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Abstract. Given a set C of binary n-tuples and c ∈ C, how many bits
of c suffice to distinguish it from the other elements in C ? We shed
new light on this old combinatorial problem and improve on previously
known bounds.

1 Introduction

Let C ⊂ {0, 1}n be a set of distinct binary vectors that we will call a code, and
denote by [n] = {1, 2, ...n} the set of coordinate positions. It is standard in coding
theory to ask for codes (or sets) C such that every codeword c ∈ C is as different
as possible from all the other codewords. The most usual interpretation of this
is that every codeword c has a large Hamming distance to all other codewords,
and the associated combinatorial question is to determine the maximum size
of a code that has a given minimal Hamming distance d. The point of view of
the present paper is to consider that “a codeword c is as different as possible
from all the other codewords” means that there exists a small subset W ⊂ [n] of
coordinates such that c differs from every other codeword in W . Put differently,
it is possible to single out c from all the other codewords by focusing attention
on a small subset of coordinates. More precisely, for x ∈ {0, 1}n, and W ⊂ [n]
let us define the projection πW

πW : {0, 1}[n] → {0, 1}W

x 7→ (xi)i∈W

and let us say that W is a witness set (or a witness for short) for c ∈ C if
πW (c) 6= πW (c′) for every c′ ∈ C, c 6= c′. Codes for which every codeword has a
small witness set arise in a variety of contexts, in particular in machine learning
theory [1,3,4] where a witness set is also called a specifying set or a discriminant:
see [5, Ch. 12] for a short survey of known results and also [2] and references
therein for a more recent discussion of this topic and some variations.



Let us now say that a code has the w-witness property, or is a w-witness

code, if every one of its codewords has a witness set of size w. Our concern is to
study the maximum possible cardinality f(n,w) of a w-witness code of length
n. We shall give improved upper and lower bounds on f(n,w) that almost meet.

The paper is organised as follows. Section 2 gives some easy facts for reference.
Section 3 is devoted to upper bounds on f(n,w) and introduces our main result,
namely Theorem 2. Section 4 is devoted to constant weight w-witness codes, and
we derive precise values of the cardinality of optimal codes. Section 5 studies
mean values for the number of witness sets of a codeword and the number of
codewords that have a given witness set. Section 6 is devoted to constructions
of large w-witness codes, sometimes giving improved lower values of f(n,w).
Finally, Section 7 concludes with some open problems.

2 Easy and known facts

Let us start by mentioning two self-evident facts

– If C is a w-witness code, so is any translate C + x,
– f(n,w) is an increasing function of n and w.

Continue with the following example. Let C be the set of all n vectors of length
n and weight 1. Then every codeword of C has a witness of size 1, namely its
support. Note the dramatic change for the slightly different code C ∪ {0}. Now
the all-zero vector 0 has no witness set of size less than n. Bondy [3] shows
however that if |C| ≤ n, then C is a w-witness code with w ≤ |C| − 1 and
furthermore C is a uniform w-witness code, meaning that there exists a single
subset of [n] of size w that is a witness set for all codewords.

We clearly have the upper bound |C| ≤ 2w for uniform w-witness codes. For
ordinary w-witness codes however, the best known upper bound is, [5, Proposi-
tion 12.2],

f(n,w) ≤ 2w

(

n

w

)

. (1)

The proof is simple and consists in applying the pigeon-hole principle. A subset
of [n] can be a witness set for at most 2w codewords and there are at most

(

n
w

)

witness sets.
We also have the following lower bound on f(n,w), based on a trivial con-

struction of a w-witness code.

Proposition 1. We have: f(n,w) ≥
(

n
w

)

.

Proof. Let C =
(

[n]
w

)

be the set of all vectors of weight w. Notice that for all
c ∈ C, W (c) = support(c) is a witness set of c.

Note that the problem is essentially solved for w ≥ n/2; since f(n,w) is
increasing with w, we then have:

2n ≥ f(n,w) ≥ f(n, n/2) ≥
(

n
n/2

)

≥ 2n/(2n)1/2.



We shall therefore focus in the sequel on the case w ≤ n/2.
In the next section we improve the upper bound (1) to a quantity that comes

close to the lower bound of Proposition 1.

3 An improved upper bound

The key result is the following.

Theorem 1. Let g(n,w) = f(n,w)/
(

n
w

)

. Then, for fixed w, g(n,w) is a decreas-

ing function of n. That is:

n ≥ v ≥ w ⇒ g(n,w) ≤ g(v, w).

Proof. Let C be a binary code of length n having the w-witness property, with
maximal cardinality |C| = f(n,w). Fix a choice function φ : C →

(

[n]
w

)

such

that for any c ∈ C, φ(c) is a witness for c. For any V ∈
(

[n]
v

)

, denote by CV the
subset of C formed by the c satisfying φ(c) ⊂ V . Remark that the projection πV

is injective on CV , since each element of CV has a witness in V . Then πV (CV )
also has the w-witness property.

Remark now that if V is uniformly distributed in
(

[n]
v

)

and W is uniformly

distributed in
(

[n]
w

)

and independent from V , then for any function ψ :
(

[n]
w

)

→ R

one has

EW (ψ(W )) = EV (EW (ψ(W ) |W ⊂ V )), (2)

where we denote by EW (ψ(W )) the mean value (or expectation) of ψ(W ) as W

varies in
(

[n]
w

)

, and so on.
We apply this with ψ(W ) = |φ−1(W )| to find

g(n,w) =

(

n

w

)−1

|C| =

(

n

w

)−1
∑

W∈([n]
w )

|φ−1(W )|

= EW ( |φ−1(W )| )

= EV (EW ( |φ−1(W )| |W ⊂ V ))

= EV

(

(

v

w

)−1
∑

W∈(V

w)
|φ−1(W )|

)

= EV

(

(

v

w

)−1

|CV |

)

= EV

(

(

v

w

)−1

|πV (CV )|

)

≤ g(v, w)

the last inequality because πV (CV ) is a binary code of length v having the w-
witness property.



Remark: It would be interesting to try to improve Theorem 1 using some unex-
ploited aspects of the above proof, such as the fact that the choice function φ may
be non-unique, or the fact that the last inequality not only holds in mean value,
but for all V . For instance, suppose there is a codeword c ∈ C (with C optimal as
in the proof) that admits two distinct witnesses W and W ′, with W 6⊂W ′. Let
φ be a choice function with φ(c) = W , and let φ′ be the choice function that co-
incides everywhere with φ, except for φ′(c) = W ′. Let V contain W ′ but not W .
If we denote by C′

V the subcode obtained as CV but using φ′ as choice function,
then C′

V = CV ∪ {c} (disjoint union), so |πV (CV )| = |πV (C′
V )| − 1 < f(v, w),

and g(n,w) < g(v, w).

Theorem 1 has a number of consequences: the following is straightforward.

Corollary 1. For fixed w, the limit

lim
n→∞

g(n,w) =
f(n,w)
(

n
w

)

exists.

The following theorem gives an improved upper bound on f(n,w).

Theorem 2. For w ≤ n/2, we have the upper bound:

f(n,w) ≤ 2w1/2

(

n

w

)

.

Proof. Choose v = 2w and use f(v, w) ≤ 2v; then f(n,w) ≤
(

n
w

)

f(2w,w)/
(

2w
w

)

and the result follows by Stirling’s approximation.

Set w = ωn and denote by h(x) the binary entropy function

h(x) = −x log2 x− (1 − x) log2(1 − x).

Theorem 2 together with Proposition 1 yield:

Corollary 2. We have

limn→∞
1
n log2 f(n, ωn) = h(ω) for 0 ≤ ω ≤ 1/2

= 1 for 1/2 ≤ ω ≤ 1.

4 Constant-weight codes

Denote now by f(n,w, k) the maximal size of a w-witness code with codewords
of weight k. The following result is proved using a folklore method usually at-
tributed to Bassalygo and Elias, valid when the required property is invariant
under some group operation.



Proposition 2. We have:

max
k

f(n,w, k) ≤ f(n,w) ≤ min
k

f(n,w, k)2n

(

n
k

) .

Proof. The lower bound is trivial.

For the upper bound, fix k, pick an optimal w-witness code C and consider its
2n translates by all possible vectors. Every n-tuple, in particular those of weight
k, occurs exactly |C| times in the union of the translates; hence there exists a
translate (also an optimal w-witness code of size f(n,w) - see the remark at
the beginning of Section 2) containing at least the average number |C|

(

n
k

)

2−n of
vectors of weight k. Since k was arbitrary, the result follows.

We now deduce from the previous proposition the exact value of the function
f(n,w, k) in some cases.

Corollary 3. For constant-weight codes we have:

– If k ≤ w ≤ n/2 then f(n,w, k) =
(

n
k

)

and an optimal code is given by Sk(0),
the Hamming sphere of radius k centered on 0.

– If n− k ≤ w ≤ n/2, then f(n,w, n− k) =
(

n
k

)

and an optimal code is given

by the sphere Sk(1).

Proof. If k ≤ w ≤ n/2, we have the following series of inequalities:

(

n

k

)

≤ f(n, k, k) ≤ f(n,w, k) ≤

(

n

k

)

.

If n− k ≤ w ≤ n/2, perform wordwise complementation.

5 Some mean values

Let C be a binary code of length n (not necessarily having the w-witness prop-
erty). Let

WC,w : C → 2([n]
w ), WC,w(c) = {W ∈

(

[n]

w

)

: W is a witness for c},

and symmetrically,

CC,w :

(

[n]

w

)

→ 2C , CC,w(W ) = {c ∈ C : W is a witness for c}.

Remark that if C′ ⊂ C is a subcode, then WC′,w(c) ⊃ WC,w(c) for any

c ∈ C′, while CC′,w(W ) ⊃ (C′ ∩ CC,w(W )) for any W ∈
(

[n]
w

)

.



Lemma 1. With these notations, the mean values of |WC,w| and |CC,w| are

related by

|C|Ec(|WC,w(c)|) =

(

n

w

)

EW (|CC,w(W )|),

or equivalently

|C|
(

n
w

) =
EW (|CC,w(W )|)

Ec(|WC,w(c)|)
.

Proof. Double count the set
{

(W, c) ∈
(

[n]
w

)

× C : W is a witness for c
}

.

Now let γ(C,w) = EW (|CC,w(W )|) and let γ+(n,w) be the maximum possible
value of γ(C,w) for C a binary code of length n, and γ++(n,w) be the maximum
possible value of γ(C,w) for C a binary code of length n having the w-witness
property.

Lemma 2. With these notations, one has γ+(n,w) = γ++(n,w).

Proof. By construction γ+(n,w) ≥ γ++(n,w). On the other hand, let C be
a binary code of length n with γ(C,w) = γ+(n,w), and let then C′ be the
subcode of C formed by the c having at least one witness of size w, i.e. C′ =
⋃

W∈([n]
w ) CC,w(W ). Then C′ has the w-witness property, and

γ++(n,w) ≥ γ(C′, w) ≥ γ(C,w) = γ+(n,w).

The technique of the proof of Proposition 1 immediately adapts to give:

Proposition 3. With these notations, w being fixed, γ+(n,w) is a decreasing

function of n. That is:

n ≥ v ≥ w ⇒ γ+(n,w) ≤ γ+(v, w).

Proof. Let C be a binary code of length n with γ(C,w) = γ+(n,w). For V ∈
(

[n]
v

)

, denote by CV the subset of C formed by the c having at least one witness of
size w included in V , i.e. C′

V =
⋃

W∈(V

w) CC,w(W ). Then C′
V has the w-witness

property, CC,w(W ) ⊂ CC′

V
,w(W ) for any W ⊂ V , and πV is injective on C′

V .
Using this and (2), one gets:

γ+(n,w) = EW (|CC,w(W )|)

= EV (EW ( |CC,w(W )| |W ⊂ V ))

≤ EV (EW ( |CC′

V
,w(W )| |W ⊂ V ))

= EV (EW ( |CπV (C′

V
),w(W )| |W ⊂ V ))

= EV (γ(πV (C′
V ), w))

≤ γ+(v, w).



6 Constructions

6.1 A generic construction

Let F ⊂
(

[n]
≤w

)

be a set of subsets of {1, . . . , n} all having cardinality at most w.

Let CF ⊂ {0, 1}n be the set of words having support included in one and
only one W ∈ F . Then:

Proposition 4. With these notations, CF has the w-witness property.

Proof. For each c ∈ CF , let Wc be the unique W ∈ F containing the support of
c. Then Wc is a witness for c.

Example 1. For F =
(

[n]
w

)

we find CF = Sw(0), and

f(n,w) ≥ |CF | =

(

n

w

)

.

Example 1’. Suppose w ≥ n/2. Then for F =
( [n]
n/2

)

we find CF = Sn/2(0),

and

f(n,w) ≥ |CF | =

(

n

n/2

)

(where for ease of notation we write n/2 instead of ⌊n/2⌋).
Example 2. For F = {W} with |W | ≤ w we find CF = {0, 1}W (where we

see {0, 1}W as a subset of {0, 1}n by extension by 0 on the other coordinates),
and

f(n,w) ≥ |CF | = 2w.

Exemple 3. Let F be the set of (supports of) words of a code with constant
weight w and minimal distance d (one can suppose d even). Then for all distinct
W,W ′ ∈ F one has |W ∩W ′| ≤ w−d/2, so for all W ∈ F , the code CF contains
all words of weight larger than w − d/2 supported in W . This implies :

Corollary 4. For all d one has

f(n,w) ≥ A(n, d, w)B(w, d/2 − 1)

where:

– A(n, d, w) is the maximal cardinality of a code of length n with minimal

distance at least d and constant weight w
– B(w, r) = Σ1≤i≤r

(

w
i

)

is the cardinality of the ball of radius r in {0, 1}w.

For d = 2, this construction gives the sphere again. For d = 4, this gives
f(n,w) ≥ (1 + w)A(n, d, w). We consider the following special values:

– n = 4, d = 4, w = 2: A(4, 4, 2) = 2
– n = 8, d = 4, w = 4: A(8, 4, 4) = 14
– n = 12, d = 4, w = 6: A(12, 4, 6) = 132



the last two being obtained with F the Steiner system S(3, 4, 8) and S(5, 6, 12)
respectively.

The corresponding codes CF have same cardinality as the sphere (2× 3 = 6,
14 × 5 = 70 and 132 × 7 = 924 respectively), but they are not translates of
a sphere. Indeed, when C is a (translate of a) sphere with w = n/2, one has

CC,w(W ) = 2 for any window W ∈
(

[n]
w

)

. On the other hand, for C = CF as
above, one has by construction CC,w(W ) = w + 1 for W ∈ F .

6.2 Another construction

Let D ⊂ {0, 1}w be a binary (non-linear) code of length w > n/2 and minimal
weight at least 2w − n.

Let C1 be the code of length n obtained by taking all words of length w that
do not belong to D, and completing them with 0 on the last n−w coordinates.
Thus |C1| = 2w − |D|.

Let C2 be the code of length n formed by the words c of weight exactly w,
and such that the projection of c on the first w coordinates belongs to D. Thus
if nk is the number of codewords of weight k in D, one finds |C2| =

∑

k nk

(

n−w
w−k

)

.
Now let C be the (disjoint!) union of C1 and C2. Then C has the w-witness

property. Indeed, let c ∈ C. Then if c ∈ C1, c admits [w] as witness, while if
c ∈ C2, c admits its support as witness.

As an illustration, let D be the sphere of radius w − t in {0, 1}w, for t ∈
{1, . . . , n−w

2 }. Then

f(n,w) ≥ |C| = 2w +

(

w

w − t

)((

n− w

t

)

− 1

)

.

If w satisfies 2w >
(

n
n/2

)

but w < n− 1, this improves on examples 1, 1’, and

2 of the last subsection, in that one finds then

f(n,w) ≥ |C| > max(

(

n

w

)

,

(

n

n/2

)

, 2w).

On the other hand, remark that C1 ⊂ {0, 1}[w] and C2 ⊂ Sw(0), so that
|C| ≤ 2w +

(

n
w

)

.

7 Conclusion and open problems

We have determined the asymptotic size of optimal w-witness codes. A few issues
remain open in the non-asymptotic case, among which:

– When is the sphere Sw(0) the/an optimal w-witness code? Do we have
f(n,w) =

(

n
w

)

for w ≤ n/2 ? In particular do we have f(2w,w) =
(

2w
w

)

?
– For w > n/2, do we have f(n,w) ≤ max(

(

n
n/2

)

, 2w +
(

n
w

)

) ?

– Denoting by f(n,w,≥ d) the maximal size of a w-witness code with minimum
distance d, can the asymptotics of Proposition 2 be improved to

1

n
log2 f(n, ωn,≥ δn) < h(ω) ?
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