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Abstract

Multi-class systems having possibly both finite and infinite classes are in-
vestigated under a natural partial exchangeability assumption. It is proved
that the conditional law of such a system, given the vector of the empirical
measures of its finite classes and directing measures of its infinite ones (given
by the de Finetti Theorem), corresponds to sampling independently from each
class, without replacement from the finite classes and i.i.d. from the directing
measure for the infinite ones. The equivalence between the convergence of
multi-exchangeable systems with fixed class sizes and the convergence of the
corresponding vectors of measures is then established.
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1. Introduction

Kallenberg [7], Kingman [8], Diaconis and Freedman [2], and Aldous [1] are among
many studies of exchangeable random variables (r.v.) with Polish state spaces, a funda-
mental topic in many fields of probability and statistics. Nevertheless, many models in
stratified sampling, statistical mechanics, chemistry, communication networks, biology,
etc., actually involve varied classes of similar objects, which we call “particles”. Some
examples can be found in Graham [3, 4] and Graham and Robert [6].

Several classical results for exchangeable systems are extended to such multi-class
particle systems in Graham [5], under a natural partial exchangeability assumption
called multi-exchangeability. It is notably proved that the convergence in law of a
family of finite systems, with limit a system with infinite class sizes, is equivalent to
the convergence in law of the corresponding family of vectors of the empirical measures
within each class, with limit the vector of the directing measures of each limit class
(which is exchangeable, and the directing measure is given by the de Finetti theorem).
This result allows use of compactness-uniqueness techniques on the measure vectors for
convergence proofs, extending those for propagation of chaos proofs for exchangeable
systems introduced by Sznitman [10] and developed among others by Méléard [9] and
Graham [3, 4]. We refer to [5] for further motivation.

In the present paper, we extend this convergence result to multi-exchangeable sys-
tems with fixed class sizes, which may be both finite and infinite, by showing that their
convergence in law is equivalent to the convergence in law for the vectors of measures
with components the empirical measures for finite classes and the directing measure for
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infinite classes (given by the de Finetti Theorem). We first extend another result of [5],
and prove that the conditional law of a multi-echangeable system, given the vector of
measures defined above, corresponds to sampling independently without replacement
from each finite class and i.i.d. from the directing measure for each infinite class, the
remarkable fact being independence between different classes.

These new results are related to, and combine well with, those of [5]. For instance,
results in [5] can yield a tractable large size limit for a finite model of interest, one
hopes that the long-time behavior of the finite model is well approximated by that of
the limit, and the new results can help us study all the long-time behaviors and their
relationship. They can be likewise used for e.g. fluid limits or diffusion approximations.

All state spaces S are Polish, and the weak topology is used for the space of
probability measures P(S) which is then also Polish, as are products of Polish spaces.
For k ≥ 1 we denote by Σ(k) the set of permutations of {1, . . . , k}, and by Σ(∞) the
set of permutations of {1, 2, . . .} with finite support.

2. Some combinatorial facts

Theorem 1. Let 1 ≤ k ≤ N and (N)k = N(N − 1) · · · (N − k + 1). Sampling k times
without replacement among N possibly not distinct points x1, . . . , xN ∈ S corresponds
to sampling from the law

λN,k(x1, . . . , xN ) =
1

(N)k

∑

1≤n1,...,nk≤N
distinct

δ(xn1
,...,xnk

) ∈ P(Sk)

which is a continuous function (for the weak and the total variation topologies) of

λN,1(x1, . . . , xN ) =
1

N

N
∑

n=1

δxn
∈ P(S) .

More precisely, λN,k(x1, . . . , xN ) can be written as a sum of continuous linear func-

tions of λN,1(x1, . . . , xN )⊗j =
(

1
N

∑N

n=1 δxn

)⊗j

for 1 ≤ j ≤ k by an exclusion-

inclusion formula. Sampling k times with replacement corresponds to using the law

λN,1(x1, . . . , xN )⊗k =
(

1
N

∑N

n=1 δxn

)⊗k

.

Proof. The statements about the laws used for sampling without and with replace-
ment are obvious. Sampling from λN,k(x1, . . . , xN ) corresponds to sampling k times

without replacement from the atoms of 1
N

∑N

n=1 δxn
counted with their multiplicities,

and this fact clearly implies the continuity statement. More precisely,
(

1

N

∑

n=1

δxn

)⊗k

=
1

Nk

∑

1≤n1,...,nk≤N

δ(xn1
,...,xnk

)

=
(N)k

Nk
λN,k(x1, . . . , xN ) +

1

Nk

k−1
∑

j=1

∑

1≤n1,...,nk≤N
Card{n1,...,nk}=j

δ(xn1
,...,xnk

) (1)

where the term of index j in the sum is a continuous linear function of λN,j(x1, . . . , xN ),
and since j ≤ k − 1 we conclude by recurrence over k ≥ 1.
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The following result quantifies the difference between sampling with and without
replacement in variation norm ‖µ‖ = sup{ 〈φ, µ〉 : ‖φ‖∞ ≤ 1 }. See also [1, Prop. 5.6
p. 39] and [2, Theorem 13 p. 749].

Theorem 2. With the notations of Theorem 1, we have

∥

∥λN,k(x1, . . . , xN ) − λN,1(x1, . . . , xN )⊗k
∥

∥ ≤ 2
Nk − (N)k

Nk
≤

k(k − 1)

N

and the first inequality is an equality if and only if the x1, . . . , xN are distinct.

Proof. Equation (1) yields the first inequality for the variation norm, and the
condition for it to be an equality. The second inequality follows by bounding Nk−(N)k

by counting k(k − 1)/2 possible positions for two identical indices with N choices and
Nk−2 choices for the other k − 2 positions.

3. Multi-exchangeable systems

3.1. Reminders on exchangeable systems

Let N ∈ N = {0, 1, . . .} be fixed. A finite system (Xn)1≤n≤N of random variables
(r.v.) with state space S is exchangeable if

L(Xσ(1), . . . , Xσ(N)) = L(X1, . . . , XN ) , ∀σ ∈ Σ(N) .

The empirical measure of the system is the random probability measure

ΛN = λN,1(X1, . . . , XN ) =
1

N

N
∑

n=1

δXn
(2)

with samples in P(S). The conditional law of such an exchangeable system given its
empirical meausure ΛN is λN,N(X1, . . . , XN ), see Theorem 1 for the definition of λN,N

and e.g. Aldous [1, Lemma 5.4 p. 38] for the result.
An infinite system (Xn)n≥1 is exchangeable if every finite subsystem (Xn)1≤n≤N is

exchangeable. The de Finetti Theorem, see e.g. [7, 8, 2, 1], states that such a system
is a mixture of i.i.d. sequences, and precisely that its law is of the form

∫

P⊗∞LΛ∞(dP )

where LΛ∞ is the law of the random probability measure

Λ∞ = lim
N→∞

λN,1(X1, . . . , XN) = lim
N→∞

1

N

N
∑

n=1

δXn
a.s. (3)

called the directing measure of the system. The conditional law of such a system given
Λ∞ corresponds to i.i.d. draws from Λ∞.

3.2. Multi-class systems

In order to consider finite and infinite systems simultaneously, we will take class
sizes in N∪{∞}, and be redundant for clarity. Let C ≥ 1 and Ni ∈ N∪{∞} and state
spaces Si be fixed for 1 ≤ i ≤ C, and consider a multi-class system

(Xn,i)1≤n≤Ni, 1≤i≤C , Xn,i with state space Si, (4)
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where the r.v. Xn,i is the n-th particle, or object, of class i, and 1 ≤ n ≤ ∞ is
interpreted as n ≥ 1. We say that (4) is a multi-exchangeable system if its law is
invariant under finite permutations of the particles within classes, and precisely if

L
(

(Xσi(n),i)1≤n≤Ni, 1≤i≤C

)

= L
(

(Xn,i)1≤n≤Ni, 1≤i≤C

)

, ∀σi ∈ Σ(Ni) .

This natural assumption means that particles of a class are statistically indistinguish-
able, and obviously implies that (Xn,i)1≤n≤Ni

is exchangeable for all i. It is sufficient
to check that it is true when all σi but one are the identity.

For a multi-exchangeable system, a fundamental quantity is the random vector of
probability measures, with samples in P(S1) × · · · × P(SC), given by

(ΛNi

i )1≤i≤C , ΛNi

i =

{

the empirical measure given by (2) if Ni < ∞
the directing measure given by (3) if Ni = ∞ .

(5)

The following extends the results in Section 3.1, as well as Graham [5, Theorem 1]
and Aldous [1, Cor. 3.9 p. 25] in which respectively Ni < ∞ and Ni = ∞ for all i. The
remarkable fact is conditional independence between different classes.

Theorem 3. The conditional law of a multi-exchangeable system (4) given the random
measure vector (ΛNi

i )1≤i≤C in (5) corresponds to drawing independently for each
class i, if Ni < ∞ from λNi,Ni(Xn,1, . . . , Xn,Ni

) given in Theorem 1, i.e, without

replacement from the atoms of the empirical measure ΛNi

i = 1
Ni

∑Ni

n=1 δXn,i
counted

with their multiplicities, if Ni = ∞ in i.i.d. fashion from the directing measure Λ∞
i .

Proof. Let 1 ≤ k ≤ M < ∞ be arbitrary and, for 1 ≤ i ≤ C,

ki = Mi = Ni if Ni < ∞ , ki = k and Mi = M if Ni = ∞ . (6)

Since ΛNi

i does not change if one applies a permutation to (Xn,i)1≤n≤Mi
, see (5), multi-

exchangeability implies that for all fi ∈ Cb(S
ki

i , R) and g ∈ Cb(P(S1)×· · ·×P(SC), R),
with the notation in Theorem 1,

E

[

g
(

(ΛNi

i )1≤i≤C

)

C
∏

i=1

fi(X1,i, . . .Xki,i)

]

=
1

M1!

∑

σ1∈Σ(M1)

· · ·
1

MC !

∑

σC∈Σ(MC)

E

[

g
(

(ΛNi

i )1≤i≤C

)

C
∏

i=1

fi(Xσi(1),i, . . .Xσi(ki),i)

]

= E



g
(

(ΛNi

i )1≤i≤C

)

C
∏

i=1

1

Mi!

∑

σ∈Σ(Mi)

fi(Xσ(1),i, . . . , Xσ(ki),i)





= E

[

g
(

(ΛNi

i )1≤i≤C

)

C
∏

i=1

〈

fi, λ
Mi,ki(X1,i, . . . , XMi,i)

〉

]

. (7)

Considering (6), if Ni < ∞ then λMi,ki(X1,i, . . . , XNi,i) = λNi,Ni(X1,i, . . . , XNi,i), and
if Ni = ∞ then we let M go to infinity and use Theorem 2, (3), continuity, boundedness,
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and dominated convergence, and we obtain

E

[

g
(

(ΛNi

i )1≤i≤C

)

C
∏

i=1

fi(X1,i, . . . Xki,i)

]

= E

[

g
(

(ΛNi

i )1≤i≤C

)

C
∏

i=1

〈

fi, 1INi<∞λNi,Ni(X1,i, . . . , XNi,i) + 1INi=∞(ΛNi

i )⊗k
〉

]

(8)

and we conclude using that k ≥ 1 and g, fi ∈ Cb are arbitrary, the spaces are
Polish, λNi,Ni(X1,i, . . . , XNi,i) depends measurably on ΛNi

i = λNi,1(X1,i, . . . , XNi,i)
(see Theorem 1), and the characteristic property of conditional expectation.

Thus, the classes of a multi-exchangeable system are conditionally independent given
(ΛNi

i )1≤i≤C , with conditional laws as for an exchangeable system and depending on

whether the class is finite or infinite. Given (ΛNi

i )1≤i≤C no further information can
be attained on the law of the multi-exchangeable system by further observation, in
particular involving r.v. in different classes. A statistical interpretation is that the
empirical measure vector is a sufficient statistic for the law of the system, the family
of all such laws being trivially parametrized by the laws themselves.

We now extend the convergence results for exchangeable systems in Kallenberg [7,
Theorem 1.3 p. 25], see also Aldous [1, Prop. 7.20 p. 55] when N1 < ∞, to a family of
multi-exchangeable systems, of fixed possibly both finite and infinite class sizes.

Theorem 4. Let C ≥ 1 and Ni ∈ N∪{∞} and state spaces Si be fixed for 1 ≤ i ≤ C.
For r ∈ R+ ∪ {∞} let

(Xr
n,i)1≤n≤Ni, 1≤i≤C , Xr

n,i with state space Si ,

be multi-exchangeable systems as in (4), and (ΛNi,r
i )1≤i≤C be as in (5). Then

lim
r→∞

(Xr
n,i)1≤n≤Ni, 1≤i≤C = (X∞

n,i)n≥1 ,1≤i≤C in law

if and only if
lim

r→∞
(ΛNi,r

i )1≤i≤C = (ΛNi,∞
i )1≤i≤C in law.

Proof. With the notation (6), let k ≥ 1 and fi ∈ Cb(S
ki

i , R) for 1 ≤ i ≤ C

be arbitrary. Taking g = 1 in (8), or conditioning first on (ΛNi,r
i )1≤i≤C and using

Theorem 3, yields

E

[

C
∏

i=1

fi(X
r
1,i, . . .X

r
ki,i

)

]

= E

[

C
∏

i=1

〈

fi, 1INi<∞λNi,Ni(Xr
1,i, . . . , X

r
Ni,i

) + 1INi=∞(ΛNi,r
i )⊗k

〉

]

(9)

and hence if limr→∞(ΛNi,r
i )1≤i≤C = (ΛNi,∞

i )1≤i≤C in law then

lim
r→∞

E

[

C
∏

i=1

fi(X
r
1,i, . . . X

r
ki,i

)

]

= E

[

C
∏

i=1

fi(X
∞
1,i, . . . X

∞
ki,i

)

]



6 Carl Graham

using the continuity result in Theorem 1, which proves the “if” part of the theorem
since k ≥ 1 and fi are arbitrary and the state spaces are Polish. The converse follows
similarly from (9) with functions fi depending only on the first variable.
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