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Witness sets

Given a set C of binary n-tuples and c ∈ C, how many bits of c suffice to distinguish it from the other elements in C ? We shed new light on this old combinatorial problem and improve on previously known bounds.

Introduction

Let C ⊂ {0, 1} n be a set of distinct binary vectors that we will call a code, and denote by [n] = {1, 2, ...n} the set of coordinate positions. It is standard in coding theory to ask for codes (or sets) C such that every codeword c ∈ C is as different as possible from all the other codewords. The most usual interpretation of this is that every codeword c has a large Hamming distance to all other codewords, and the associated combinatorial question is to determine the maximum size of a code that has a given minimal Hamming distance d. The point of view of the present paper is to consider that "a codeword c is as different as possible from all the other codewords" means that there exists a small subset W ⊂ [n] of coordinates such that c differs from every other codeword in W . Put differently, it is possible to single out c from all the other codewords by focusing attention on a small subset of coordinates. More precisely, for x ∈ {0, 1} n , and W ⊂ [n] let us define the projection π W π W : {0, 1} [n] → {0, 1} W

x → (x i ) i∈W and let us say that W is a witness set (or a witness for short) for c ∈ C if π W (c) = π W (c ′ ) for every c ′ ∈ C, c = c ′ . Codes for which every codeword has a small witness set arise in a variety of contexts, in particular in machine learning theory [START_REF] Anthony | On exact specification by examples[END_REF][START_REF] Bondy | Induced subsets[END_REF][START_REF] Goldman | On the complexity of teaching[END_REF] where a witness set is also called a specifying set or a discriminant: see [START_REF] Jukna | Extremal Combinatorics Springer Texts in Theoretical Computer Science[END_REF]Ch. 12] for a short survey of known results and also [START_REF] Anthony | A Boolean Measure of Similarity[END_REF] and references therein for a more recent discussion of this topic and some variations.

Let us now say that a code has the w-witness property, or is a w-witness code, if every one of its codewords has a witness set of size w. Our concern is to study the maximum possible cardinality f (n, w) of a w-witness code of length n. We shall give improved upper and lower bounds on f (n, w) that almost meet.

The paper is organised as follows. Section 2 gives some easy facts for reference. Section 3 is devoted to upper bounds on f (n, w) and introduces our main result, namely Theorem 2. Section 4 is devoted to constant weight w-witness codes, and we derive precise values of the cardinality of optimal codes. Section 5 studies mean values for the number of witness sets of a codeword and the number of codewords that have a given witness set. Section 6 is devoted to constructions of large w-witness codes, sometimes giving improved lower values of f (n, w). Finally, Section 7 concludes with some open problems.

Easy and known facts

Let us start by mentioning two self-evident facts -If C is a w-witness code, so is any translate C + x, -f (n, w) is an increasing function of n and w. Continue with the following example. Let C be the set of all n vectors of length n and weight 1. Then every codeword of C has a witness of size 1, namely its support. Note the dramatic change for the slightly different code C ∪ {0}. Now the all-zero vector 0 has no witness set of size less than n. Bondy [START_REF] Bondy | Induced subsets[END_REF] shows however that if |C| ≤ n, then C is a w-witness code with w ≤ |C| -1 and furthermore C is a uniform w-witness code, meaning that there exists a single subset of [n] of size w that is a witness set for all codewords.

We clearly have the upper bound |C| ≤ 2 w for uniform w-witness codes. For ordinary w-witness codes however, the best known upper bound is, [5, Proposition 12.2],

f (n, w) ≤ 2 w n w . ( 1 
)
The proof is simple and consists in applying the pigeon-hole principle. A subset of [n] can be a witness set for at most 2 w codewords and there are at most n w witness sets. We also have the following lower bound on f (n, w), based on a trivial construction of a w-witness code.

Proposition 1. We have: f (n, w) ≥ n w . Proof. Let C = [n]
w be the set of all vectors of weight w. Notice that for all

c ∈ C, W (c) = support(c) is a witness set of c.
Note that the problem is essentially solved for w ≥ n/2; since f (n, w) is increasing with w, we then have:

2 n ≥ f (n, w) ≥ f (n, n/2) ≥ n n/2 ≥ 2 n /(2n) 1/2 .
We shall therefore focus in the sequel on the case w ≤ n/2.

In the next section we improve the upper bound (1) to a quantity that comes close to the lower bound of Proposition 1.

An improved upper bound

The key result is the following.

Theorem 1. Let g(n, w) = f (n, w)/ n w .
Then, for fixed w, g(n, w) is a decreasing function of n. That is:

n ≥ v ≥ w ⇒ g(n, w) ≤ g(v, w).
Proof. Let C be a binary code of length n having the w-witness property, with maximal cardinality

|C| = f (n, w). Fix a choice function φ : C → [n]
w such that for any c ∈ C, φ(c) is a witness for c. For any V ∈ [n] v , denote by C V the subset of C formed by the c satisfying φ(c) ⊂ V . Remark that the projection π V is injective on C V , since each element of C V has a witness in V . Then π V (C V ) also has the w-witness property.

Remark now that if V is uniformly distributed in [n] v and W is uniformly distributed in [n] w and independent from V , then for any function ψ :

[n] w → R one has E W (ψ(W )) = E V (E W (ψ(W ) | W ⊂ V )), (2) 
where we denote by E W (ψ(W )) the mean value (or expectation) of ψ(W ) as W varies in [n] w , and so on. We apply this with ψ(W

) = |φ -1 (W )| to find g(n, w) = n w -1 |C| = n w -1 W ∈( [n] w ) |φ -1 (W )| = E W ( |φ -1 (W )| ) = E V (E W ( |φ -1 (W )| | W ⊂ V )) = E V v w -1 W ∈( V w ) |φ -1 (W )| = E V v w -1 |C V | = E V v w -1 |π V (C V )| ≤ g(v, w)
the last inequality because π V (C V ) is a binary code of length v having the wwitness property.

Remark: It would be interesting to try to improve Theorem 1 using some unexploited aspects of the above proof, such as the fact that the choice function φ may be non-unique, or the fact that the last inequality not only holds in mean value, but for all V . For instance, suppose there is a codeword c ∈ C (with C optimal as in the proof) that admits two distinct witnesses W and W ′ , with W ⊂ W ′ . Let φ be a choice function with φ(c) = W , and let φ ′ be the choice function that coincides everywhere with φ, except for φ

′ (c) = W ′ . Let V contain W ′ but not W .
If we denote by C ′ V the subcode obtained as C V but using φ ′ as choice function, then

C ′ V = C V ∪ {c} (disjoint union), so |π V (C V )| = |π V (C ′ V )| -1 < f (v, w
), and g(n, w) < g(v, w).

Theorem 1 has a number of consequences: the following is straightforward.

Corollary 1. For fixed w, the limit

lim n→∞ g(n, w) = f (n, w) n w
exists.

The following theorem gives an improved upper bound on f (n, w).

Theorem 2. For w ≤ n/2, we have the upper bound:

f (n, w) ≤ 2w 1/2 n w .
Proof. Choose v = 2w and use f (v, w) ≤ 2 v ; then f (n, w) ≤ n w f (2w, w)/ 2w w and the result follows by Stirling's approximation.

Set w = ωn and denote by h(x) the binary entropy function

h(x) = -x log 2 x -(1 -x) log 2 (1 -x).
Theorem 2 together with Proposition 1 yield:

Corollary 2. We have

lim n→∞ 1 n log 2 f (n, ωn) = h(ω) for 0 ≤ ω ≤ 1/2 = 1 for 1/2 ≤ ω ≤ 1.

Constant-weight codes

Denote now by f (n, w, k) the maximal size of a w-witness code with codewords of weight k. The following result is proved using a folklore method usually attributed to Bassalygo and Elias, valid when the required property is invariant under some group operation.

Proposition 2. We have:

max k f (n, w, k) ≤ f (n, w) ≤ min k f (n, w, k)2 n n k
.

Proof. The lower bound is trivial.

For the upper bound, fix k, pick an optimal w-witness code C and consider its 2 n translates by all possible vectors. Every n-tuple, in particular those of weight k, occurs exactly |C| times in the union of the translates; hence there exists a translate (also an optimal w-witness code of size f (n, w) -see the remark at the beginning of Section 2) containing at least the average number |C| n k 2 -n of vectors of weight k. Since k was arbitrary, the result follows.

We now deduce from the previous proposition the exact value of the function f (n, w, k) in some cases.

Corollary 3. For constant-weight codes we have:

-

If k ≤ w ≤ n/2 then f (n, w, k) = n
k and an optimal code is given by S k (0), the Hamming sphere of radius k centered on 0.

-

If n -k ≤ w ≤ n/2, then f (n, w, n -k) = n
k and an optimal code is given by the sphere S k (1).

Proof. If k ≤ w ≤ n/2, we have the following series of inequalities:

n k ≤ f (n, k, k) ≤ f (n, w, k) ≤ n k .
If nk ≤ w ≤ n/2, perform wordwise complementation.

Some mean values

Let C be a binary code of length n (not necessarily having the w-witness property). Let

W C,w : C → 2 ( [n] w ) , W C,w( c) = {W ∈ [n] w : W is a witness for c},
and symmetrically,

C C,w : [n] w → 2 C , C C,w (W ) = {c ∈ C : W is a witness for c}. Remark that if C ′ ⊂ C is a subcode, then W C ′ ,w (c) ⊃ W C,w (c) for any c ∈ C ′ , while C C ′ ,w (W ) ⊃ (C ′ ∩ C C,w (W )) for any W ∈ [n]
w . Proof. By construction γ + (n, w) ≥ γ ++ (n, w). On the other hand, let C be a binary code of length n with γ(C, w) = γ + (n, w), and let then C ′ be the subcode of C formed by the c having at least one witness of size w, i.e.

C ′ = W ∈( [n]
w ) C C,w (W ). Then C ′ has the w-witness property, and

γ ++ (n, w) ≥ γ(C ′ , w) ≥ γ(C, w) = γ + (n, w).
The technique of the proof of Proposition 1 immediately adapts to give: Proposition 3. With these notations, w being fixed, γ + (n, w) is a decreasing function of n. That is:

n ≥ v ≥ w ⇒ γ + (n, w) ≤ γ + (v, w).
Proof. Let C be a binary code of length n with γ(C, w) = γ + (n, w). For V ∈

[n] v , denote by C V the subset of C formed by the c having at least one witness of size w included in V , i.e.

C ′ V = W ∈( V w ) C C,w (W ). Then C ′ V has the w-witness property, C C,w (W ) ⊂ C C ′ V ,w ( 
W ) for any W ⊂ V , and π V is injective on C ′ V . Using this and (2), one gets:

γ + (n, w) = E W (|C C,w (W )|) = E V (E W ( |C C,w (W )| | W ⊂ V )) ≤ E V (E W ( |C C ′ V ,w (W )| | W ⊂ V )) = E V (E W ( |C πV (C ′ V ),w (W )| | W ⊂ V )) = E V (γ(π V (C ′ V ), w)) ≤ γ + (v, w).

Constructions

A generic construction

Let F ⊂ [n] ≤w be a set of subsets of {1, . . . , n} all having cardinality at most w. Let C F ⊂ {0, 1} n be the set of words having support included in one and only one W ∈ F. Then: Proposition 4. With these notations, C F has the w-witness property.

Proof. For each c ∈ C F , let W c be the unique W ∈ F containing the support of c. Then W c is a witness for c.

Example 1. For F = [n] w we find C F = S w (0), and

f (n, w) ≥ |C F | = n w .
Example 1'. Suppose w ≥ n/2. Then for F = [n] n/2 we find C F = S n/2 (0), and

f (n, w) ≥ |C F | = n n/2
(where for ease of notation we write n/2 instead of ⌊n/2⌋). The corresponding codes C F have same cardinality as the sphere (2 × 3 = 6, 14 × 5 = 70 and 132 × 7 = 924 respectively), but they are not translates of a sphere. Indeed, when C is a (translate of a) sphere with w = n/2, one has C C,w (W ) = 2 for any window W ∈ [n] w . On the other hand, for C = C F as above, one has by construction C C,w (W ) = w + 1 for W ∈ F.

Another construction

Let D ⊂ {0, 1} w be a binary (non-linear) code of length w > n/2 and minimal weight at least 2wn.

Let C 1 be the code of length n obtained by taking all words of length w that do not belong to D, and completing them with 0 on the last nw coordinates. Thus On the other hand, remark that C 1 ⊂ {0, 1} [w] and C 2 ⊂ S w (0), so that |C| ≤ 2 w + n w .

Conclusion and open problems

We have determined the asymptotic size of optimal w-witness codes. A few issues remain open in the non-asymptotic case, among which:

-When is the sphere S w (0) the/an optimal w-witness code? Do we have f (n, w) = n w for w ≤ n/2 ? In particular do we have f (2w, w) = 2w w ? -For w > n/2, do we have f (n, w) ≤ max( n n/2 , 2 w + n w ) ? -Denoting by f (n, w, ≥ d) the maximal size of a w-witness code with minimum distance d, can the asymptotics of Proposition 2 be improved to 1 n log 2 f (n, ωn, ≥ δn) < h(ω) ?

Lemma 1 .Lemma 2 .

 12 With these notations, the mean values of |W C,w | and |C C,w | are related by|C|E c (|W C,w (c)|) = n w E W (|C C,w (W )|),or equivalently|C| n w = E W (|C C,w (W )|) E c (|W C,w (c)|) . Proof. Double count the set (W, c) ∈ [n] w × C : W is a witness for c . Now let γ(C, w) = E W (|C C,w (W )|) and let γ + (n, w) be the maximum possible value of γ(C, w) for C a binary code of length n, and γ ++ (n, w) be the maximum possible value of γ(C, w) for C a binary code of length n having the w-witness property. With these notations, one has γ + (n, w) = γ ++ (n, w).

Example 2 .Exemple 3 .

 23 For F = {W } with |W | ≤ w we find C F = {0, 1} W (where we see {0, 1} W as a subset of {0, 1} n by extension by 0 on the other coordinates), and f (n, w) ≥ |C F | = 2 w . Let F be the set of (supports of) words of a code with constant weight w and minimal distance d (one can suppose d even). Then for all distinct W, W ′ ∈ F one has |W ∩ W ′ | ≤ wd/2, so for all W ∈ F, the code C F contains all words of weight larger than wd/2 supported in W . This implies : Corollary 4. For all d one has f (n, w) ≥ A(n, d, w)B(w, d/2 -1) where: -A(n, d, w) is the maximal cardinality of a code of length n with minimal distance at least d and constant weight w -B(w, r) = Σ 1≤i≤r w i is the cardinality of the ball of radius r in {0, 1} w . For d = 2, this construction gives the sphere again. For d = 4, this gives f (n, w) ≥ (1 + w)A(n, d, w). We consider the following special values: -n = 4, d = 4, w = 2: A(4, 4, 2) = 2 -n = 8, d = 4, w = 4: A(8, 4, 4) = 14 -n = 12, d = 4, w = 6: A(12, 4, 6) = 132 the last two being obtained with F the Steiner system S(3, 4, 8) and S(5, 6, 12) respectively.

1 .

 1 |C 1 | = 2 w -|D|. Let C 2 be the code of length n formed by the words c of weight exactly w, and such that the projection of c on the first w coordinates belongs to D. Thus if n k is the number of codewords of weight k in D, one finds |C 2 | = k n k n-w w-k . Now let C be the (disjoint!) union of C 1 and C 2 . Then C has the w-witness property. Indeed, let c ∈ C. Then if c ∈ C 1 , c admits [w] as witness, while if c ∈ C 2 , c admits its support as witness.As an illustration, let D be the sphere of radius wt in {0, 1} w , for t ∈ {1, . . . , n-w 2 }. Thenf (n, w) ≥ |C| = 2 w + w wt nw t -If w satisfies 2 w > n n/2 but w < n -1, this improves on examples 1, 1', and 2 of the last subsection, in that one finds then f (n, w) ≥ |C| > max(