsen classes of generating

pairs.

We further show that there is no uniform bound on the number
of Nielsen classes of generating pairs of fundamental groups of closed
hyperbolic 3-manifolds if the assumption on the injectivity radius is
dropped. The constructed manifolds are obtained from hyperbolic 2-
bridge knot complements by increasingly complicated Dehn fillings.

Date: July 29, 2009.
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Theorem 0.2. For any n there exists a closed hyperbolic 3-manifold

M such that π1(M) has at least n distinct Nielsen classes of generating

pairs.

The non-uniqueness of Nielsen classes of generating tuples of funda-
mental groups of hyperbolic 3-manifolds is not new. It is an immediate
consequence of the work of Lustig and Moriah [LM] that there exist
closed hyperbolic 3-manifolds whose fundamental groups are of rank r
and have at least 2r − 2 Nielsen classes of generating r -tuples. Note
that while the distinct Nielsen classes exhibited by Lustig and Mo-
riah are geometric and therefore correspond to non-isotopic Heegaard
splittings this is not true in the current setting. Indeed by Kobayshi’s
work [Ko] it is known that 2-bridge knot exteriors admit at most 6
isotopy classes of Heegaard splittings of genus 2, thus almost all of the
generating pairs exhibited in this note are non-geometric.

The proofs rely on some simple facts about Nielsen equivalence of
generating pairs due to Nielsen and in the case of Theorem 0.1 some
basic hyperbolic geometry. For the proof of Theorem 0.2 we further
exploit the geometric convergence of manifolds obtained by increasingly
complicated Dehn surgery on a 2-bridge knot to the hyperbolic knot
complement.

After discussing some basic material on Nielsen equivalences of gen-
erating pairs we first prove a simple theorem about generating pairs of
HNN-extensions. The argument in this case is easier but similar to the
argument needed in the proofs of the two theorems discussed above.
We will then establish a simple fact about about piecewise geodesics in
hyperbolic space before we proceed with the proof of the main theorem.

The authors would like to thank Yoav Moriah for his useful comments
and Makoto Sakuma for a stimulating discussion.

1. Nielsen equivalence of pairs of elements

Let G be a group and T = (g1, . . . , gk) and T ′ = (h1, . . . , hk) be
two k -tuples of elements of G. We say that T and T ′ are elementarily

equivalent if one of the following holds:

(1) hi = gσ(i) for 1 ≤ i ≤ k and some σ ∈ Sk .

(2) hi = g−1
i for some i ∈ {1, . . . , k} and hj = gj for j 6= i.

(3) hi = gig
ε
j for some i 6= j with ε ∈ {−1, 1} and hl = gl for

l 6= i.

Two tuples are further called Nielsen equivalent if one can be trans-
formed into the other by a finite sequence of elementary equivalences.
Note that the elementary equivalences are also called Nielsen transfor-

mations or Nielsen moves.
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The fact that Aut Fn is generated by so-called elementary Nielsen
automorphisms implies that the above definition of Nielsen equivalence
can be rephrased in the following way.

Let Fk = F (x1, . . . , xk) be the free group of rank k . Then two k -
tuples T = (g1, . . . , gk) and T ′ = (h1, . . . , hk) are Nielsen equivalent
iff there exists a homomorphism φ : Fk → G and an automorphism α
of Fk such that the following hold:

(1) gi = φ(xi) for 1 ≤ i ≤ k .
(2) hi = φ ◦ α(xi) for 1 ≤ i ≤ k .

Deciding Nielsen equivalence of two tuples or classifying all Nielsen
equivalence classes is usually a very difficult problem and undecidable
in general. However in the case of pairs of elements the situation tends
to be much easier. The reason is that the automorphism group of F2

and the structure of primitive elements in F2 are particularly easy to
understand.

Nielsen [N] observed that any automorphism of F (a, b) preserves the
commutator [a, b] = aba−1b−1 up to conjugation and inversion. This
is easily verified by checking that it holds for the elementary Nielsen
automorphisms. As a consequence we get the following simple and
much used test for Nielsen equivalence of pairs of elements.

Proposition 1.1. Let G be a group and (x, y) and (x′, y′) be two

pairs of elements. If (x, y) ∼ (x′, y′) then [x, y] is conjugate to [x′, y′]
or [x′, y′]−1 .

While convenient the above criterion is in general not sufficient to
distinguish all Nielsen classes. Another useful fact in distinguishing
Nielsen classes of pairs is that primitive elements of F (a, b) are well
understood, in fact in [OZ] Osborne and Zieschang gave a complete
description of primitive elements of the free groups of rank 2; recall
that an element of a free group is called primitive if it is part of some
basis. The proof in [OZ] relies on the fact already observed by Nielsen
[N] that for any primitive element p in the abelianization of F (a, b)
there is a unique conjugacy class of primitive elements in F (a, b) that
is mapped to p.

An immediate consequence of their description is the proposition
below, see also [CMZ]. We give a proof of the weaker statement that
we need as we can without breaking a sweat, note that ε and η below
are simply the signs of the exponents of a and b in the abelianization
of g .

Proposition 1.2. Let g be a primitive element of F (a, b). Then there

exist ε, η ∈ {−1, 1} such that g is conjugate to an element represented

by a positive word in aε and bη .
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Proof. As the proof in [OZ] we rely on the fact that for any primitive
element z1a + z2b in the abelianization we have a unique conjugacy
class of primitive elements in F (a, b) that maps to z1a + z2b.

We assume that g maps to na+mb in the homology where n, m ≥ 0,
the other cases are analogous. We need to show that there exists a
primitive element that can be written as a positive word in a and b
that maps to na + mb.

Choose r, s ≥ 0 such that na + mb and ra + sb form a basis of the
homology. It is easily checked that we can transform this basis into the
basis a, b by only applying elementary Nielsen transformations of type
(1) and of type (3) with ε = −1 such that all intermediate elements
only have positive coefficients. We recover the original basis by running
the inverse transformation in inverse order, here all transformation are
of type (1) or of type (3) with ε = 1.

Now we can run the same sequence of inverse Nielsen transformations
in F (a, b) starting with a, b. We obtain a basis of F (a, b) whose first
element maps to na+nb in the homology. As no inverses are introduced
in this sequence of Nielsen transformations it follows that this first basis
element is a positive word in a and b and must be conjugate to g . This
proves the claim. �

As automorphisms of free groups map bases to bases and therefore
primitive elements to primitive elements this immediately implies the
following.

Corollary 1.3. Let G be a group and (x, y) and (x′, y′) be two pairs

of elements. If (x, y) ∼ (x′, y′) then x′ is conjugate to an element

represented by a positive word in xε and yη where ε, η ∈ {−1, 1}.

2. Generating pairs of HNN-extensions

In the following we assume that A is a graph of groups with under-
lying graph A. The vertex group of a vertex v is denoted by Av . It is
well know that any tuple that generates a non-free subgroup is Nielsen
equivalent to a tuple containing an elliptic element, i.e. an element con-
jugate to an element of one of the vertex groups, see [St], [Z], [PR] and
[W1] for various levels of generality. The tuple containing an elliptic
element can be obtained from the original one by a sequence of length
reducing Nielsen moves. If the underlying graph is not a tree, i.e. if
A has an HNN-component then it is not possible that all generators
are elliptic as they would all lie in the kernel of the projection to the
fundamental group of the underlying graph.

This justifies in the theorem below to only consider pairs of elements
(x, y) such that x is elliptic and y is hyperbolic. Recall that an element
of the fundamental group of a graph of groups A with respect to a base
point v0 is a homotopy class [p] of A-paths, were an A-path p is a
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sequence a0, e1, a1, . . . , ek, ak where e1, . . . , ek is a closed edge path in
A based at v0 , a0 ∈ Av0

and ai ∈ Aω(ei) for 1 ≤ i ≤ k , see [S] or
[KMW].

Theorem 2.1. Let A be a graph of groups whose underlying graph A
is not a tree. Let G = π1(A). Suppose that (x, y) and (x′, y′) are

generating pairs of G such that x and x′ are elliptic.

Then (x, y) ∼ (x′, y′) iff there exist g ∈ G, k ∈ Z and ε, η ∈ {−1, 1}
such that

x′ = gxεg−1 and y′ = gyηxkg−1.

Proof. Choose a basepoint v0 of A such that (after conjugation) x =
[a], i.e. that x is represented by the degenerate A-path a as an ele-
ment of π1(A, v0). Choose a reduced A-path γ = a0, e1, . . . , ek, ak that
represents y , i.e. that y = [γ] ∈ π1(A, v0).

To show that x′ = gxεg−1 holds note first that an elliptic element
cannot be represented by a (positive) word w in xε and yη for fixed
ε, η ∈ {−1, 1} and with at least one occurence of yη . To see this note
first that any such word is conjugate to a word of type

w = yηxn1ε · . . . · yηxnkε = [γη][an1ε] · . . . · [γη][ankε]

with ni ≥ 0 for 1 ≤ i ≤ k . If the element represented by w is elliptic
then the length of the reduced form of any positive power of w can be
at most as large as the length of a reduced form of w . This implies
that a power wm of w has a subword yηxniεyη = [γη][aniε][γη] such
that at least half of both occurences of γη is cancelled when reducing
wm .

This however implies that half of yηxniε cancels in (yηxniε)(yηxniε)
which implies that yηxniε is elliptic. This however is impossible as
(x, y) is Nielsen equivalent to (x, yηxniε) but π1(A) is not generated
by two elliptic elements as explained above.

Thus Corollary 1.3 implies that if (x, y) is Nielsen equivalent to
(x′, y′) with x′ elliptic then x′ is conjugate to a power of x, thus x′ is
conjugate to x or x−1 as proper powers are not primitive. The second
part is now immediate as any element g of F (a, b) such that {a, g}
forms a basis must be of type g = anbηam with n, m ∈ Z, η = ±1 and
anbηam is conjugate to bηam+n . �

3. Piecewise geodesics in hyperbolic space

In this section we introduce piecewise geodesics and establish some
basic properties needed later on. Throughout this section all paths are
paths in H3 .

A (N, α)-piecewise geodesic is a path that is composed of geodesic
segments [xi, xi+1] of length at least N such that the angle θi+1 ∈ [0, π]
between [xi, xi+1] and [xi+1, xi+2] at xi+1 is at least α .
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xi−1

xi
xi+1

xi+2

xi+3θi
θi+1

θi+2

Figure 1. A section of a piecewise geodesic

We will need the following basic fact about piecewise geodesics; as
its proof is entirely standard we merely sketch it. For definitions of
quasigeodesics and local quasigeodesics and their basic properties used
in the proof below the reader is referred to [CDP].

Lemma 3.1. For any ε > 0 there exist B > 0 and α ∈ [0, π) such

that any bi-infinite (B, α)-piecewise geodesic γ is ε-Hausdorff-close to

some geodesic β . Moreover γ is a quasigeodesic with the same ends

as β .

Proof. For any geodesic β and x ∈ H3 we denote the nearest point
projection of x to β by pβ(x).

Note first that for any η > 0 there exists some angle θ ∈ [0, π) such
that for any geodesic triangle ABC in H3 whose angle at A is greater
or equal to θ the sides AB and AC lie in the η -neighborhood of BC.
This is most easily seen in the Poincare disk model by choosing A to
be the center. As the angle at this vertex tends to π the opposite side
of the triangle comes arbitrarily close the center, independently of the
length of the sides of the triangle.

A
B

C

Figure 2. As the angle at A increases d(A, BC) decreases

If θ0 is chosen such that the above holds for η = min( ε
2
, 1

2
) then

it is immediate that any (B, α)-piecewise geodesic with α ≥ θ0 is
a (B, 1, 1)-local quasigeodesic. If moreover B0 is chosen sufficiently
large then the local-to-global phenomenon for quasigeodesics implies
that any (B, α)-piecewise geodesic with B ≥ B0 and α ≥ θ0 is a
(λ, c)-quasigeodesic for some fixed λ ≥ 1 and c ≥ 0.
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As quasigeodics stay within bounded distance of geodesics this im-
plies that any (B, α)-piecewise geodesic γ with B ≥ B0 and α ≥ θ0

stays within bounded distance of the geodesic β that has the same
ends in ∂H3 as γ . This bound C is uniform, i.e. it only depends on
B0 and θ0 .

Now observe that there exists B1 ≥ B0 such that for any (B, α)-
piecewise geodesic γ with B ≥ B1 and α ≥ θ0 the midpoints mi of the
segments [xi, xi+1] lie in the ε

2
-neighborhood of β . This is true as the

quadrilaterals spanned by xi , xi+1 , pβ(xi+1) and pβ(xi) can be assured
to be arbitrarily thin provided that the distance between xi and xi+1

is sufficently large. This is true as d(xi, pβ(xi)) and d(xi+1, pβ(xi+1))
are bounded from above by C , see Figure 3.

xi xi+1

pβ(xi+1)
mi

pβ(xi)

Figure 3. mi gets arbitrarily close to β as d(xi, xi+1) increases

Note further that the convexity of the distance function to the geo-
desic β then immediately implies that the geodesics [mi, mi+1] also lie
in the ε

2
-neigborhood of β for all i.

To conclude it clearly suffices to show that the piecewise geodesic
[mi, xi+1] ∪ [xi+1, mi+1] lies in the ε

2
-neighborhood of [mi, mi+1]. This

however is true by our choice of θ0 .
Thus we have shown that there exist B1 > 0 and θ0 ∈ [0, π) such

that any (B, α)-piecewise geodesic γ with B ≥ B1 and α ≥ θ0 is a
quasigeodesic that remains within distance ε of the geodesic with the
same ends. �

4. Hyperbolic knot complements as limits of closed

hyperbolic 3-manifolds

It is a deep insight of Thurston that a cusped finite volume hyper-
bolic 3-manifold M occurs as the geometric limit of closed hyperbolic
manifolds which are topologically obtained from M by Dehn fillings
along increasingly complicated slopes. For definitions and details con-
cerning algebraic and geometric convergence see [M, Capter 4] and
[MT98, Chapter 7].

Let now M be the complement of a hyperbolic knot k and let m
and l denote the meridian/longitude pair for k . Let ρ : π1(M) →
PSL(2, C) denote the holonomy of the complete hyperbolic structure.
The image of m and l are commuting parabolic elements and we can
assume that their common fixed point is ∞ i.e. Stab∞ = 〈ρ(m), ρ(l)〉
and that

ρ(m)(z) = z + 1 and ρ(l)(z) = z + τ0 .
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The complex number τ0 ∈ C \ R is called the cusp parameter of k .
The deformation space of hyperbolic structures on M can be holo-

morphically parametrised by a complex parameter u in a neighborhood
U of 0 ∈ C. Details about the deformation space and Thurston’s
hyperbolic Dehn filling theorem can be found in the Appendix B of
[BP01]. See also [Th, Chapter 5].

The following facts can be found in [BP01, B.1.2]: there is an analytic
family ρu , u ∈ U , of representations ρu : π1(M) → PSL(2, C) and
an analytic function v = v(u) such that u and v are the complex
translation length of ρu(m) and ρu(l) respectively and v(0) = 0. The
function τ(u) = v(u)/u is analytic and τ(u) = τ(0) + O(|u|2) where
τ(0) = τ0 is the cusp parameter. For u ∈ U the generalized Dehn filling

coefficient of the cusp is the defined to be the element of R2 ∪∞ ∼= S2

defined by
{

∞ if u = 0

(p, q) s.t. up + vq = 2πi if u 6= 0.

The representation ρ0 is the holonomy of the complete hyperbolic
structure of M . If u 6= 0 then the representation ρu is the holonomy
of a non complete hyperbolic structure Mu on M and the metric com-
pletiton of Mu is described by the Dehn filling parameters (see [BP01,
B.1]). We are only interested in the case that p and q are coprime
integers. Then ρu factors through π1(M(p/q)) and the metric com-
pletion of Mu is homeomorphic to M(p/q). Here and in the sequel
M(p/q) denotes the manifold obtained from M by Dehn filling along
the slope pm+ql . By Mostow-Prasad rigidity the faithful discrete rep-
resentations of π1(M) and π1(M(p/q)) in PSL(2, C) are unique up to
conjugation.

We are mainly interested in the manifolds Mn = M(1/n). By
Thurston’s Dehn filling theorem almost all of these manifolds carry
a hyperbolic structure and the hyperbolic manifold Mn contains a new
geodesic, the core of the filling solid torus, which is represented by l .

Now we let un denote the parameter satisfying un+nvn = 2πi where
vn = v(un). Then we have

(1) un =
2πi

1 + nτn
and vn =

2πiτn

1 + nτn

where τn = vn/un . Note that limn→∞ τn = τ(0) = τ0 . Then ρn := ρun

determines the holonomy of the complete hyperbolic strucure on Mn .
On the peripheral subgroup 〈m, l〉 of the knot k the representation is
given by:

ρn(m)(z) = eunz + 1 and ρn(l)(z) = evnz +
evn − 1

eun − 1
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(see [BP01, B.1]). By conjugation of ρn by the parabolic transforma-
tion An given by

An(z) = z +
τn

1 − evn

−
1

1 − eun

we can assume that ρn(m) = Wn and ρn(l) = Vn where

Wn(z) = eunz + τn
eun − 1

evn − 1
and Vn(z) = evnz + τn .

Note that An converges to A given by A(z) = z+(τ0−1)/2. Note also
that the Dehn Surgery Theorem (see [Th, Chapter 5] and [PePo]) im-
plies that the sequence of groups {ρn(π1(M))} converges geometrically
to ρ(π1(M)).

A simple calculation shows that

V k
n (z) = ekvnz +

ekvn − 1

evn − 1
τn

and hence V −n
n = Wn since un +nvn = 2πi and therefore e−nvn = eun .

Moreover the fixed points of the loxodromic transformation Vn are
∞ and τn/(1 − evn). The above facts allow us to conclude as in the
discussion in [M, 4.9] that the following hold:

(1) The elements ρn(l) are loxodromic isometries. The fixed points
of ρn(l) converge to the fixed point ∞ of the parabolic subgroup
P = ρ(π1(∂M)).

(2) ρn(l) converges uniformly on compact sets to ρ(l) and ρn(m) =
ρn(l)−n converges to ρ(m).

(3) Furthermore the sequence of subgroups 〈ρn(l)〉 generated by
the core of the filling solid torus converges geometrically to the
peripheral subgroup P .

In the sequel we shall use the following convention: we shall identify
π1(M) with the image ρ(π1(M)) ⊂ PSL(2, C) and for each g ∈ π1(M)
we write gn = ρn(g) for short. We shall denote by γn ⊂ Mn the new
geodesic i.e. the core of the filling solid torus.

The following proposition gives some more information about the
geometry of the limiting process. Note that the translation lengths of
an element g on some g -invariant subset Y of H3 is defined to be

|g|Y := inf
y∈Y

dH3(y, gy).

In particular the translation length of a parabolic element g on a g -
invariant horosphere S is measured with respect to the metric of H3

rather than the Euclidean path metric of H . We will need the following
lemma, see [Mey87, Sec. 9, Lemma 2]).

Lemma 4.1. Let g ∈ Isom(H3) be a hyperbolic isometry with complex

translation length a + ib and let Nr = Nr(Ag) be the r neighborhood
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of the axis of g . Then

cosh(|g|∂Nr
) = cosh(a) + sinh2(r)(cosh(a) − cos(b)) =

cosh(a) + sinh2(r)| cosh(a + ib) − 1|.

Note that the two formulae in Lemma 4.1 are equivalent via the
identity

(2) | cosh(a + ib) − 1| = cosh(a) − cos(b).

Proposition 4.2. For any horoball H at ∞ there exists a sequence

(rn)n∈N of real numbers such that the following hold where Nn :=
Nrn

(Aln) is the rn -neighborhood of the axis Aln of ln in H
3 .

(1) For any fixed k, N we have limn→∞

(

|lN−k·n
n |∂Nn

)

= |lNmk|∂H .

(2) If N ∈ N such that |lNmk|∂H > C > 0 for all k ∈ Z, then for

any η > 0 there exists some n′ such that |lN−k·n
n |∂Nn

≥ C − η
for all n ≥ n′ and all k ∈ Z.

Moreover if (gn) is a sequence of elements with gn ∈ ρn(π1(Mn))
that converges to a hyperbolic element g ∈ ρ(π1(M)) and C > 0 then

H can be chosen such that the following hold:

(a) For sufficiently large n we have d(Nn, hnNn) ≥ C for all hn 6∈
〈ln〉.

(b) For sufficiently large n the C -neighborhood of the geodesic seg-

ment [xn, yn] between Nn and gnNn does not intersect any

translates of Nn except Nn and gnNn .

Proof. Let H = {(x, t) ∈ C×R = H3 | t ≥ t0} be the upper half space
model of the hyperbolic space. For a complex number z we will denote
by ℜ(z) and ℑ(z) the real and the imaginary part of z .

The translation length |l|∂H is given by

(3) cosh(|l|∂H) = 1 +
|τ0|

2

2t20
.

We now define rn := 0 if |ℜ(vn)| ≥ |l|∂H . If |ℜ(vn)| < |l|∂H then we
define rn to be the unique positive real number satisfying

(4) sinh2(rn) =
cosh(|l|∂H) − cosh(ℜ(vn))

| cosh(vn) − 1|
.

This definition implies that |ln|∂Nn
= |l|∂H if |ℜ(vn)| < |l|∂H . In-

deed this follows from Lemma 4.1 and the fact that vn is the complex
translation length of ln .

Fix now N and k . The complex tanslation length of lN−kn
n is (N −

kn)vn and the equation un + nvn = 2πi implies

(N − kn)vn ≡ Nvn + kun mod 2πi .

Hence, by Lemma 4.1, the translation length |lN−kn
n |∂Nn

is given by
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cosh(|lN−kn
n |∂Nn

) = cosh(ℜ(Nvn + kun))(5)

+ sinh2(rn) · | cosh(Nvn + kun) − 1| .

Now it follows from the low order asymptotics of the hyperbolic
cosine and its Taylor expansion that

| cosh(Nvn + kun) − 1|

| cosh(vn) − 1|
=

|Nτn + k|2

|τn|2
(

1 + O(|vn|
2)

)

.

Moreover equation (4) implies

lim
n→∞

| cosh(vn) − 1| · sinh2(rn) = cosh(|l|∂H) − 1 .

The last two equations together with equation (5) imply:

lim
n→∞

cosh(|lN−kn
n |∂Nn

) = cosh(ℜ(Nvn + kun))

+ sinh2(rn) · | cosh(vn) − 1|
| cosh(Nvn + kun) − 1|

| cosh(vn) − 1|

n→∞
−→ 1 + (cosh(|l|∂H) − 1)

|Nτ0 + k|2

|τ0|2

= 1 +
|Nτ0 + k|2

2t20

= cosh(|lNmk|∂H) .

This proves the first point.
In order to prove the second point we will make use of the following

limits

(6) lim
n→∞

|ℜ(vn)|

|vn|
= 0 and lim

n→∞

|ℜ(un)|

|vn|
=

|ℑ(τ0)|

|τ0|2
> 0 .

and

(7) lim
n→∞

|vn| cosh(rn) =
|τ0|

t0

The first two follow easily from (1) to verify the second one observe
first that (4), the identity sinh2(z) = cosh2(z) − 1 and multiplication
by |vn|

2 imply that

|vn|
2 cosh2(rn) = |vn|

2 cosh(|l|∂H) − cosh(ℜ(vn)) + | cosh(vn) − 1|

| cosh(vn) − 1|

applying (2) and (3) then gives

|vn|
2 cosh2(rn) = |vn|

2 cosh(|l|∂H) − cos(ℑ(vn))

| cosh(vn) − 1|

= |vn|
2
1 + |τ0|2

2t2
0

− cos(ℑ(vn))

| cosh(vn) − 1|
.
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Now as lim
z→0

|z|2

| cosh2(z)−1|
= 2 this implies that lim

n→∞
|vn|

2 cosh2(rn) =

|τ0|2

t2
0

which clearly proves the claim.

Suppose now that N ∈ N satisfies |lNmk|∂H > C > 0 for all k ∈ Z

and let η > 0 be given. We choose n′′ = n′′(N, C) such that for all
n ≥ n′′ the following holds:

∣

∣

∣

∣

N
ℜ(vn)

|vn|

∣

∣

∣

∣

< 1, |vn| · cosh(rn) ≥
|τ0|

2t0

and
|ℜ(un)|

|vn|
>

1

2

|ℑ(τ0)|

|τ0|2
.

In order to prove the second point we start again with formula (5):

cosh(|lN−kn
n |∂Nn

) = cosh
(

ℜ(Nvn + kun)
)

cosh2(rn)

− cos
(

ℑ(Nvn + kun)
)

sinh2(rn)

>
(

cosh(ℜ(Nvn + kun)) − 1
)

cosh2(rn)

≥
1

2

(

ℜ(Nvn + kun)
)2

cosh2(rn)

=
1

2

(

ℜ(N
vn

|vn|
+ k

un

|vn|
)
)2

(|vn| cosh(rn))2

and for n ≥ n′′ we obtain

cosh(|lN−kn
n |∂Nn

) >
|τ0|

2

8t20
·
∣

∣|k
ℜ(un)

|vn|
| − |N

ℜ(vn)

|vn|
|
∣

∣

2
.

Hence there exists a constant C ′ such that |k| ≥ C ′ implies

|lN−kn
n |∂Nn

≥ C .

Since there are only finitely many k ∈ Z such that |k| < C ′ it follows
from the first part of the proposition that we can find n′′′ such that for
all n ≥ n′′′ and all |k| < C ′ the equation

∣

∣lN−kn
n

∣

∣

∂Nn

≥ C − η

holds. The second point follows for n′ = max(n′′, n′′′).
In order to prove (a) and (b) we shall use some results of Meyerhoff.

By [Mey87, Sec. 3&9], we know that if we choose H such that ε = |l|∂H

is sufficiently small then the sets

Nn = Nrn
(Aln) = {p ∈ H

3 | dH3(p, ln(p)) ≤ ε}

have the property that hn(Nn) ∩ Nn = ∅ for all hn 6∈ 〈ln〉 .
By further reducing ε we can further assume that d(Nn, hnNn) ≥ C

for all hn 6∈ 〈ln〉 as the radii rn decrease uniformly as ε decreases as
follows from (4). This proves (a).

We now put H̃ = GH and Ñn = GnNn where G = ρ(π1(M)) and
Gn = ρn(π1(M)). It now follows from the geometric convergence of
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(Gn) to G that for all ε > 0 and compact K ⊂ H3 there exists n′

such that for all n ≥ n′

dH(K ∩ H̃, K ∩ Ñn) ≤ ε.

Here dH denotes the Hausdorff distance. Moreover for any h ∈ G we
have dH(K ∩ hH, K ∩ hnNn) ≤ ε.

Let [x, y] denote the geodesic segment between H and hH and let
[xn, yn] denote the geodesic segment between Nn and hnNn .

Note that there can be only finitely many translates hH , h ∈ π1(M),
h 6∈ P ∪ gP , such that the intersection of hH and the (C + 1)-
neighborhood of [x, y] is non-empty. This follows form the fact that
the (C + 1)-neighborhood of [x, y] is compact and that the translates
of H are disjoint. Thus after decreasing ε we can assume that the
(C + 1)-neighborhood of [x, y] does not intersect hH for h 6∈ P ∪ gP .

Let now K be the (C+1)-neighborhood of [x, y]. The above remark
applies to K . Hence we know that for sufficiently large n the Hausdorff
distances between H ∩ K and Nn ∩ K and between K ∩ gH and
K ∩gnNn are arbitrarily small. This implies that the segments [xn, yn]
converge to [x, y] thus dH([x, y], [xn, yn]) ≤ 1

2
for large n. We also see

that the (C + 1
2
)-neighborhood of [x, y] does not meet any translates

of Nn besides Nn and gnNn for large n. Thus we have shown that the
C -neighborhood of [xn, yn] does not meet any translates of Nn besides
Nn and gnNn . This proves (b). �

Lemma 4.3. For any β ∈ (0, π/2) there exist κ(β) and r(β) such

that if γ is a geodesic in H3 , r ≥ r(β) and x, y ∈ ∂(Nr(γ)) such that

d(x, y) ≥ κ(β) then the angles enclosed by [x, y] and ∂(Nr(γ)) are at

least β .

Proof. The proof of the lemma is by calculation, we follow the setup of
[GMM, Section 2]. We perform all calculations in the Klein hyperboloid
model of H3 . In this model, H3 is the hypersurface

{(x0, x1, x2, x3) ∈ R
4 | −x2

0 + x2
1 + x2

2 + x2
3 = −1}

We assume that γ is the intersection of H3 with the plane {x1 = x3 =
0} . Let g be the loxodromic motion along γ with complex length
δ + iφ . The isometry g is represented by the matrix

Mg :=









cosh(δ) 0 sinh(δ) 0
0 cos(φ) 0 − sin(φ)

sinh(δ) 0 cosh(δ) 0
0 sin(φ) 0 cos(φ)









.

We fix the point x = (cosh(r), sinh(r), 0, 0). Let −→n ∈ TxH3 be the
inward normal vector to ∂(Nr(γ)). Thus

−→n = (− sinh(r),− cosh(r), 0, 0).
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For every y ∈ H3 the unit vector −→my ∈ TxH3 pointing into the direction
of y is given by

−→my =
y + 〈y, x〉x

(〈y, x〉2 − 1)1/2
.

Here 〈x, y〉 denotes the Minkowski inner product. Denote by β(y),
0 ≤ β(y) ≤ π/2, the angle enclosed by [x, y] and ∂(Nr(γ)). We need
to show that β(y) is arbitrarily close to π/2 provided that r and d(x, y)
is sufficiently large.

Let now y = Mgx ∈ ∂Nr(γ) be the image of x under g . Elementary
calculations similar to those in [GMM, Section 2] show that

sin(β(y)) = cos(
π

2
− β(y)) = 〈−→my,

−→n 〉

=
cosh(r) sinh(r)

sinh(d(x, y))

(

cosh(δ) − cos(φ)
)

.

Moreover we have

cosh(d(x, y)) = cosh(δ) cosh2(r) − cos(φ) sinh2(r)

and hence

sin(β(y)) = tanh(r)
cosh(d(x, y))− cos(φ)

sinh(d(x, y))
.

For a fixed distance d = d(x, y) the angle β(y) becomes minimal if
φ = 0. Therefore

sin(β(y)) ≥ tanh(r)
cosh(d(x, y)) − 1

sinh(d(x, y))
= tanh(r) tanh

(

d(x, y)

2

)

.

Now let β , 0 < β < π/2, be given. We choose r(β) > 0 such
that sin(β) < sin(β) coth(r(β)) = q < 1 and κ(β) such that q =
tanh(κ(β)/2). Hence for r ≥ r(β) and for y ∈ ∂Nr such that d(x, y) ≥
κ(β) we obtain

sin(β(y)) ≥ tanh(r) tanh
(

d(x, y)/2
)

≥ tanh(r(β)) tanh
(

κ(β)/2
)

= sin(β) .

Therefore we have for all r ≥ r(β) and all y ∈ ∂Nr such that d(x, y) ≥
κ(β) that β(y) ≥ β . This proves the Lemma. �

5. Generating pairs of 2-bridge knot groups

In this section we prove that hyperbolic 2-bridge knot groups have
infinitely many Nielsen classes of generating pairs. Moreover we prove
that there exist closed hyperbolic 3-manifolds that have arbitrarily
many Nielsen classes of generating pairs. Those manifolds are obtained
by Dehn surgery on S3 at 2-bridge knots.

The infinity of Nielsen classes of generating pairs of fundamental
groups of Seifert fibered 2-bridge knot spaces has been known for a
long time. For the trefoil knot this is due to Dunwoody and Pietrowsky
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[DP] and the general case is due to Zieschang [Z2] who in fact gives a
complete classification of Nielsen classes of generating pairs.

Let M be the exterior of a hyperbolic 2-bridge knot k . Choose
m, l ∈ π1(M) such that m represents the meridian, that l represents
the longitude and that 〈m, l〉 ∼= Z

2 is a maximal peripheral subgroup.
Inspecting the Wirtinger presentation shows that 2-bridge knot groups
are generated by two meridional elements, i.e. that there exists some
g such that π1(M) = 〈m, gmg−1〉 .

As (glN) · m · (glN)−1 = g · lNml−N · g−1 = gmg−1 it follows that

P N := (m, glN)

is a generating pair for π1(M) for all N ∈ Z. As in Section 4 we put
Mn := M(1/n) and denote the image of an element h ∈ π1(M) in
π1(Mn) by hn . In particular P N

n = (mn, gnl
N
n ) is a generating pair of

π1(Mn) for all n ∈ N,

The following theorem is the main theorem of this article.

Theorem 5.1. There exists N0 ∈ N such that for any N, N ′ ≥ N0

there exists some n0 such that for n ≥ n0 the generating pairs P N
n and

P N ′

n of π1(Mn) are not Nielsen equivalent.

Note that for all n, N and N ′ the generating pairs P N
n and P N ′

n

have the same commutator as

[mn, gnl
N
n ] = mn · gnl

N
n · m−1

n · l−N
n g−1

n = mngnm
−1
n g−1

n = [mn, gn].

Thus we cannot apply Proposition 1.1 to distinguish the Nielsen equiv-
alence classes of P N

n and P N ′

n . We get the two results stated in the
introduction as immediate corollaries.

Corollary 5.2. For any n there exists a closed hyperbolic 3-manifold

M such that π1(M) has at least n distinct Nielsen classes of generating

pairs.

As further Nielsen-equivalent tuples cannot become non-equivalent
when passing to a factor group we also get the following.

Corollary 5.3. Let k be a hyperbolic 2-bridge knot with knot exterior

M . Then π1(M) has infinitely many Nielsen classes of generating

pairs.

We will prove two lemmas before giving the proof of Theorem 5.1.
We use the same notations as in Section 4.

Lemma 5.4. There exists N1 such that for any N ≥ N1 there exists

some n1 ∈ N such that for n ≥ n1 and ε, η ∈ {−1, 1} a positive word w
in mη

n and (gnl
N
n )ε represents an element that is in π1(Mn) conjugate

to m±1
n iff w = mη

n .
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Proof. Choose B ≥ 100 and α such that the conclusion of Lemma 3.1
is fulfilled for ε = 1

2
. Furthermore choose κ := κ(α − π/2) and r :=

r(α − π/2) as in Lemma 4.3.

Choose a horoball H at the fixed-point of 〈m, l〉 such that the con-
clusions (a) and (b) of Proposition 4.2 hold for C = B and the sequence
(gn). Thus there exist n̂ such that d(Nn, gnNn) ≥ B for n ≥ n̂ . Denote
the geodesic segment between H and gH by [x, y] and the segment
between Nn and gnNn by [xn, yn].

ynxn

Nn gnNn

g−1
n

yn
gnxn

Figure 4. The horoball approximation Nn and its
translate by gn

Choose t such that d(gnxn, yn) ≤ t for all n. Such t clearly exists
as the segments [xn, yn] converge to the segment [x, y] and gn to g .
Choose further N1 such that |lNmk|∂H ≥ B + t+κ+1 for all N ≥ N1

and k ∈ Z. Such N1 clearly exists as for any constant K there only
finitely many elements h ∈ 〈m, l〉 such that |h|∂H ≤ K .

Now fix N ≥ N1 . It now follows from Proposition 4.2 (2) (by
chosing η sufficiently small) that there exists some ñ ≥ n̂ such that
|lNn mk

n|∂Nn
≥ B + t + κ for all k ∈ Z and n ≥ ñ .

Now choose n1 ≥ ñ such that |mn|H3 < 1 and rn > r(α − π/2) for
all n ≥ n1 ; this is clearly possible as the element mn converges to the
parabolic element m and rn tends to infinity as n tends to infinity.
We need to show for n ≥ n1 and ε, η ∈ {−1, 1} a positive word w in
mη

n and (gnl
N
n )ε represents an element that is in π1(Mn) conjugate to

m±1
n if and only if w = mη

n .

We check the case that η = ε = 1, the other cases are analogous.
Thus either w is a power of mn in which case there is nothing to show
as a hyperbolic element is never conjugate to a proper power of itself
or w is (after a cyclic permutation) of type

(gnl
N
n )mb1

n · . . . · (gnl
N
n )mbr

n

with bi ≥ 0 for 1 ≤ i ≤ r . Thus w can be rewritten as a product

(gnp1) · . . . · (gnpr)

where pi = lNn mbi

n for 1 ≤ i ≤ r . By the above choices the translation
length of all pi on ∂Nn is at least B + t + κ.
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We now construct a w -invariant bi-infinite (B, α)-piecewise geodesic
γw containing xn . We first construct a (B, α)-piecewise geodesic γ0

from xn to wxn and put γi = wiγ0 . We then put

γw := . . . γ−2 · γ−1 · γ0 · γ1 · γ2 . . .

which clearly implies the w -invariance of γw . The fact that γw is also
a (B, α)-piecewise geodesic follows immediately from the construction.

For 1 ≤ i ≤ r put wi = (gnp1)·. . .·(gnpi), xi
n = wixn and yi

n = wiyn .
We then put

γ0 := [xn, yn] · [yn, x
1
n] · [x1

n, y1
n] · [y1

n, x
2
n] · . . .· [xr−1

n , yr−1
n ] · [yr−1

n , xr
n = wxn].

gnp1gnNn

y1
n

gnp1xn

x1
n

=

Nn

g−1
n

yn

xn

yn

gnxn gnNn

wNn

wxn
y2

n

x2
n

Figure 5. The piecewise geodesic γ0 for w = (gnp1)(gnp2)(gnp3)

Now xi
n ∈ ∂(wiNn) = wi∂Nn and yi

n ∈ ∂(wi+1Nn). The segments
[xi

n, y
i
n] are of length at least B by assumption and are perpendicular

to the respective translates of ∂Nn . Note further that the segments
[yi

n, xi+1
n ] are of length at least B + κ. Indeed this follows from the

triangle inequality and the fact that

d(wignxn, yi
n) = d(wignxn, wiyn) = d(gnxn, yn) ≤ t

and

d(xi+1
n , wignxn) = d(wi+1xn, wignxn) = d(wignpi+1xn, wignxn) =

= d(pi+1xn, xn) ≥ B + t + κ.

It follows from the choice of κ and Lemma 4.3 that the segments
[yi

n, xi+1
n ] enclose angles greater or equal than α − π/2 with the re-

spective translates of ∂Nn . This proves that γi and therefore γw is a
(B, α)-piecewise geodesic.

By Lemma 3.1 γw is a quasigeodesic that lies in the 1
2
-neighborhood

of the geodesic β that has the same ends. Clearly β is invariant under
the action of w , thus we must have β = Aw where Aw is the axis of w .

We argue that the translation length of w must be at least 198.
Recall that γ0 is a (B, α)-piecewise geodesic consisting of at least 2
segments of length at least B ≥ 100. As γ0 lies in the 1

2
-neighborhood
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of β it follows that each of the geodesic segment projects under pβ to
a geodesic segment of length at least 99. Thus

d(pβ(xn), pβ(wxn)) = d(pβ(xn), wpβ(xn)) ≥ 2 · 99 = 198.

Now d(pβ(xn), wpβ(xn)) is the translation length of w thus the claim
follows.

It follows that w cannot be conjugate to m±1
n as mn is assumed to

have translation length at most 1, the lemma is proven. �

Lemma 5.5. There exists N2 such that for all N 6= N ′ ≥ N2 there

exists n2 ∈ N such that for n ≥ n2 and k ∈ Z the elements gnlNn and

(gnlN
′+nk

n )ε are not conjugate in π1(Mn) for ε ∈ {±1}.

Proof. The proof is similar to the proof of Lemma 5.4. Choose the
constants B , α , κ, t, N1 , the segments [xn, yn] and the horoball H as
in the proof of Lemma 5.4 and put N2 := N1 . Choose N 6= N ′ ≥ N2 .
Now by choosing n2 > N + N ′ sufficiently large it follows as before
that

|lN+kn
n |∂Nn

, |lN
′+kn

n |∂Nn
≥ B + t + κ

for all n ≥ n2 and k ∈ Z. Put w1 = gnl
N
n and w2 = gnlN

′+nk
n , note

that w1 6= w2 as ln is of infinite order, N 6= N ′ and n > N +N ′ . Thus
we can construct the w1 -, w2 -, and w1w2 -invariant (B, α)-piecewise
geodesics γw1

, γw2
and γw1w2

with the same properties as before. Note
that by Theorem 4.2 (a) and (b) and as C = B ≥ 100 we can further
assume that the 1-neighborhoods of [xn, yn], Nn and gnNn do not
intersect any translate of Nn except Nn and gnNn . Note that the
existence of the piecewise geodesic γw1w2

on which w1w2 acts non-
trivially implies that w1w2 6= 1, i.e. that w1 6= w−1

2 .

Now the axes Aw1
and Aw2

are 1
2
-Hausdorff-close to γw1

and γw2
. As

the 1-neighborhoods of γwi
does not meet any translates of Nn except

the wk
i Nn this implies that the translates of Nn intersected by the 1

2
-

neighborhood Āwi
of Awi

are precisely the translates wk
i Nn for i = 1, 2.

Note that Nn and gnNn are intersected by both Āw1
and Āw2

. Now if
w1 and wε

2 are conjugate then there must exist some h ∈ π1(Mn) such
that wε

2 = hw1h
−1 which implies that hAw1

= Awε
2

= Aw2
; h must in

particular map the translates intersected by Āw1
to those intersected

by Āw2
.

After replacing h by hwl
1 for some l ∈ Z we can assume that h fixes

both Nn and gNn , indeed h cannot exchange Nn and gNn as it would
otherwise fix the midpoint of [xn, yn] and therefore be elliptic. Note
that this replacement does not alter the fact that wε

2 = hw1h
−1 . As

the intersection of the stabilizers of Nn and gnNn is trivial this implies
that h = 1 i.e. that w1 = wε

2 . This is clearly a contradiction, thus w1

and wε
2 are not conjugate. �

Proof of Theorem 5.1. Let N1, n1, N2, n2 be as Lemma 5.4 and Lem-
ma 5.5 and put N0 = max(N1, N2) and n0 = max(n1, n2). Let N 6=
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N ′ ≥ N0 . We show that P N
n and P N ′

n are not Nielsen equivalent in
π1(Mn) for n ≥ n0 . This clearly proves the theorem.

Suppose that P N
n and P N ′

n are Nielsen equivalent. Thus there ex-
ists a basis {b1(a, b), b2(a, b)} of F (a, b) such that mn = b1(mn, gnl

N ′

n )
and gnl

N
n = b2(mn, gnlN

′

n ). It now follows from Proposition 1.2 and
Lemma 5.4 that b1 is in F (a, b) conjugate to a, i.e. that b1(a, b) =
u(a, b)au(a, b)−1 .

It follows in particular that b2(a, b) = u(a, b)ak1bεak2u(a, b)−1 for
some k1, k2 ∈ Z and ε ∈ {±1} . Thus gnl

N
n = hmk1

n (gnlN
′

n )εmk2

n h−1

which implies that gnl
N
n is conjugate to (gnl

N ′

n )εmk1+k2

n which contra-
dicts Lemma 5.5. Thus P N

n and P N ′

n are not Nielsen equivalent in
π1(Mn). �
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