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Convergence of multi-class systems of fixed possibly infinite sizes

Introduction

Kallenberg [START_REF] Kallenberg | Canonical representations and convergence criteria for processes with interchangeable increments[END_REF], Kingman [START_REF] Kingman | Uses of exchangeability[END_REF], Diaconis and Freedman [START_REF] Diaconis | Finite exchangeable sequences[END_REF], and Aldous [START_REF] Aldous | Exchangeability and related topics[END_REF] are among many studies of exchangeable random variables (r.v.) with Polish state spaces, a fundamental topic in many fields of probability and statistics. Nevertheless, many models in stratified sampling, statistical mechanics, chemistry, communication networks, biology, etc., actually involve varied classes of similar objects, which we call "particles". Some examples can be found in Graham [START_REF] Graham | McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF][START_REF] Graham | Kinetic limits for large communication networks[END_REF] and Graham and Robert [START_REF] Graham | Interacting multi-class transmissions in large stochastic networks[END_REF].

Several classical results for exchangeable systems are extended to such multi-class particle systems in Graham [START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF], under a natural partial exchangeability assumption called multi-exchangeability. It is notably proved that the convergence in law of a family of finite systems, with limit a system with infinite class sizes, is equivalent to the convergence in law of the corresponding family of vectors of the empirical measures within each class, with limit the vector of the directing measures of each limit class (which is exchangeable, and the directing measure is given by the de Finetti theorem). This result allows use of compactness-uniqueness techniques on the measure vectors for convergence proofs, extending those for propagation of chaos proofs for exchangeable systems introduced by Sznitman [START_REF] Sznitman | Topics in propagation of chaos[END_REF] and developed among others by Méléard [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF] and Graham [START_REF] Graham | McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF][START_REF] Graham | Kinetic limits for large communication networks[END_REF]. We refer to [START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF] for further motivation.

In the present paper, we extend this convergence result to multi-exchangeable systems with fixed class sizes, which may be both finite and infinite, by showing that their convergence in law is equivalent to the convergence in law for the vectors of measures with components the empirical measures for finite classes and the directing measure for infinite classes (given by the de Finetti Theorem). We first extend another result of [START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF], and prove that the conditional law of a multi-echangeable system, given the vector of measures defined above, corresponds to sampling independently without replacement from each finite class and i.i.d. from the directing measure for each infinite class, the remarkable fact being independence between different classes.

These new results are related to, and combine well with, those of [START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF]. For instance, results in [START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF] can yield a tractable large size limit for a finite model of interest, one hopes that the long-time behavior of the finite model is well approximated by that of the limit, and the new results can help us study all the long-time behaviors and their relationship. They can be likewise used for e.g. fluid limits or diffusion approximations.

All state spaces S are Polish, and the weak topology is used for the space of probability measures P(S) which is then also Polish, as are products of Polish spaces. For k ≥ 1 we denote by Σ(k) the set of permutations of {1, . . . , k}, and by Σ(∞) the set of permutations of {1, 2, . . . } with finite support.

Some combinatorial facts

Theorem 1. Let 1 ≤ k ≤ N and (N ) k = N (N -1) • • • (N -k + 1). Sampling k times without replacement among N possibly not distinct points x 1 , . . . , x N ∈ S corresponds to sampling from the law λ N,k (x 1 , . . . , x N ) = 1 (N ) k 1≤n1,...,n k ≤N distinct δ (xn 1 ,...,xn k ) ∈ P(S k )
which is a continuous function (for the weak and the total variation topologies) of

λ N,1 (x 1 , . . . , x N ) = 1 N N n=1 δ xn ∈ P(S) .
More precisely, λ N,k (x 1 , . . . , x N ) can be written as a sum of continuous linear func-

tions of λ N,1 (x 1 , . . . , x N ) ⊗j = 1 N N n=1 δ xn ⊗j
for 1 ≤ j ≤ k by an exclusioninclusion formula. Sampling k times with replacement corresponds to using the law

λ N,1 (x 1 , . . . , x N ) ⊗k = 1 N N n=1 δ xn ⊗k .
Proof. The statements about the laws used for sampling without and with replacement are obvious. Sampling from λ N,k (x 1 , . . . , x N ) corresponds to sampling k times without replacement from the atoms of 1 N N n=1 δ xn counted with their multiplicities, and this fact clearly implies the continuity statement. More precisely,

1 N n=1 δ xn ⊗k = 1 N k 1≤n1,...,n k ≤N δ (xn 1 ,...,xn k ) = (N ) k N k λ N,k (x 1 , . . . , x N ) + 1 N k k-1 j=1 1≤n1,...,n k ≤N Card{n1,...,n k }=j δ (xn 1 ,...,xn k ) (1)
where the term of index j in the sum is a continuous linear function of λ N,j (x 1 , . . . , x N ), and since j ≤ k -1 we conclude by recurrence over k ≥ 1.

The following result quantifies the difference between sampling with and without replacement in variation norm µ = sup{ φ, µ : φ ∞ ≤ 1 }. See also [ 

λ N,k (x 1 , . . . , x N ) -λ N,1 (x 1 , . . . , x N ) ⊗k ≤ 2 N k -(N ) k N k ≤ k(k -1) N
and the first inequality is an equality if and only if the x 1 , . . . , x N are distinct.

Proof. Equation (1) yields the first inequality for the variation norm, and the condition for it to be an equality. The second inequality follows by bounding N k -(N ) k by counting k(k -1)/2 possible positions for two identical indices with N choices and N k-2 choices for the other k -2 positions.

Multi-exchangeable systems

Reminders on exchangeable systems

Let N ∈ N = {0, 1, . . . } be fixed. A finite system (X n ) 1≤n≤N of random variables (r.v.) with state space S is exchangeable if

L(X σ(1) , . . . , X σ(N ) ) = L(X 1 , . . . , X N ) , ∀σ ∈ Σ(N ) .
The empirical measure of the system is the random probability measure

Λ N = λ N,1 (X 1 , . . . , X N ) = 1 N N n=1 δ Xn (2) 
with samples in P(S). The conditional law of such an exchangeable system given its empirical meausure Λ N is λ N,N (X 1 , . . . , X N ), see Theorem 1 for the definition of λ N,N and e.g. Aldous [1, Lemma 5.4 p. 38] for the result.

An infinite system (X n ) n≥1 is exchangeable if every finite subsystem (X n ) 1≤n≤N is exchangeable. The de Finetti Theorem, see e.g. [START_REF] Kallenberg | Canonical representations and convergence criteria for processes with interchangeable increments[END_REF][START_REF] Kingman | Uses of exchangeability[END_REF][START_REF] Diaconis | Finite exchangeable sequences[END_REF][START_REF] Aldous | Exchangeability and related topics[END_REF], states that such a system is a mixture of i.i.d. sequences, and precisely that its law is of the form

P ⊗∞ L Λ ∞ (dP )
where L Λ ∞ is the law of the random probability measure

Λ ∞ = lim N →∞ λ N,1 (X 1 , . . . , X N ) = lim N →∞ 1 N N n=1 δ Xn a.s. ( 3 
)
called the directing measure of the system. The conditional law of such a system given Λ ∞ corresponds to i.i.d. draws from Λ ∞ .

Multi-class systems

In order to consider finite and infinite systems simultaneously, we will take class sizes in N ∪ {∞}, and be redundant for clarity. Let C ≥ 1 and N i ∈ N ∪ {∞} and state spaces S i be fixed for 1 ≤ i ≤ C, and consider a multi-class system (X n,i ) 1≤n≤Ni, 1≤i≤C , X n,i with state space S i ,

where the r.v. X n,i is the n-th particle, or object, of class i, and 1 ≤ n ≤ ∞ is interpreted as n ≥ 1. We say that ( 4) is a multi-exchangeable system if its law is invariant under finite permutations of the particles within classes, and precisely if

L (X σi(n),i ) 1≤n≤Ni, 1≤i≤C = L (X n,i ) 1≤n≤Ni, 1≤i≤C , ∀σ i ∈ Σ(N i ) .
This natural assumption means that particles of a class are statistically indistinguishable, and obviously implies that (X n,i ) 1≤n≤Ni is exchangeable for all i. It is sufficient to check that it is true when all σ i but one are the identity. For a multi-exchangeable system, a fundamental quantity is the random vector of probability measures, with samples in P(S 1 ) × • • • × P(S C ), given by

(Λ Ni i ) 1≤i≤C , Λ Ni i =
the empirical measure given by ( 2) if N i < ∞ the directing measure given by (3

) if N i = ∞ . ( 5 
)
The following extends the results in Section 3.1, as well as Graham [5, Theorem 1] and Aldous [1, Cor. 3.9 p. 25] in which respectively N i < ∞ and N i = ∞ for all i. The remarkable fact is conditional independence between different classes. Theorem 3. The conditional law of a multi-exchangeable system (4) given the random measure vector (Λ Ni i ) 1≤i≤C in (5) corresponds to drawing independently for each class i, if N i < ∞ from λ Ni,Ni (X n,1 , . . . , X n,Ni ) given in Theorem 1, i.e, without replacement from the atoms of the empirical measure

Λ Ni i = 1 Ni Ni n=1 δ Xn,i counted with their multiplicities, if N i = ∞ in i.i.d. fashion from the directing measure Λ ∞ i .
Proof. Let 1 ≤ k ≤ M < ∞ be arbitrary and, for 1

≤ i ≤ C, k i = M i = N i if N i < ∞ , k i = k and M i = M if N i = ∞ . (6) 
Since Λ Ni i does not change if one applies a permutation to (X n,i ) 1≤n≤Mi , see [START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF], multiexchangeability implies that for all

f i ∈ C b (S ki i , R) and g ∈ C b (P(S 1 )ו • •×P(S C ), R), with the notation in Theorem 1, E g (Λ Ni i ) 1≤i≤C C i=1 f i (X 1,i , . . . X ki,i ) = 1 M 1 ! σ1∈Σ(M1) • • • 1 M C ! σC ∈Σ(MC ) E g (Λ Ni i ) 1≤i≤C C i=1 f i (X σi(1),i , . . . X σi(ki),i ) = E   g (Λ Ni i ) 1≤i≤C C i=1 1 M i ! σ∈Σ(Mi) f i (X σ(1),i , . . . , X σ(ki),i )   = E g (Λ Ni i ) 1≤i≤C C i=1 f i , λ Mi,ki (X 1,i , . . . , X Mi,i ) . (7) 
Considering [START_REF] Graham | Interacting multi-class transmissions in large stochastic networks[END_REF], if N i < ∞ then λ Mi,ki (X 1,i , . . . , X Ni,i ) = λ Ni,Ni (X 1,i , . . . , X Ni,i ), and if N i = ∞ then we let M go to infinity and use Theorem 2, (3), continuity, boundedness, and dominated convergence, and we obtain

E g (Λ Ni i ) 1≤i≤C C i=1 f i (X 1,i , . . . X ki,i ) = E g (Λ Ni i ) 1≤i≤C C i=1 f i , 1I Ni<∞ λ Ni,Ni (X 1,i , . . . , X Ni,i ) + 1I Ni=∞ (Λ Ni i ) ⊗k (8) 
and we conclude using that k ≥ 1 and g, f i ∈ C b are arbitrary, the spaces are Polish, λ Ni,Ni (X 1,i , . . . , X Ni,i ) depends measurably on Λ Ni i = λ Ni,1 (X 1,i , . . . , X Ni,i ) (see Theorem 1), and the characteristic property of conditional expectation.

Thus, the classes of a multi-exchangeable system are conditionally independent given (Λ Ni i ) 1≤i≤C , with conditional laws as for an exchangeable system and depending on whether the class is finite or infinite. Given (Λ Ni i ) 1≤i≤C no further information can be attained on the law of the multi-exchangeable system by further observation, in particular involving r.v. in different classes. A statistical interpretation is that the empirical measure vector is a sufficient statistic for the law of the system, the family of all such laws being trivially parametrized by the laws themselves.

We now extend the convergence results for exchangeable systems in Kallenberg [7, Theorem 1.3 p. 25], see also Aldous [1, Prop. 7.20 p. 55] when N 1 < ∞, to a family of multi-exchangeable systems, of fixed possibly both finite and infinite class sizes. f i (X ∞ 1,i , . . . X ∞ ki,i ) using the continuity result in Theorem 1, which proves the "if" part of the theorem since k ≥ 1 and f i are arbitrary and the state spaces are Polish. The converse follows similarly from [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF] with functions f i depending only on the first variable.

Theorem 4 .)f

 4 Let C ≥ 1 and N i ∈ N ∪ {∞} and state spaces S i be fixed for1 ≤ i ≤ C. For r ∈ R + ∪ {∞} let (X rn,i ) 1≤n≤Ni, 1≤i≤C , X r n,i with state space S i , be multi-exchangeable systems as in (4), and (Λ Ni,r i ) 1≤i≤C be as in[START_REF] Graham | Chaoticity for multi-class systems and echangeability within classes[END_REF]. Thenlim r→∞ (X r n,i ) 1≤n≤Ni, 1≤i≤C = (X ∞ n,i ) n≥1 ,1≤i≤C in law if and only if lim r→∞ (Λ Ni,r i ) 1≤i≤C = (Λ Ni,∞ i ) 1≤i≤C in law.Proof. With the notation (6), let k ≥ 1 andf i ∈ C b (S ki i , R) for 1 ≤ i ≤ C be arbitrary. Taking g = 1 in (8), or conditioning first on (Λ Ni,r i 1I Ni<∞ λ Ni,Ni (X r 1,i , . . . , X r Ni,i ) + 1I Ni=∞ (Λ Ni,i (X r 1,i , . . . X r ki,i ) = E C i=1