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In this paper, we give an explanation to the failure of two likelihood ratio procedures for testing about covariance matrices from Gaussian populations when the dimension is large compared to the sample size. Next, using recent central limit theorems for linear spectral statistics of sample covariance matrices and of random F-matrices, we propose necessary corrections for these LR tests to cope with high-dimensional effects. The asymptotic distributions of these corrected tests under the null are given. Simulations demonstrate that the corrected LR tests yield a realized size close to nominal level for both moderate p (around 20) and high dimension, while the traditional LR tests with χ 2 approximation fails.

Another contribution from the paper is that for testing the equality between two covariance matrices, the proposed correction applies equally for non-Gaussian populations yielding a valid pseudo-likelihood ratio test.

Introduction

The rapid development and wide application of computer techniques permits to collect and store a huge amount data, where the number of measured variables is usually large. Such high dimensional data occur in many modern scientific fields, such as micro-array data in biology, stock market analysis in finance and wireless communication networks. Traditional estimation or test tools are no more valid, or perform badly for such high-dimensional data, since they typically assume a large sample size n with respect to the number of variables p. A better approach in this high-dimensional data setting would be based on asymptotic theory which has both n and p approaching infinity.

To illustrate this purpose, let us mention the case of Hotelling's T 2 -test. The failure of T 2 -test for high-dimensional data has been mentioned as early as by [START_REF] Dempster | A high dimensional two sample significance test[END_REF]. As a remedy, Dempster proposed a so-called non-exact test. However, the theoretical justification of Dempster's test arises much later in [START_REF] Bai | Effect of high dimension comparison of significance tests for a high dimensional two sample problem[END_REF] inspired by modern random matrix theory (RMT). These authors have found necessary correction for the T 2 -test to compensate effects due to high dimension.

In this paper, we consider two LR tests concerning covariance matrices. We first give a theoretical explanation for the fail of these tests in high-dimensional data context. Next, with the aid of random matrix theory, we provide necessary corrections to these LR tests to cope with the high dimensional effects.

First, we consider the problem of one-sample covariance hypothesis test. Suppose that x follows a p-dimensional Gaussian distribution N (µ p , Σ p ) and we want to test

H 0 : Σ p = I p , (1.1) 
where I p denotes the p-dimensional identity matrix. Note that testing Σ p = A with an arbitrary covariance matrix A can always be reduced to the above null hypothesis by the transformation

A -1 2 x.
Let (x 1 , • • • , x n ) be a sample from x, where we assume p < n. The sample covariance matrix is

S = 1 n p i=1 (x i -x)(x i -x) * , (1.2)
and set

L * = trS -log |S| -p .
(1.

3)

The likelihood ratio test statistic is

T n = n • L * .
(1.4) Keeping p fixed while letting n → ∞, then the classical theory depicts that T n converges to the χ 2 1 2 p(p+1) distribution under H 0 .

However, as it will be shown, this classical approximation leads to a test size much higher than the nominal test level in the case of high-dimensional data, because T n approaches infinity for large p. As seen from Table 1 in §3, for dimension and sample sizes (p, n) = (50, 500), the realized size of the test is 22.5% instead of the nominal 5% level. The result is even worse for the case (p, n) = (300, 500), with a 100% test size.

Based on a recent CLT for linear spectral statistics (LSS) of large-dimensional sample covariance matrices [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF], we construct a corrected version of T n in §3. As shown by the simulation results of §3.1, the corrected test performs much better in case of high dimensions.

Moreover, it also performs correctly for moderate dimensions like p = 10 or 20. For dimension and sample sizes (p, n) cited above, the sizes of the corrected test are 5.9% and 5.2%, respectively, both close to the 5% nominal level.

The second test problem we consider is about the equality between two high-dimensional covariance matrices. Let

x i = (x 1i , x 2i , • • • , x pi ) T , i = 1, • • • , n 1 and y j = (y 1j , y 2j , • • • , y pj ) T , j = 1, • • • , n 2 be observations from two p-dimensional normal populations N (µ k , Σ k ), k = 1, 2,
respectively. We wish to test the null hypothesis

H 0 : Σ 1 = Σ 2 . (1.5)
The related sample covariance matrices are

A = 1 n 1 n1 i=1 (x i -x)(x i -x) * , B = 1 n 2 n2 i=1 (y i -y)(y i -y) * ,
where x , y are the respective sample means. Let

L 1 = |A| n 1 2 • |B| n 2 2 |c 1 A + c 2 B| N 2 , (1.6)
where

N = n 1 + n 2 and c k denote n k N , k = 1, 2.
The likelihood ratio test statistic is

T N = -2 log L 1 ,
and when n 1 , n 2 → ∞, we get

T N = -2 log L 1 ⇒ χ 2 1 2 p(p+1)
(1.7) under H 0 . Of cause, in this limit scheme, the data dimension p is held fixed. Based on recent CLT for linear spectral statistics of F -matrices from RMT, we propose a correction to this LR test in §4. Although this corrected test is constructed under the asymptotic scheme n 1 ∧ n 2 → +∞, y n1 = p/n 1 → y 1 ∈ (0, 1), y n2 = p/n 2 → y 2 ∈ (0, 1), simulations demonstrate an overall correct behavior including small or moderate dimensions p. For example, for the above cited dimension and sample sizes (p, n 1 , n 2 ), the sizes of the corrected test equal 5.6% and 5.2%, respectively, both close to the nominal 5% level.

Related works include [START_REF] Ledoit | Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size[END_REF], [START_REF] Srivastava | Some tests concerning the covariance matrix in high dimensional data[END_REF] and [START_REF] Schott | A test for the equality of covariance matrices when the dimension is large relative to the sample size[END_REF]. These authors propose several procedures in the high-dimensional setting for testing that i) a covariance matrix is an identity matrix, proportional to an identity matrix (spherecity) and is a diagonal matrix or ii) several covariance matrices are equal. These procedures have the following common feature: their construction involves some well-chosen distance function between the null and the alternative hypotheses and rely on the first two spectral moments, namely the statistics trS k and trS 2 k from sample covariance matrices S k . Therefore, the procedures proposed by these authors are different from the likelihood-based procedures we consider here. Another important difference concerns the Gaussian assumption on the random variables used in all these references. Actually, for testing the equality between two covariance matrices, the correction proposed in this paper applies equally for non-Gaussian and high-dimensional data leading to a valid pseudo-likelihood test.

The rest of the paper is organized as following. Preliminary and useful RMT results are recalled in §2. In §3 and §4, we introduce our results for the two tests above. Proofs and technical derivations are postponed to the last section.

Useful results from the random matrix theory

We first recall several results from RMT, which will be useful for our corrections to tests. For any

p × p square matrix M with real eigenvalues λ M i , F M n denotes the empirical spectral distribution (ESD) of M , that is, F M n (x) = 1 p p i=1 1 λ M i ≤x , x ∈ R.
We will consider random matrix M whose ESD F M n converges (in a sense to be precised ) to a limiting spectral distribution (LSD) F M . To make statistical inference about a parameter θ = f (x)dF M (x), it is natural to use the estimator

θ = f (x)dF M n (x) = 1 p p i=1 f (λ M i ),
which is a so-called linear spectral statistic (LSS) of the random matrix M .

CLT for LSS of a high-dimensional sample covariance matrix

Let {ξ ki ∈ C, i, k = 1, 2, • • • } be a double array of i.i.d. complex variables with mean 0 and variance

1. Set ξ i = (ξ 1i , ξ 2i , • • • , ξ pi ) T , the vectors (ξ 1 , • • • , ξ n )
is considered as an i.i.d sample from some pdimensional distribution with mean 0 p and covariance matrix I p . Therefore the sample covariance matrix is

S n = 1 n n i=1 ξ i ξ * i .
(2.1)

For 0 < θ ≤ 1, let a(θ) = (1 - √ θ) 2 and b(θ) = (1 + √ θ) 2 . The Marčenko-Pastur distribution
of index θ, denoted as F θ , is the distribution on [a(θ), b(θ)] with the following density function

g θ (x) = 1 2πθx [b(θ) -x][x -a(θ)], a(θ) ≤ x ≤ b(θ).
Let

y n = p n → y ∈ (0, 1)
and F y , F yn be the Marčenko-Pastur law of index y and y n , respectively. Let U be an open set of the complex plane, including [I (0,1) (y)a(y), b(y)], and A be the set of analytic functions f : U → C.

We consider the empirical process

G n := {G n (f )} indexed by A , G n (f ) = p • +∞ -∞ f (x) [F n -F yn ] (dx), f ∈ A, (2.2) 
where F n is the ESD of S n . The following theorem will play a fundamental role in next derivations, which is a specialization of a general theorem from [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] 

(G n (f 1 ), • • • , G n (f k ))
weakly converges to a k-dimensional Gaussian vector with mean vector,

m(f j ) = f j (a(y)) + f j (b(y)) 4 - 1 2π b(y) a(y) f j (x) 4y -(x -1 -y) 2 dx, j = 1, • • • , k, (2.3)
and covariance function

υ (f j , f ℓ ) = - 1 2π 2 f j (z 1 )f ℓ (z 2 ) (m(z 1 ) -m(z 2 )) 2 dm(z 1 )dm(z 2 ), j, ℓ ∈ {1, • • • , k} (2.4) where m(z) ≡ m F y (z) is the Stieltjes Transform of F y ≡ (1 -y)I [0,∞) + yF y . The contours in
(2.4) are non overlapping and both contain the support of F y .

(ii) Complex Case. Assume {ξ ij } are complex and Eξ 2 11 = 0 , E(|ξ 11 | 4 ) = 2. Then the conclusion of (i) also holds, except the mean vector is zero and the covariance function is half of the function given in (2.4).

It is worth noticing that Theorem 1.1 in [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] covers more general sample covariance matrices of form

S ′ n = T 1/2 n S n T 1/2 n
where (T n ) is a given sequence of positivedefinite Hermitian matrices. In the "white" case T n ≡ I as considered here, in a recent preprint [START_REF] Pastur | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF], the authors offer a new extension of the CLT where the constraints E|ξ 11 | 4 = 3 or 2, as stated above, are removed.

CLT for LSS of high-dimensional F matrix

Let

{ξ ki ∈ C, i, k = 1, 2, • • • } and {η kj ∈ C, j, k = 1, 2, • • • } are two independent double ar-
rays of i.i.d. complex variables with mean 0 and variance 1. Write

ξ i = (ξ 1i , ξ 2i , • • • , ξ pi ) T and η j = (η 1j , η 2j , • • • , η pj ) T . Also, for any positive integers n 1 , n 2 , the vectors (ξ 1 , • • • , ξ n1 ) and (η 1 , • • • , η n2
) can be thought as independent samples of size n 1 and n 2 , respectively, from some p-dimensional distributions. Let S 1 and S 2 be the associated sample covariance matrices, i.e.

S 1 = 1 n 1 n1 i=1 ξ i ξ * i and S 2 = 1 n 2 n2 j=1 η j η * j
Then, the following so-called F-matrix generalizes the classical Fisher-statistics for the present p-dimensional case,

V n = S 1 S -1 2 (2.5)
where n 2 > p. Here we use the notation n = (n 1 , n 2 ).

Let

y n1 = p n 1 → y 1 ∈ (0, 1), y n2 = p n 2 → y 2 ∈ (0, 1). (2.6)
Under suitable moment conditions, the ESD F Vn n of V n has a LSD F y1,y2 , which has a density [See P72 of [START_REF] Bai | Spectral analysis of large-dimensional random matrices[END_REF]], given by

ℓ(x) =          (1 -y 2 ) (b -x)(x -a) 2πx(y 1 + y 2 x) , a ≤ x ≤ b, 0, otherwise. 
(2.7)

where a = (1 -y 2 ) -2 (1 - √ y 1 + y 2 -y 1 y 2 ) 2 and b = (1 -y 2 ) -2 (1 + √ y 1 + y 2 -y 1 y 2 ) 2 .
Similar to previously, let U be an open set of the complex plane, including the interval

I (0,1) (y 1 ) (1 - √ y 1 ) 2 (1 + √ y 2 ) 2 , (1 + √ y 1 ) 2 (1 - √ y 2 ) 2 ,
and A be the set of analytic functions f : U → C. Define the empirical process

G n := { G n (f )} indexed by A G n (f ) = p • +∞ -∞ f (x) F Vn n -F yn 1 ,yn 2 (dx), f ∈ A. (2.8) Here F yn 1 ,yn 2 is the limiting distribution in (2.7) but with y n k instead of y k , k = 1, 2.
Recently, [START_REF] Zheng | Central Limit Theorem for Linear Spectral Statistics of Large Dimensional F Matrix[END_REF] establishes a general CLT for LSS of large-dimensional F matrix. The following theorem is a simplified one quoted from it, which will play an important role. andassume: For each p, (ξ ij1 ) and (η ij2 ) variables are i.i.d.,

Theorem 2.2. Let f 1 , • • • , f k ∈ A,
1 ≤ i ≤ p, 1 ≤ j 1 ≤ n 1 , 1 ≤ j 2 ≤ n 2 . Eξ 11 = Eη 11 = 0, E|ξ 11 | 4 = E|η 11 | 4 < ∞, y n1 = p n1 → y 1 ∈ (0, 1), y n2 = p n2 → y 2 ∈ (0, 1). Then (i) Real Case. Assume (ξ ij ) and (η ij ) are real, E|ξ 11 | 2 = E|η 11 | 2 = 1, then the random vector G n (f 1 ), • • • , G n (f k )
weakly converges to a k-dimensional Gaussian vector with the mean vector

m(f j ) = lim r→1+ [(2.9) + (2.10) + (2.11)] 1 4πi |ζ|=1 f j (z(ζ)) 1 ζ -1 r + 1 ζ + 1 r - 2 ζ + y2 hr dζ
(2.9)

+ β • y 1 (1 -y 2 ) 2 2πi • h 2 |ζ|=1 f j (z(ζ)) 1 (ζ + y2 hr ) 3 dζ (2.10) + β • y 2 (1 -y 2 ) 2πi • h |ζ|=1 f j (z(ζ)) ζ + 1 hr (ζ + y2 hr ) 3 dζ, j = 1, • • • , k, (2.11) where z(ζ) = (1 -y 2 ) -2 1 + h 2 + 2hR(ζ) , h = √ y 1 + y 2 -y 1 y 2 , β = E|ξ 11 | 4 -3, and the covariance function as 1 < r 1 < r 2 ↓ 1 υ(f j , f ℓ ) = lim 1<r1<r2→1+ [(2.12) + (2.13))] - 1 2π 2 |ζ2|=1 |ζ1|=1 f j (z(r 1 ζ 1 ))f ℓ (z(r 2 ζ 2 ))r 1 r 2 (r 2 ζ 2 -r 1 ζ 1 ) 2 dζ 1 dζ 2 , (2.12) - β • (y 1 + y 2 )(1 -y 2 ) 2 4π 2 h 2 |ζ1|=1 f j (z(ζ 1 )) (ζ 1 + y2 hr1 ) 2 dζ 1 |ζ2|=1 f ℓ (z(ζ 2 )) (ζ 2 + y2 hr2 ) 2 dζ 2 (2.13) j, ℓ ∈ {1, • • • , k}.
(ii) Complex Case. Assume (ξ ij ) and (η ij ) are complex, E(ξ 2 11 ) = E(η 2 11 ) = 0, then the conclusion of (i) also holds, except the means are lim r→1+ [(2.10) + (2.11)] and the covariance function is

lim 1<r1<r2→1+ 1 2 • (2.12) + (2.13) , where β = E|ξ 11 | 4 -2.
We should point out that Zheng's CLT for F -matrices covers more general situations then those cited in Theorem 2.2. In particular, the fourth-moments E|ξ 11 | 4 and E|η 11 | 4 can be different.

The following lemma will be used in §4 for an application of Theorem 2.2 to obtain the formula (4.5) and (4.6).

Lemma 2.1. For the function f

(x) = log(a + bx), x ∈ R, a, b > 0, let (c, d) be the unique solution to the equations          c 2 + d 2 = a(1 -y 2 ) 2 + b(1 + h 2 ), cd = bh, 0 < d < c.
Analogously, let γ, η be the constants similar to (c, d) but for the function g(x) = log(α+βx), α > 0, β > 0. Then, the mean and covariance functions in (2.9) and (2.12) equal to

m(f ) = 1 2 log (c 2 -d 2 )h 2 (ch -y 2 d) 2 , υ(f, g) = 2bhd -1 c -1 log cγ cγ -dη .
3. Testing the hypothesis that a high-dimensional covariance matrix is equal to a given matrix

To test the hypothesis H 0 : Σ p = I p , let be the sample covariance matrix S and likelihood ratio statistic T n as defined in (1.2) and (1.4), respectively. For

ξ i = x i -µ p , the array {ξ i } i=1,••• ,n contains p-dimensional standard normal variables under H 0 . Let S n = 1 n n i=1 ξ i ξ * i .
and

L * = trS n -log |S n | -p.
Theorem 3.1. Assuming that the conditions of Theorem 2.1 hold, L * is defined as (1.3) and g(x) = xlog x -1. Then, under H 0 and when n → ∞

T n = υ(g) -1 2 [L * -p • F yn (g) -m(g)] ⇒ N (0, 1) , (3.1)
where F yn is the Marčenko-Pastur law of index y n .

Proof. Because the difference between S and S n is a rank-1 matrix, S and S n have the same LSD.

So, L * and L * have the same asymptotic distribution. We also have

L * = trS n -log |S n | -p = p i=1 (λ sn i -log λ sn i -1) = p • (x -log x -1)dF n (x) = p • g(x)d (F n (x) -F yn (x)) + p • F yn (g), so that G n (g) = L * -p • F yn (g). (3.2)
By Theorem 2.1, G n (g) weakly converges to a Gaussian vector with the mean

m(g) = - log (1 -y) 2 (3.3)
and variance

υ(g) = -2 log (1 -y) -2y. (3.4)
for the real case, which are calculated in §5. For the complex case, the mean m(g) is zero and the variance is half of υ(g). Then, by (3.2) we arrive at

L * -p • F yn (g) ⇒ N (m(g), υ(g)) , (3.5) 
where

F yn (g) = 1 - y n -1 y n log (1 -y n ) (3.6)
can be calculated by the density of LSD of sample covariance matrix in §5. Because L * and L * have the same asymptotic distribution and (3.5), finally we get

T n = υ(g) -1 2 [L * -p • F yn (g) -m(g)] ⇒ N (0, 1) .

Simulation study I

For different values of (p, n), we compute the realized sizes of traditional likelihood ratio test (LRT)

and the corrected likelihood ratio test (CLRT) proposed previously. The nominal test level is set to be α = 0.05, and for each (p, n), we run 10,000 independent replications with real Gaussian variables. Results are given in Table 1 and Figure 1 below. As seen from Table 1, the traditional LRT always rejects H 0 when p is large, like p = 100 or 300, while the sizes produced by the corrected LRT perfectly matches the nominal level. For moderate dimensions like p = 50, the corrected LRT still performs correctly while the traditional LRT has a size much higher than 5%.

Testing the equality of two high-dimensional covariance matrices

Let (x i ), i = 1, • • • , n 1 and (y j ), j = 1, • • • , n 2 be observations from two normal populations

N (µ k , Σ k ), k = 1, 2
, respectively. We examine the test defined in (1.5) and (1.6). The aim is to find a good scaling of the LR statistic T N , such that the scaled statistic weakly converges to some limiting distribution. Let

ξ i = Σ -1 2 (x i -µ 1 ), η i = Σ -1 2 (y i -µ 2 )
where Σ = Σ 1 = Σ 2 denotes the common covariance matrix under H 0 . Note that in a strict sense, the vectors (x i ), (y i ) and the matrices Σ, Σ 1 , Σ 2 depend on p. However we do not signify this dependence in notations for ease of statements. Due to Gaussian assumption, the arrays

(ξ i ) i=1,••• ,n1 and (η j ) j=1,••• ,n2 contain i.i.d. N (0, 1)
variables, for which we can apply Theorem 2.2.

Let

S 1 = 1 n 1 n1 i=1 ξ i ξ * i = Σ -1 2 CΣ -1 2 S 2 = 1 n 2 n2 j=1 η j η * j = Σ -1 2 DΣ -1 2 ,
where

C = 1 n 1 n1 i=1 (x i -µ 1 )(x i -µ 1 ) * , D = 1 n 2 n2 j=1 (y j -µ 2 )(y j -µ 2 ) * .
Note that

V n = S 1 S -1
2 forms a random F-matrix and we have

L 1 = |S 1 | n 1 2 • |S 2 | n 2 2 |c 1 S 1 + c 2 S 2 | N 2 = |C| n 1 2 • |D| n 2 2 |c 1 C + c 2 D| N 2 . (4.1)
Theorem 4.1. Assuming that the conditions of Theorem 2.2 hold under H 0 , L 1 as defined in (1.6) and

f (x) = log(y n1 + y n2 x) - y n2 y n1 + y n2 log x -log(y n1 + y n2 ).
Then, under H 0 and as n 1 ∧ n 2 → ∞,

T N = υ(f ) -1 2 - 2 log L 1 N -p • F yn 1 ,yn 2 (f ) -m(f ) ⇒ N (0, 1) . (4.2)
Proof. As A -C and B -D are rank-1 random matrices, AB -1 and CD -1 have the same LSD.

Also by (4.1), L 1 and L 1 have the same asymptotic distribution. Because

- 2 N log L 1 = - 2 N log |S 1 | n 1 2 • |S 2 | n 2 2 |c 1 S 1 + c 2 S 2 | N 2 = log |c 1 V -1 n + c 2 | -c 1 • log |V -1 n | = p i=1 log(c 1 λ Vn i + c 2 ) -c 1 • log(λ Vn i ) = p • [log(c 1 x + c 2 ) -c 1 • log(x)] dF Vn n (x). Define f (x) = log(c 1 x + c 2 ) -c 1 • log(x), by c 1 = n1 N = yn 2 yn 1 +yn 2 and c 2 = n2 N = yn 1 yn 1 +yn 2
, also it can be written as

f (x) = log(y n1 + y n2 x) - y n2 y n1 + y n2 log x -log(y n1 + y n2 ). (4.3) From - 2 log L 1 N = p • f (x)dF Vn n (x) = p • f (x)d F Vn n (x) -F yn 1 ,yn 2 (x) + p • F yn 1 ,yn 2 (f ),
we get

G n (f ) = - 2 log L 1 N -p • F yn 1 ,yn 2 (f ). (4.4)
By Theorem 2.2, G n (f ) weakly converges to a Gaussian vector with mean

m(f ) = 1 2 log y 1 + y 2 -y 1 y 2 y 1 + y 2 - y 1 y 1 + y 2 log(1 -y 2 ) - y 2 y 1 + y 2 log(1 -y 1 ) (4.5)
and variance

υ(f ) = - 2y 2 2 (y 1 + y 2 ) 2 log(1 -y 1 ) - 2y 2 1 (y 1 + y 2 ) 2 log(1 -y 2 ) -2 log y 1 + y 2 y 1 + y 2 -y 1 y 2 (4.6)
for the real case, which are calculated by Lemma 2.1 in §5. For the complex case, the mean m(f ) is zero and the variance is half of υ(f ). In other words,

- 2 log L 1 N -p • F yn 1 ,yn 2 (f ) ⇒ N (m(f ), υ(f )) , (4.7) 
where

F yn 1 ,yn 2 (f ) = -(y n1 + y n2 -y n1 y n2 ) y n1 y n2 log (y n1 + y n2 -y n1 y n2 ) + (y n1 + y n2 -y n1 y n2 ) y n1 y n2 log (y n1 + y n2 ) + y n1 (1 -y n2 ) y n2 (y n1 + y n2 ) log (1 -y n2 ) + y n2 (1 -y n1 ) y n1 (y n1 + y n2 ) log (1 -y n1 ),
is derived by use of the density of F yn 1 ,yn 2 in §5. Because L 1 and L 1 have the same asymptotic distribution and by (4.7), we get by letting n 1 ∧ n 2 → ∞, 

T N = υ(f ) -1 2 - 2 log L 1 N -p • F yn 1 ,yn 2 (f ) -m(f ) ⇒ N (0,
Σ 1 Σ -1 2 = diag(3, 1, 1, 1, • • • ). Upper: y 1 = y 2 = 0.05. Bottom: y 1 = 0.05, y 2 = 0.1.

Simulation study II

For different values of (p, n 1 , n 2 ), we compute the realized sizes of the traditional LRT and the corrected LRT with 10,000 independent replications. The nominal test level is α = 0.05 and we use real Gaussian variables. Results are summarized in Table 2 andFigure 2. As we can see, when the dimension p increases, the traditional LRT leads to a dramatically high test size while the corrected LRT remains accurate. Furthermore, for moderate dimensions like p = 20 or 40, the sizes of the traditional LRT are much higher than 5%, whereas the ones of corrected LRT are very close. By a closer look at the column showing the difference with 5%, we note that this difference rapidly decrease as p increases for the corrected test. Figure 2 gives a vivid sight of these comparisons between the traditional LRT and the corrected LRT in term of test sizes.

A pseudo-likelihood test for high-dimensional non-Gaussian data

As said in Introduction, previous related works as [START_REF] Ledoit | Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size[END_REF], [START_REF] Srivastava | Some tests concerning the covariance matrix in high dimensional data[END_REF] or [START_REF] Schott | A test for the equality of covariance matrices when the dimension is large relative to the sample size[END_REF] all assume Gaussian variables. In contrast, Theorem 4.1 applies for general distributions having a fourth moment. For these non Gaussian data, we consider the corrected LRT as generalized pseudo-likelihood ratio test (or Gaussian LRT).

Moreover, the methods proposed by these authors all rely on an appropriate normalization of the trace of squared difference between two sample covariances following the idea of [START_REF] Bai | Effect of high dimension comparison of significance tests for a high dimensional two sample problem[END_REF]. We believe that their method would strongly depend on the normality assumption (which was supported by simulation results below). On the other hand, based on general understanding, the LRT contains much higher information from data and its poor performance observed up to now is just caused by its large bias when dimension is large. Thus, from the intuitive understanding, we are confined ourselves to modify the LRT.

Let us develop in more details an example. Assume that x follows a normalized t-distribution with 5 degree of freedom, that is x = 3 5 t(5), x and y are i.i.d., hence Ex = Ey = 0, E|x| 2 = E|y| 2 = 1 and E|x| 4 = E|y| 4 = 9. We still employ the result in Theorem 4.1 for the test of equality between two covariance matrices, where

m 1 (f ) = 1 2 log y 1 + y 2 -y 1 y 2 y 1 + y 2 - y 1 y 1 + y 2 log(1 -y 2 ) - y 2 y 1 + y 2 log(1 -y 1 ) + 6y 2 1 y 2 (y 1 + y 2 ) 2 + 6y 1 y 2 2 (y 1 + y 2 ) 2 (4.8)
and

υ 1 (f ) = - 2y 2 2 (y 1 + y 2 ) 2 log(1 -y 1 ) - 2y 2 1 (y 1 + y 2 ) 2 log(1 -y 2 ) -2 log y 1 + y 2 y 1 + y 2 -y 1 y 2 (4.9)
instead of m(f ) and υ(f ) for real case, respectively. (4.8) and (4.9) are calculated in §5.

The following Table 3 summarizes a simulation study where we compare this corrected pseudo-LRT with the test proposed in [START_REF] Schott | A test for the equality of covariance matrices when the dimension is large relative to the sample size[END_REF]. We use 1,000 independent replications with the above t-distributed variables. Again, the nominal test level is α = 0.05. As we can see, the corrected pseudo-LRT performs correctly while Schott's test is no more valid here since the variables are not Gaussian.

(y1, y2)=(0. 

Table 3

Sizes of the corrected pseudo-likelihood ration test and Schott's test for the case of y 1 = 0.1, y 2 = 0.05, based on 1,000 independent replications with normalized t-distributed variables with 5 degrees of freedom.

Proofs

Proof of (3.3) By Theorem 2.1, for g(x) = xlog x -1, by using the variable change [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF].

x = 1 + y -2 √ y cos θ, 0 ≤ θ ≤ π, we have m(g) = g (a(y)) + g (b(y)) 4 - 1 2π b(y) a(y) g(x) 4y -(x -1 -y) 2 dx = y -log(1 -y) 2 - 1 2π π 0 [1 + y -2 √ y cos θ -log(1 + y -2 √ y cos θ) -1] dθ = y -log(1 -y) 2 - 1 4π 2π 0 y -2 √ y cos θ -log |1 - √ ye iθ | 2 dθ = - log(1 -y) 2 , where 2π 0 log |1 - √ ye iθ | 2 dθ = 0 is calculated in
Proof of (3.4)

For g(x) = xlog x -1, by Theorem 2.1, we have

υ(g) = - 1 2π 2 g(z 1 )g(z 2 ) (m(z 1 ) -m(z 2 )) 2 dm(z 1 )dm(z 2 ) and g(z 1 )g(z 2 ) = z 1 z 2 -z 1 log z 2 -z 2 log z 1 + log z 1 log z 2 -z 1 + log z 1 -z 2 + log z 2 + 1.
It is easy to see that υ(1, 1) = 0, where 1 means constant function equals to 1. For Stieltjes transform of F y , the following equation is given in [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF]

, for z ∈ C + , z = - 1 m(z) + y 1 + m(z)
.

(5.1)

Let m i = m(z i ), i = 1, 2.
For fixed m 2 , we have on a contour enclosed 1, (y -1) -1 and -1, but not 0,

log (z(m 1 )) (m 1 -m 2 ) 2 dm 1 = 1 m 2 1 - y (1+m1) 2 -1 m1 + y 1+m1 1 (m 1 -m 2 ) dm 1 = (1 + m 1 ) 2 -ym 2 1 ym 1 (m 1 -m 2 ) -1 m 1 + 1 + 1 m 1 -1 y-1 dm 1 = 2πi • 1 m 2 + 1 - 1 m 2 -1 y-1 . and -1 m1 + y 1+m1 (m 1 -m 2 ) 2 dm 1 = y ( 1 1 + m 1 + 1 -y y ) • [1 -(1 + m 1 )] -1 • (m 2 + 1) -2 • (1 - m 1 + 1 m 2 + 1 ) -2 dm 1 = y ( 1 1 + m 1 + 1 -y y ) • ∞ j=0 (1 + m 1 ) j (m 2 + 1) -2 ∞ ℓ=1 ℓ( m 1 + 1 m 2 + 1 ) ℓ-1 dm 1 = 2πi • y (m 2 + 1) 2 .
Then we also get υ(-

z 1 + log z 1 , 1) = 0. Similarly, υ(1, -z 2 + log z 2 ) = 0. Furthermore, υ(z 1 , z 2 ) = y 2 πi 1 (m 2 + 1) 2 ( 1 1 + m 2 + 1 -y y ) ∞ j=0 (1 + m 2 ) j dm 2 = 2y, and 
υ(z 1 , log z 2 ) = y πi ( 1 m 2 + 1 - 1 m 2 -1/(y -1) )( 1 1 + m 2 + 1 -y y ) • [1 -(1 + m 2 )] -1 dm 2 = y πi ( 1 m 2 + 1 - 1 m 2 -1/(y -1) )( 1 1 + m 2 + 1 -y y ) ∞ j=0 (1 + m 2 ) j dm 2 = 2y.
By a computation in [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF], we know that υ(log z 1 , log z 2 ) = -2 log(1 -y).

Finally, we obtain

υ(g) = υ(z 1 , z 2 ) + υ(log z 1 , log z 2 ) -2υ(z 1 , log z 2 ) +υ(-z 1 + log z 1 , 1) + υ(1, -z 2 + log z 2 ) + υ(1, 1) = -2 log(1 -y) -2y.
Proof of (3.6)

Since F yn is the Marčenko-Pastur law of index y n , by using the variable change x = 1 + y n -2 √ y n cos θ, 0 ≤ θ ≤ π we have

F yn (g) = b(yn) a(yn) x -log x -1 2πxy n (b(y n ) -x)(x -a(y n ))dx = 1 2πy n π 0 1 - log(1 + y n -2 √ y n cos θ) + 1 1 + y n -2 √ y n cos θ 4y n sin 2 θdθ = 1 2π 2π 0 2 sin 2 θ - 2 sin 2 θ 1 + y n -2 √ y n cos θ log |1 - √ y n e iθ | 2 -1 dθ = 1 - y n -1 y n log(1 -y n ), where 1 2π 2π 0 2 sin 2 θ 1 + y n -2 √ y n cos θ log |1 - √ y n e iθ | 2 dθ = y n -1 y n log(1 -y n ) -1
is calculated in [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF].

Proof of Lemma 2.1

We use the variable change x = (1 -y 2 ) -2 (1 + h 2 -2h cos θ), where h

= √ y 1 + y 2 -y 1 y 2 . When c, d satisfy c 2 + d 2 = a(1 -y 2 ) 2 + b(1 + h 2 ), cd = bh, 0 < d < c, we have f (z(ξ)) = log(a + bz(ξ)) = log |c + dξ| 2 (1 -y 2 ) 2 .
Similarly,

g(z(ξ)) = log(α + βz(ξ)) = log |γ + ηξ| 2 (1 -y 2 ) 2 . Let f (z(ξ)) = log (c + dξ) 2 (1 -y 2 ) 2 and g(z(ξ)) = log (γ + ηξ) 2 (1 -y 2 ) 2 .
Note that f (z(ξ)) = ℜ( f (z(ξ))) and g(z(ξ)) = ℜ( g(z(ξ))). By Theorem 2.2, we have 

m(f ) = 1 4πi |ξ|=1 f (z(ξ)) 1 ξ -1 r + 1 ξ + 1 r - 2 ξ + y2 hr dξ = 1 4π 2π 0 f (z(e iθ )) 1 e iθ -1 r + 1 e iθ + 1 r - 2 e iθ + y2
= ℜ 1 8πi |ξ|=1 f (z(ξ)) 1 ξ -1 r + 1 ξ + 1 r - 2 ξ + y2 hr + r r -ξ + r r + ξ - 2hr y 2 ξ + hr ξ -1 dξ = 1 4 f (z( 1 r )) + f (z(- 1 r )) -2 f (z(- y 2 hr )) → r↓1 1 4 f (z(1)) + f (z(-1)) -2 f (z(- y 2 h )) = 1 2 log (c 2 -d 2 )h 2 (ch -y 2 d) 2 . Let m j = - 1+hrjξj 1-y2
, where |ξ j | = 1, j = 1, 2, r 2 ↓ r 1 , and r 1 ↓ 1. By Theorem 2.2, we have

υ(f, g) = - 1 2π 2 |ξ2|=1 |ξ1|=1 f (z(r 1 ξ 1 )) (r 2 ξ 2 -r 1 ξ 1 ) 2 • r 1 r 2 dξ 1 g(z(r 2 ξ 2 ))dξ 2 .
When r 1 ↓ 1, -d cr1 and 0 are poles. We can then choose r 1 so that -c dr1 is a not a pole. Then we get

|ξ1|=1 log(a + bz(r 1 ξ 1 )) (r 2 ξ 2 -r 1 ξ 1 ) 2 • r 1 r 2 dξ 1 = |ξ1|=1 (log(a + bz(r 1 ξ 1 ))) ′ r 1 ξ 1 -r 2 ξ 2 • r 2 dξ 1 = |ξ1|=1 bhr 1 ξ 1 (r 1 ξ 1 -r 2 ξ 2 )(c + dr 1 ξ 1 )c • 1 ξ 1 + d cr1 - bhr -1 1 (r 1 ξ 1 -r 2 ξ 2 )(c + dr 1 ξ 1 )c • 1 (ξ 1 + d cr1 )ξ 1 • r 2 dξ 1 = 2πi bhd -1 c -1 ξ 2 - bhd -1 r 2 d + cr 2 ξ 2 . So, υ(f, g) = - i π |ξ2|=1 bhd -1 c -1 ξ 2 - bhd -1 r 2 d + cr 2 ξ 2 log (α + βz(r 2 ξ 2 )) dξ 2 .
Since the function g(x) = log(α + βx) is analytic, when r 2 > 1 but sufficiently close to 1, we have

|g(z(rξ 2 )) -g(z(ξ 2 ))| ≤ K(r -1),
for some constant K. Thus we have

|ξ|2=1 [g(z(r 2 ξ 2 )) -g(z(ξ 2 ))] bhd -1 c -1 ξ 2 - bhd -1 r 2 d + cr 2 ξ 2 dξ 2 → 0 as r 2 ↓ 1,
where the estimations are done according to| arg(ξ

2 )| or | arg(ξ 2 ) -π| ≤ √ r 2 -1 or not. Thus, υ(f, g) = - i π |ξ2|=1 g(z(ξ 2 )) bhd -1 c -1 ξ 2 - bhd -1 r 2 d + cr 2 ξ 2 dξ 2 + R(r 2 ) where R(r 2 ) → 0, as r 2 ↓ 1. Because g(z(ξ 2 )) = log |γ + ηξ 2 | 2 (1 -y 2 ) 2 , for γ, η satisfying γ 2 + η 2 = α(1 -y 2 ) 2 + β(1 + h 2 ), γη = βh, 0 < η < γ, and if g(z(ξ 2 )) = log (γ + ηξ 2 ) 2 (1 -y 2 ) 2 , we have g(z(ξ 2 )) = ℜ ( g(z(ξ 2 ))). Therefore, υ(f, g) = - i π |ξ|2=1 g(z(ξ 2 )) bhd -1 c -1 ξ 2 - bhd -1 r 2 d + cr 2 ξ 2 dξ 2 = 1 π 2π 0 g(z(e iθ )) bhd -1 c -1 e iθ - bhd -1 r 2 d + cr 2 e iθ e iθ dθ = θ→2π-θ 1 π 2π 0 g(z(e iθ )) bhd -1 c -1 e -iθ - bhd -1 r 2 d + cr 2 e -iθ e -iθ dθ = 1 2π 2π 0 g(z(e iθ )) bhd -1 c -1 e iθ - bhd -1 r 2 d + cr 2 e iθ e iθ + bhd -1 c -1 - bhd -1 r 2 de iθ + cr 2 dθ = 1 2π ℜ 2π 0 g(z(e iθ )) bhd -1 c -1 e iθ - bhd -1 r 2 d + cr 2 e iθ e iθ + bhd -1 c -1 - bhd -1 r 2 de iθ + cr 2 dθ = ℜ 1 2πi |ξ|2=1 g(z(ξ 2 )) bhd -1 c -1 ξ 2 - bhd -1 r 2 d + cr 2 ξ 2 + bhd -1 c -1 - bhd -1 r 2 dξ 2 + cr 2 ξ -1 2 dξ 2 = bhd -1 c -1 g(z(0)) -g(z(- d cr 2 )) → bhd -1 c -1 g(z(0)) -g(z(- d c )) = 2bhd -1 c -1 log cγ cγ -dη .
Proof of (4.5) and (4.6)

Because ξ and η are Gaussian variables, for real case, β = E|ξ| 4 -3 = 0, then (2.10), (2.11) and

(2.13) are all 0. Consider (2.9) and (2.12), as y n k → y k , k = 1, 2,, by the computations done in the proof of Lemma 2.1, we see that termes tending to zero could be neglected in the considered contour integrals. Hence we can put y n k = y k , k = 1, 2 and use

f (x) = log(y 1 + y 2 x) - y 2 y 1 + y 2 log x -log(y 1 + y 2 ) instead of f (x) = log(y n1 + y n2 x) - y n2 y n1 + y n2 log x -log(y n1 + y n2 ). Consider the variable change x = (1-y 2 ) -2 (1+h 2 -2h cos θ), where z(ξ) = (1-y 2 ) -2 1 + h 2 + 2hR(ξ) , h = √ y 1 + y 2 -y 1 y 2 . As log(y n1 + y n2 z(ξ)) = log |h + y 2 ξ| 2 (1 -y 2 ) 2 , log(z(ξ)) = log |1 + hξ| 2 (1 -y 2 ) 2 ,
we have by Lemma 2.1,

m(f ) = 1 2 log (h 2 -y 2 2 )h 2 (h 2 -y 2 2 ) 2 - y 2 y 1 + y 2 log (1 -h 2 )h 2 (h -y 2 h) 2 = 1 2 log y 1 + y 2 -y 1 y 2 y 1 + y 2 - y 1 y 1 + y 2 log(1 -y 2 ) - y 2 y 1 + y 2 log(1 -y 1 ) , and 
υ(f ) = υ log(y n1 + y n2 x) + y 2 2 (y 1 + y 2 ) 2 υ log x - 2y 2 y 1 + y 2 υ log x, log(y n1 + y n2 x) = 2 log h 2 h 2 -y 2 2 + 2 y 2 2 (y 1 + y 2 ) 2 log 1 1 -h 2 - 4y 2 y 1 + y 2 log 1 1 -y 2 = - 2y 2 2 (y 1 + y 2 ) 2 log(1 -y 1 ) - 2y 2 1 (y 1 + y 2 ) 2 log(1 -y 2 ) -2 log y 1 + y 2 y 1 + y 2 -y 1 y 2 .
Proof of F yn 1 ,yn 2 (f ) By (4.3) and the density of F yn 1 ,yn 2 (f ) (the limiting distribution in (2.7) but with y n k in place of

y k , k = 1, 2. ), where h n = √ y n1 + y n2 -y n1 y n2 , a n = (1 -y n2 ) -2 (1 - √ y n1 + y n2 -y n1 y n2 ) 2 and
b n = (1-y n2 ) -2 (1 + √ y n1 + y n2 -y n1 y n2 ) 2 . Using the substitution x = (1-y n2 ) -2 1 + h 2 n -2h n cos θ , 0 < θ < π, we have

(b n -x)(x -a n ) =
2h n sin θ (1 -y n2 ) 2 , dx = 2h n sin θdθ (1 -y n2 ) 2 ;

x = 1 -h n e iθ 2 (1 -y n2 ) 2 , y n1 + y n2 x = h n -y n2 e iθ 2 (1 -y n2 ) 2 .

Therefore, Proof of (4.8) and (4.9)

F
Because x and y are random variables from normalized t-distribution with 5 degree of freedom,

x and y are i.i.d., Ex = Ey = 0, E|x| 2 = E|y| 2 = 1 and E|x| 4 = E|y| 4 = 9. For real case, β = E|ξ| 4 -3 = 6, (2.9) and (2.12) items are the same to the Gaussian variables. Consider the items (2.10), (2.11) and (2.13). As the same explanation in Proof of (4.5) and (4.6), we use f (x) = log(y 1 + y 2 x) -y2 y1+y2 log xlog(y 1 + y 2 ) instead. For (2.10), we have 

β • y 1 (1 -y 2 ) 2 2πi • h 2 |ξ|=1 log |h + y 2 ξ| 2 (1 -y 2 ) 2 - y 2 y 1 + y 2 log |1 + hξ| 2 (1 -y 2 ) 2 -log(y 1 + y 2 ) • 1 (ξ + y2 hr ) 3 dξ = β • y 1 (1 -y 2 ) 2 2πi • h 2 |ξ|=1 2R log(h + y 2 ξ) - y 2 y 1 + y 2 log(1 + hξ) • 1 (ξ + y2 hr ) 3 dξ = β • y 1 (1 -y 2 ) 2 2πi •

  y n2 ) (b n -x)(x -a n ) 2πx(y n1 + y n2 x) dx = (1 -y n2 ) bn an log (y n1 + y n2 x) -y n2 y n1 + y n2 log x (b n -x)(x -a n ) 2πx(y n1 + y n2 x) dx -log (y n1 + y n2 ) + y n2 (1 -y n1 ) y n1 (y n1 + y n2 ) log (1 -y n1 ).

Figure 2 .

 2 Figure2. Sizes of the traditional LRT and the corrected LRT based on 10,000 independent replications using real Gaussian variables. Left: y 1 = y 2 = 0.05. Right: y 1 = 0.05, y 2 = 0.1.

Table 1

 1 Sizes and powers of the traditional LRT and the corrected LRT, based on 10,000 independent applications with real Gaussian variables. Powers are estimated under the alternative Σp = diag(1, 0.05, 0.05, 0.05, . . .).

			CLRT		LRT
	(p, n )	Size	Difference with 5%	Power	Size	Power
	(5, 500)	0.0803	0.0303	0.6013	0.0521	0.5233
	(10, 500)	0.0690	0.0190	0.9517	0.0555	0.9417
	(50, 500)	0.0594	0.0094	1	0.2252	1
	(100, 500)	0.0537	0.0037	1	0.9757	1
	(300, 500)	0.0515	0.0015	1	1	1

Table 2

 2 Sizes and powers of the traditional LRT and the corrected LRT based on 10,000 independent replications using real Gaussian variables. Powers are estimated under the alternative

		1.0					
			CLRT				
		0.8	LRT				
	Type-I Error	0.4 0.6					
		0.2					
		0	50	100	150	200	250	300
					Dimension		
				(y1, y2)=(0.05, 0.05)	
					CLRT			LRT
	(p, n 1 , n 2 )	Size	Difference with 5%	Power	Size	Power
	(5, 100, 100)	0.0770		0.0270		1	0.0582	1
	(10, 200, 200)	0.0680		0.0180		1	0.0684	1
	(20, 400, 400)	0.0593		0.0093		1	0.0872	1
	(40, 800, 800)	0.0526		0.0026		1	0.1339	1
	(80, 1600, 1600)	0.0501		0.0001		1	0.2687	1
	(160, 3200, 3200)	0.0491		-0.0009		1	0.6488	1
	(320, 6400, 6400)	0.0447		-0.0053		0.9671	1	1
				(y1, y2)=(0.05, 0.1)	
					CLRT			LRT
	(p, n 1 , n 2 )	Size	Difference with 5%	Power	Size	Power
	(5, 100, 50)	0.0781		0.0281		0.9925	0.0640	0.9849
	(10, 200, 100)	0.0617		0.0117		0.9847	0.0752	0.9904
	(20, 400, 200)	0.0573		0.0073		0.9775	0.1104	0.9938
	(40, 800, 400)	0.0561		0.0061		0.9765	0.2115	0.9975
	(80, 1600, 800)	0.0521		0.0021		0.9702	0.4954	0.9998
	(160, 3200, 1600)	0.0520		0.0020		0.9702	0.9433	1
	(320, 6400, 3200)	0.0510		0.0010		1	0.9939	1

1) . n=500 Figure 1. Realized sizes of the traditional LRT and the corrected LRT for different dimensions p with real Gaussian variables. 10 000 independent runs with 5% nominal level and sample size n = 500.
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There are three poles inside the unit circle: 0, h n , y n2 /h n . Their corresponding residues are

Therefore,

Therefore,

For covariance, we have