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Abstract

We consider a multi-dimensional diffusion process (X;),, with drift
vector b and diffusion matrix . This process is observed at ;Jrl discrete
times with regular sampling interval A. We provide sufficient conditions
for the existence and unicity of an invariant density. In a second step, we
assume that the process is stationary, and estimate the drift function b on
a compact set K in a nonparametric way. For this purpose, we consider a
family of finite dimensional linear subspaces of L? (K ), and compute a col-
lection of drift estimators on every subspace by a penalized least squares
approach. We introduce a penalty function and select the best drift esti-
mator. We obtain a bound for the risk of the resulting adaptive estimator.
Our method fits for any dimension d, but, for safe of clarity, we focus on
the case d = 2. We also provide several examples of two-dimensional dif-
fusions satisfying our assumptions, and realize various simulations. Our

results illustrate the theoretical properties of our estimators.

Running title : Estimation for multidimensional diffusions
key words : Drift, Model selection, Multidimensional diffusions, Nonpara-

metric estimation, Stationary distribution.

1 Introduction

Let us consider a d-dimensional diffusion process (X;),~, = (th, X2 .., X;i)t>0

satisfying the stochastic differential equation (SDE):

dXt = b(Xt)dt + E(Xt)th, XO =1, (].)

where b(x) = (bi (x));<;<, is a d-dimensional vector, ¥ (x) = (0i; (x)),; j<4 @

(d, d) matrix, n a d-dimensional random vector and (W;) a Brownian motion of

R? independent of 7. The process (X;) is assumed to be strictly stationary and



ergodic. Our aim is to realize nonparametric estimation of the drift function b,
given discretized observations.

Several papers deal with nonparametric drift estimation for one-dimensional
processes. In particular, Hoffmann (1999) studies nonparametric adaptive es-
timators using projections on wavelet bases. However, these estimators are
difficult to implement numerically. Comte et al. (2007) propose different non-
parametric estimators, based on a penalized least squares approach. Their es-
timators are easily computable and have optimality properties. Our aim is
to extend these results to multidimensional diffusions. Statistical inference for
multidimensional ergodic diffusions is not often studied. This is partly because
the characterization and computation of stationary laws is more difficult than
for one-dimensional models. From Pardoux and Veretennikov (2001) and Kent
(1978), we provide sufficient conditions for the existence and unicity of an invari-
ant density for the SDE (1) (see also Jacobsen (2001)). The observed process is
assumed to be strictly stationary and [-mixing, and the discrete observations
(XO, XA, -.-- 7X(n+1)A) have a sampling interval A. Our asymptotic framework
is n tends to infinity, A = A,, tends to 0 and nA tends to infinity. The drift
vector is estimated on a compact set X C R?. For each component of the drift,
bi(x), i=1,...,d, we define a collection of nonparametric estimators (Ezm)m of
b; belonging to a family of linear subspaces (Sm)m of L?(K). Then, introducing
a penalty, we select the best estimator by,: the adaptive estimator risk reaches
the usual optimal nonparametric rate. The case b(xy,...,24) = Z?zl ci(x;) is
studied separately. For this case, the optimal rate obtained for the estimator is
the same as in dimension d = 1.

In Section 2, we specify the model and its assumptions. Section 3 describes
approximation spaces. Section 4 presents the estimator and studies its risk like
in Comte et al. (2007). Section 5 gives some indications for the estimation
algorithm. Section 6 proposes examples of multidimensional diffusion processes
for which data are simulated and estimators are implemented. Numerical sim-
ulations results are convincing, even if some theoretical assumptions are not

satisfied. Proofs are given in Section 7.

2 Model and assumptions

We consider a diffusion process (X;) satisfying (1). We denote by (x,y) =
Zle z;y; the usual scalar product of R by |x| the associated norm and by
|M|,,,; & matricial norm. For a matrix M, M* denotes its transpose. Let us

consider the following assumptions:



Assumption 1.
The functions X (x) and b (x) are globally Lipschitz:

I,V (xy) € (R [S(X) =S (¥)|pey + b x) —b ) < LIx—y].

Assumption 2.

There exist constants r > 0 and o« > 1 such that
IMy € RT,  Vx, |x| > M, (b(x),x) < —r|x|”.

Assumption 3.
(i) The diffusion matriz A (x) = X (x) X% (x) = (aij (x)),<; j<4 i bounded and

positive. Let o2 be such that
vx, Tr(A(x)) <o?.
(ii) The matriz A satisfies:
I A >0, vxeRY AL x]P < (AX)x,x) < Ay |x[*.

Assumption 4.
(i) b e €' (R, RY), A e ¢* (R, R @RY).
(ii) There exists a function V € € (RdJR) satisfying:
d
1 0
b=- —a;; — AVV.
2 Z dl’j “ J v
i=1 1<i<d

(iii) ¢ = exp (—2V (x)) < +o0.

Assumption 1 implies existence and uniqueness of a process (X;),~, solution
of (1) (see Karatzas and Shreve, Theorem 2.5, p.281 (1988)). Under Assump-
tions 2-3, there exists a unique invariant density (see Pardoux and Veretennikov
(2001), Veretennikov (1987)). Under Assumption 4, we introduce

7 (x) =c lexp (—2V (x)). (2)

Proposition 1.
Under Assumptions 1-4, equation (1) has a unique invariant density, which is

.
Let us assume:

Assumption 5.

N~ .



Under Assumptions 1-5, according to Pardoux and Veretennikov (2001),
the process (X;) is strictly stationary and exponentially S-mixing: there exists

positive constants C, # such that, for all ¢ > 0,
Bx(t) < Ce”,

where Ox (t) denotes the (-mixing coefficient of (X;). Recall that, for a station-

ary diffusion process,

1
Bx(s) = §HP<XU,XS) — Px, ® Px,|Tv

where P(x, x,) is the joint law of (X, X,), Px, the law of X¢ and |[|.[|7v the

total variation distance. Furthermore,
v >0, Elexp(v|n|)] < oco.

In particular, n has moments of any order. The following proposition is useful

for proofs.

Proposition 2.
Under Assumptions 1-5,
Vk>1,3c(k)eR,Vh,0<h<1,Vt>0:

E| sup [b(X,)—b(X)[" ) < (k)2
s€[t,t+h)
This proposition is proved e.g. in Gloter (2000) for a one-dimensional diffu-

sion. The extension to the multidimensional case is straightforward.

3 Approximation spaces

Our aim is to estimate the drift function b on a compact set K of RY. Without
loss of generality, we consider K = [0,1]%. As the stationary density  (x) is
proportional to exp (—2V (x)), there exist some constants m and 7; such that,
for all x € K,

0<m <m(x)<m < —+oo.

Below, we construct a family (S,,) _ of linear subspace of L?(K) with

D,, = dim(S,,,) and where .#,, is the index set of the collection:

My, = My(r) ={m, Dy, < Ny}, (3)



where the maximal dimension N,, will be later precised. For each m € .#,,, we
compute an estimator lf)m of b, belonging to S, Then we choose the “best”
possible estimator by introducing a penalty function pen(m). For simplicity,
we describe the case d = 2. The construction of a collection would be exactly
the same for any dimension d. We start by constructing subspaces of L%([0,1]).
Then we deduce subspaces of L2([0,1]?).

3.1 Construction of univariate subspaces

For our construction, we use spline functions. We recall here some of their

properties. The spline function of degree r is denoted by g,., where
gr = ]].[0’1] * 1[0’1] kL% 1[0’1] r 4+ 1 times

is the (r + 1) times convolution of the indicator function of [0, 1]. This function
is a piecewise polynomial of degree r and of support [0,7 + 1] and, for any
r > 1, it belongs to ¥"~!. According to standard properties of convolution,
we obtain by induction that, for any integer r, fjof gr () dx = 1 and, for all
reR, >, 5,9 (x—k)=1. Let usfix r > 1 and denote, for k € Z,

fO,k = g,«(. — k)]]-[o,l] and Sy = Vect {(fo’k) ke Z}.

Every function g € Sy has support in [0, 1] and can be written as

0

g= Z ar fo k-

k=—r

Functions fo, for & ¢ {—r,...,0}, are identically null. Let us define, for
meN ke Z,
fmk(x) = 2m/2gr 2"z — k) Lio,q ()

which has support [;fn V0, k';’;,j'l A 1]. Non null functions f,, ; correspond

to k € {—r,—r+1,...,2™ —1}. Their supports are not disjoint but these
functions are linearly independent. Let us set S,, = Vect {(fmx),k € Z} the

vector space generated by functions f, ;. Its dimension is d,, = 2™ +r. Any

function g € S, has a support included in [0,1] and can be written as

2m—1
g= Z am,k:fm,k:-

k=—r

Moreover, as g7 < g, < 1, we have that [, f7 , (v)dx < [, g7 (x)dx < 1.



Proposition 3.

There exists a positive constant ¢y such that, for any t € Sp,:
2 2
115 < dodm lItll7- -

3.2 Bi-variate spaces

Now, we build subspaces S,, of L? ([O, 1}2). For this purpose, we use two differ-
ent constructions.

The first one uses tensorial products. It is more general than the second and
allows us to approximate any function of L? ([0,1]?). Let us set S, = Sy @ Sy,

Any function g € S,, can be written as

2m—1

g (‘Tvy) = Z am,k,lfm,k ((E) fm,l (y) .

kl=—r

The family F,, = {fm.x (¥) fmi (v)} is a basis of S, and we have that D,, =

dim(S,,) = d2, = (2™ 4 r)*. For d-variate spaces, we would have
Dy, =d% = (27 +1)°.
The second construction only allows us to estimate drift functions of the form

b(z,y) = c(z) +e(y).

In that case, our estimator is of the form b (z,y) = & () + & (y). As a conse-

quence, we can consider the family

om_q 2m 1
Sm = {(x,y) =@y, 9@y =Y Cmkfms @)+ Y Bmifm (y)}-

k=—r l=—r

The dimension of the latter S, is Dy, = 2 (r +2™). In the d-variate case, we
would have
D, =d(r+2m).

In order to use generic notations, we consider E, = {(cpm,k)0<k<D 71} a basis
of S,,. According to Meyer (1990), spline functions constitute a multiresolution
analysis of L? (R), and, according to Proposition 4, p.50, we deduce

Proposition 4.

Let t belong to the Besov space BY ([O, l]d) and let t,, be its orthogonal pro-



jection (L?) over S,, with v > . Then
AC >0, |t —tmll <C27™

Remark 1.

We could as well use anisotropic spaces 5’m17m2 = Spm, ® Sm, depending on
m1, me, r1 and ro, generated by Fu, m, = {fmy & (2) fimei (¥)}, with D, =
(r1+2™) (rg + 2™2). Reduced spaces would be

2m1 2m2 1

1
Sml,mQ = Sm1+Sm2 = {(mvy) - g($,y) = Z aml,kfml.,k (:L’) + Z ﬁmz,lfmz,l (y)

]C:*’I‘l l:7T2

with dimension D,,, = r1 +ry+ 2™t 4+ 2™2. The following result replaces Propo-

sition 4:

Proposition 5.

aq,Qa2
2,00

Let t belongs to the Besov space B ([07 1]d) with projection tym, m, 0N Spy ms -

Assume that ry > a1 and ro > ay. We have that
aC > O, ||t — tm17m2”L2 <C (27m1a1 + 27m2a2) ]

(see Lacour (2007), Lemma 9.)

4 Drift estimation

4.1 Notations

Remember that K = [0, 1]¢ and set

Voo = mASSE g o f [ sxgaw., @)
A A Jia
and, for any function ¢ from R? to R:
1 [k+DA
B =5 [ 00 - t(Xea)ds
A Jya

By (1), fori=1,...,d,
Yia = bi(Xga) + Ixa (b;) + Zia

where 2% is the ith component of the vector x. In this equation, b;(Xya) is the
main term, Z,iA a noise term and Ixa (b;) a remainder term. We estimate each

component b; of the drift b. Let us consider, for i = 1,...,d, the contrast

2



n

(Via — t(Xpa))” (5)
k=1

’Yn,i(t) =

S|

and define the estimator i)m,i:

Bm,i = arg min v, ;(¢).
teESm
We always can find a function Bm,i which minimizes v, ;, but it may be not
unique. On the contrary, setting Y = (YA,YJ5,...,Y,i5), the random vector
(l;m’i (Xa),--- ,Z;m’i (XHA)> = II,, (Y), where II,, is the Euclidean projection
over the subspace {(t (Xa),- -, t(Xpa)),t € S'm}, is always uniquely defined.
For this reason, as in Comte et al. (2007), we choose the risk function equal to

2
)
n

X (I;mz) =E (Hl;mz —bi i

where [|t]|2 = L S0 2(Xga) and b g = bilx.

4.2 Risk of the non-adaptive estimator

Using equations (4) and (5), we obtain that

n

2 2
Ynyi () =Yn,i (bi) = Ht—bz‘H%ﬁﬁ Z(bi_t)(XkA)lecA‘Fﬁ > (bi—t)(Xia) Tea (b) -
k=1 k=1

Set

> H(Xka)Zia-

k=1

Vn,i(t) =

1 n
E =
The orthogonal projection (L2) of b; over S, is denoted bm,i. We have

’Yn,i(bm,i) ’Yn,z(bm,z)
'Vn,i(l;m,i) —Yni(bi) < Yni(bmyi) — Yn,i(bi)-

IA

So we can write

. A 2
[bm,i — billz < ||bm,z‘—bz‘||i+2'/n,i(bm,i—bm,i)+;

Z(i’mvi = bini) (Xka) Iea (bi) -

k=1

As the supports of Em,i and by, ; are included in K,

N R 2 .
lom,s = birc < bmi = biscln + 20m,i (i = bm,i) + =D (b = bms) (Xea) Tea (bi)



Let us introduce the asymptotic framework:

Assumption 6.
(i) A=A, — 0 and nAZ = O(1),

(i) % — o0 and N2 = O l;"?(:i)), where Ny, is the mazimal dimension (see

equation (3)).

Theorem 1.

Under Assumptions 1-6, the risk for the drift estimator b belonging to a space

Sm satisfies, for alli=1,...,d:

R D,, c
E(Bmi — bixc|2) < C (bm,i bkl + 02 )

/!
—Zm A+ -
A +C —|—nA (6)

with C,C",C" constants.

4.3 Optimization of the dimension space

For given (n,A), we wish to select m in order to obtain the best compromise

D”YL
nA "

first step, we assume that the regularity is known, i.e. that b; x € B, and

between the bias term by, ; — b; k|32, and the main variance term, In a

Hbi,KHng < 1, with 7 > «. Thanks to Proposition 4, we have that
b5,k = bmsill 32 < C272me

Let us distinguish two cases. If D,, = (2™ +r)%, i.e. if D, is of order 2m4

(tensorial product), m has to satisfy the equation
L log, (nA)
m=——1log, (nA).
d+2a %

If D,,, = d (2™ 4 r) (reduced basis), D,, is of order 2™ and we must have

m

=172 log, (nA).

Using equation (6), we get for a basis obtained by tensorial product

1
B[l — bisc2) < K ()27 4 01 4 =

or, for a reduced basis,

1

]E(H?)m,i - bi,K”i) <K (nA)_Qa/(Qa—H) +C'A+ E

In the latter case, our estimator converges at the same rate as for a one-

dimensional model.



Remark 2.
Using anisotropic tensorised bases, we would have that
5 2a/(2a-+d c”
B(lbms = bixcll7) < K (nd) >/ 1 OA+
nA
with & defined by 4 = Zle - For anisotropic reduced bases, we would find
that
1
E([lbm,s — bi.cl[2) < K (n) 2/ 4 oA 4
where @ = min(w;): in this case, using anisotropic bases does not modify the

theoretical convergence rate.

4.4 Adaptive estimation

Since we do not know the regularity of b;, it is important to construct an algo-
rithm which selects automatically m, without any knowledge about the regular-
ity of b;. For that purpose, we introduce a penalty function pen(m), depending
on the dimension D,,, on the number of observations n and on the discretization
step A. Then, we define

f; = arg mrg\l/tl ’Ynl(i’mz) + pen(m)}

with the penalty function pen(m) such that

> Kog—2".
pen(m) > ko A

We denote by l~)i = l;qu the resulting estimator. In our simulations, we used

pen(m) = ko 2z with k = 5. (This constant was chosen by numerical calibra-

tion, see Comte and Rozenholc (2002, 2004) for a complete discussion).

Theorem 2.
Under Assumptions 1-6, the risk of the adaptive estimator satisfies, for i =
1,....d,

"

. . L C
E (15— bixcl2) <C it ([bix = ballfe +pen(m)) + C'A + —

where C, C', C" are constants.

The adaptive estimator automatically realizes the bias-variance compromise:
whenever b; x belongs to some Besov ball, if r > «, by, achieves the optimal

corresponding nonparametric rate.

10



5 Examples and simulation

5.1 Algorithms

In this section, we set X, = Xpa and Y, = YiA for the ith component of
vector Yya. Any function g € S,,, can be written g (x) = Zf:ofl O ke Pm. i (X)
and is characterized by the vector a = (am.x)y_q p, _1- For computing the

estimator b, ;, we minimize with respect to a the expression

n Dpn—1 2
Z (ifz - Z A, kPm k (Xz)> .

i=1 k=0

We have to solve, for [ =0,...,D,, — 1:

n Dp,—1 n
> ok [Pk (X)) @t (X)] =DV o (X))
j=1 k=0 j=1

Let us set P = (om. (X;))1—0. p,, 1, j=1,.n20dY =(Y1,... ,Y,)", and solve
the equation PP*«a = PY.

We simulate a process (X;) by an Euler discretization scheme with sampling
interval § and consider Xza with A = pé and p integer, £k = 1,...,n. The
number n of observations varies from 100 to 50 000 and A from 0.01 to 0.1.
When n > 10000, we have chosen § = A, otherwise, § = 0.01 and p = 5, 8,10. To
have enough points in our estimation compact, we keep 95% of the data points,
suppressing 5% of extreme values. To estimate the drift on any rectangle K, we
have two solutions: either center and renormalize the points X}, in order to have
values on [0,1]2, or modify the functions ¢, ;. We have modified the points
X}, and given afterwards the drift estimator on the rectangle K. Actually, our
algorithm is adaptive with respect to m and r.

We let r vary from 1 to Rmax and m from 0 to max (.4, (r)). Then, to
compute lA)mJ-, we solve in « the equation PP*a = PY and compute 7, ;(m,T)
with pen(m) = pen(m,r). We minimize ~, ;(m,r) + pen(m,r) with respect to

m and r, and return the obtained estimator BZ = by, i-

5.2 Examples
5.2.1 Constant diffusion matrix

We consider the stochastic differential equation

dX, = —AVV (X,) dt + SdW,, X =1, (7)

11



with A = ¥¥* a constant matrix. According to Proposition 1, if the function
p(x) = exp (—2V (x)) is integrable, the process (X;),, solution of equation (7)
is a reversible process, with stationary density propor_tional to p. The following
examples are proposed in Fearnhead et al. (2007).

Model 1: Ornstein-Uhlenbeck process
We consider the stochastic process of parameters

02 0.2 z 11
b(x’y)< 0.1 —0.2><y>’ E(o 1)'

Its invariant density 7 (x) is proportional to exp (—42? — 2y + 2ay), i.e.

= ((3)3(03))

We simulate a path with n = 10000 points and A = 0.1. Figure 3 shows
the estimation of the drift first component b; with a reduced basis. Figure 4

represents sections for the same model.

Model 2: Double-well potential

Let us consider

—4 4
b (z,y) = 4 TR s_qa
4 —y3 — 3y

The invariant density is
7 (X) x exp (—2 (y* — 1)2 —16(y — a:)2> .

Figure 1 shows its graph (non normalized). This SDE does not satisfy all our
assumptions. In particular, the drift is not Lipschitz. We simulate a path with
n = 10000 points and A = 0.01. Figures 5 and 6 show the estimation of the
second component by, which is a non linear function, with a reduced basis. Risks
are computed on the square [—1.8, 1.8]2.
Model 3: Fixman potential

Let us consider

b (r.y) = < —x/2 — 2 cos (3/:2)_—yji2cos (3x) + /2 ) ’ S - Id

12



Figure 1: Stationary density of model 2

The invariant density is
1 2 . :
7 (%) x exp ~5 (y —x)” — 2sin(2x) — 4sin(3z) | .

Figure 2 shows the graph (non normalized) of this stationary density. We
simulate a path with n = 10000 points and A = 0.08. Figures 7 and 8 represent
the estimation of the drift first component by, with a reduced basis, on the

compact set [—m, ]2, Risks are computed on the same rectangle.

Figure 2: Stationary density of model 3
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150
100
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Figure 3: Flows comparison for model 1

True drift Estimated drift

Estimated function: by (z,y) = —0.22 + 0.2y.
light area: estimated drift at observed points.
dark area: estimated drift on the whole rectangle.

Figure 4: Sections for model 1

x=0.9 L y=‘0.7 |

15
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-0.5
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-15 . . . 2 . . .
10 -5 0 5 10 10 -5 0 5 10

Estimated function: by
¢ true drift
: estimated drift
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Figure 5: Flows comparison for model 2

True drift Estimated drift

Estimated function: by (z,y) = 16z — 4y — 12y.
light area: estimated drift at observed points.
dark area: estimated drift on the whole rectangle.

Figure 6: Sections for model 2

30 40
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0 10
-10f 1 of
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9, a 0 1 2 T 0 1 2 3

Estimated function: by
¢ true drift
: estimated drift
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Figure 7: Flows comparison for model 3

True drift Estimated drift

10

-5

-10

Estimated function: by (z,y) = —z/2 — 2 cos(2z) — 6 cos(3z) + y/2.
light area: estimated drift at observed points.
dark area: estimated drift on the whole rectangle.

Figure 8: Sections for model 3

Xf—O ‘ ‘ ‘ Y?O
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-75

-8.5
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Estimated function: b;
_: true drift
: estimated drift
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5.2.2 Non constant diffusion matrix

Model 4: Function of an Ornstein-Uhlenbeck process
We consider the two-dimensional Ornstein-Uhlenbeck process

dZ; = —BZydt + XdW,,  Zo =1,

with B = (b;;) , ¥ = (04;) and the vector function f (21, 22) = (exp(21), exp(22))”.
If we set X = f (Z;), according to the Ito formula, (X¢),, satisfies the SDE:

ax} ==X} (bt (X}) + baIn (X7) = 215282 ) 4 X (11 d W + 012d W)
dXt2 = _Xt2 (bgl In (th) + b22 In (XE) — @) —+ Xt2 (ngthl —+ 022th2)

The drift function is not the sum of two functions of one variable. Set B =

9 -1 3
0 and ¥ = 0 2 ) The stationary density associated with Z; is

4 1
m =4 (0,A) where A = % Lo ) so the invariant density of X; is

—In(z)+In(y)—1,,—2In(y)—1 .

T(x) xx Yy
Figures 9 and 10 show the estimation of the drift first component b; for a
tensorised spline basis, for n = 10000 observations and A = 0.1. Risks are

computed on the rectangle [0,3.5] x [0.2,2.2].

Model 5: Multivariate Student invariant distribution
The following example comes from Jacobsen and Sorensen (2001) and Ja-

cobsen (2004). We consider a stochastic process such that

dX; = —BB*X,dt + B\/v (X;)dW,, Xg =1,

where B is a constant, symmetric and positive definite matrix, and v (x) =
2(v+d—2)"" (v+|x|?) . The associated invariant density is a multivariate
Student law with parameter v, and density

—(v+d)/2

7 (%) o< (v + [xI1°)

The multivariate Student law with dimension d and degree of freedom v is the
distribution of \/%, where X has law .40, Id), Y has law x?(v) and X and Y

are independent. This model satisfies the equation b = —AVV with diffusion

17



matrix A(x) = BB*v(x) and V(x) = “t¢In (1/ + ||x||2> We choose

19
v =10, BB* =
9 1

and estimate the first component b; (xz,y) = —z — 0.9y. Figures 11 and 12
correspond to estimation with reduced spline functions, with n = 10000 ob-
servations and sample path A = 0.1. Risks are computed on the rectangle
[—1.6,2.4] x [—2.4,1.6]. In this example, A(x) is not bounded. We set 02 = 8
for the penalty, which is larger than the maximal value of Tr(A(x)) over the

estimation domain.

5.2.3 Model 6: Hamiltonian system

Consider the stochastic process associated with the following SDE:

dX; = Yidt
dYt = —VV(Xt)dt—C}/tdt—FO'th

The process parameters are

_ Y (0 0
b(x’y)_<—VV(a:)—cy> and E—<0 U).

They do not satisfy Assumptions 1 and 4, but, according to Wu (2001), if the
function exp(—2V) is integrable, the model has a unique invariant density, which

7 (2,y) o exp (_jg <y; + vm)) .

Figure 13 shows the non normalized graph of this function. The infinitesimal

is

generator adjoint L* can be written, for any function g € €2,

2

. o
L*g=cg—y0.9+ (VV (z) +cy) 9,9 + 781/?49'

We can easily check than L*1 = 0. Let us choose c =1, 0 = 1 and V (z) = 22+
sin(3xz). Figures 14 and 15 show the estimation of the drift second component,
ba, over the compact set [—m,7]? for n = 10000 points and A = 0.1. Risks are

computed on the same set.
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Figure 9: Flows comparison for Model 4

True drift

Estimated drift

Estimated function: by (z,y) = —9z In(z) + In(y) + 5.
The drift is estimated at simulated points.

-100

Figure 10: Sections for Model 4

x=06.4

y=2.9

20

10 7

Estimated drift: by
¢ true drift
: estimated drift
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Figure 11: Flows comparison for Model 5

True drift Estimated drift

-5 5 -5 5

Estimated function: by (z,y) = —z — 0.9y.
light area: estimated drift at simulated points.
dark area: estimated drift on the whole rectangle.

Figure 12: Sections for Model 5
x=-0.2 ] Y:j0-2

Estimated function: b;
_: true drift
: estimated drift
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Figure 13: Stationary density of Model 6

5.3 Results and comments

The values selected by the algorithm are denoted m and 7. We compute the

error measured by the empirical norm:
error = ||b; — by k|2
In order to check that the algorithm is adaptive, we also compute
emin = mwlln{||l;mZ - szHi} .

In tables below, we choose a fixed compact K = K; x K5 precised for each
example, and compute the mean of m and 7. We also compute "ris =mean
of error” over 50 estimations, and an oracle "or =mean of error/emin” over
50 estimations. We used spline functions (reduced sp, tensorised sp), and the
piecewise polynomial bases (tensorised poly) described in Comte et al. (2007)
(for the latter bases, we use £ = 10).

When the drift is linear (Models 1 and 5), our risks are nearly proportional
to the product nA. Moreover, estimated functions are always linear. Approx-
imating a polynomial function (see Model 2) is a little more difficult and the
estimator degree 7 is in general smaller than the true drift one. Moreover, the
smaller nA, the smaller #. When the norm of the drift function is large (Model
2), the noise term in A becomes important. In Model 4, the drift is a loga-
rithmic function, and, as we use polynomial functions, its estimation is not very
good. The drift is not a sum of two functions of one variables, nevertheless, risks

computed by reduced bases and tensorised bases are of same order. Estimation
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Figure 14: Flows comparison for Model 6

True drift Estimated drift

Estimated function: bs(x,y) = —22 — 3cos(x) — y.
light area: estimated drift at simulated points.
dark area: estimated drift on the whole rectangle.

Figure 15: Sections for Model 6
x=0 y=u

-5

-6 L L L L L ° -12 L L L L L
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Estimated function: b,
_: true drift
: estimated drift
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of trigonometric functions (Models 3 and 6) is not easy. Moreover, unexpect-
edly, risks decrease when A get smaller. In fact, the smaller the discretization
path, the smaller the compact K, and the less observed oscillations of the drift
function. The better estimations are obtained with reduced spline functions.
In general, we can not compare oracle values for our four different estimators,
because these estimators are not chosen over the same functions spaces. We can
observe that the oracle for tensorised bases are pretty good, better than for
the reduced spline functions. Nevertheless, risks are in general smaller for the

reduced spline functions.

6 Proofs

6.1 Proof of Proposition 1

We have to prove that 7 is an invariant density. Infinitesimal generator L
associated with SDE (1) can be written, for any function f € €2(R¢,R) := %2,

Lf= Zb8f+ Z ai;0i; [

3,7=1

where 0; and 0;; denote partial derivative operators. General form of adjoint
* of L with respect to L?(R%) := L? is, for any function g € €%
d 1A
L'g=—> 0i(big) + 3 > 9i(aizg)-

i=1 i,j=1

Lemma 1.
If h € €2 is a stationary density, then L*h = 0.

Proof. Assume that the process (X;),, is stationary, with marginal density h.
According to the Tto formula, for any function f € €2

Fox) =1%o+ [ 1 ds+2/af Z% AW,

Taking expectation, for any f € 42, we obtain

E(f (X)) = E(f (Xo)) + / E(Lf (X.))ds
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Table 1: Risks for models with constant variance

Risks for Model 1: by(x,y) = -2z +y

n A reduced sp tensorised sp tensorised poly
ris | or [m |7 vis | or [ |7 vis | or [/ |7
107 0.1 0.0009[1.05] 0 [1]0.001[1.00] 0 ]1]0001[1.00]07]1
10% | 0.01 0.01 1.07| 0 |1 0.01 | 1.00| 0 |1 001 100} 0 |1
10° | 0.1 0.01 1.00 0 |1 0.01 |1.00| O |1 001 |1.00] 0 |1
10° | 0.01 0.1 1.7 011 0.1 1.00| 0 |1 0.1 1.11 | 0 | 1
10% | 0.1 007 {100 0|1y 009 |1.00| 0 |1 009 |1.02|0 |1
Risks for Model 2: by(z,y) = 162 — 4y3 — 12y
n A reduced sp tensorised sp tensorised poly
ris \ or \fn\f ris \ or \m\f ris \ or \fn\f
10 ] 0.1 0009 | 1.06 | O |1] 001|100 |0 |1001|14|0]|1
10* | 0.01 0.1 1.03| 0 |1 0.1 |1.04] 0 |1 01 22|01
102 | 0.1 0.1 117 0 | 1 02 | 1.17 ] 0 |1 0.2 3 011
10% | 0.01 1.7 | 1070 |1) 19 |100| O (1| 19 |46 | 0 |1
102 | 0.1 1.5 1.00| O |1 1.8 |1.00| O |1 1.8 |47 | 0 |1
Risks for Model 3: by(x,y) = 162 — 4y3 — 12y
n A reduced sp tensorised sp tensorised poly
ris | or | m | 7 ris | or | m | 7 ris | or | m | 7
5.10* [ 0.01 ][ 0.02 ] 1.00 [ 0 0.05 | 1.25 | 0.1 | 2 0.05 | 1.58 | 0O
10* [0.01] 01 [1.09[01[291] 01 [1.00] 0 2 0.1 |1.28 01119
103 0.01 1.7 | 1.77 0 1.3 1.4 | 1.00 0 1 1.3 1.5 | 0.2 1
103 0.1 7 1.00 | 0.9 | 2.1 7 1.01 | 0.8 | 1.2 7 1.02 09| 1
Risks for Model 4: b (x,y) = #/2 — 2 cos (2x) — 6 cos (3x) + ¥/2
n A reduced sp tensorised sp tensorised poly
ris \ or \ m \ 7 ris \ or \ m \ 7 ris \ or \ m \ r
107008 1.1[1.07[15[43]6.2]100]08]21 2 | 1011713
1000502 ]101]02[33[12]101]08]181 06]1.01 1 1.3
10* ] 0.01 [ 0.2 2.2 0 |19]03|102| 0 |[1.1]02]1.04]| 0 1
103008 1.8]102]06 |29 35[100]04]16] 211 1.06 1 1.2
1021005 1.3[102] 0 [12]14]104] 0 [1.1][ 14110 O 1
102 [ 0.01 || 0.6 | 1.13 0 1.1 || 0.7 | 1.00 0 1 0.7 | 1.02 0 1
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Table 6: Risks for models with non constant variance

Risks for Model 5: by (z,y) = —92In(z) + = In(y) + 5z

n A reduced sp tensorised sp tensorised poly
vis [ or | [ 7 [[ris| or [ m [ 7 vis [ or | m |7
10°] 01 431052729 431051823 57 [145] 3 |1
10 (0014410505241 45]1.02][02] 1.6 70 | 1.61 2 1
10°] 0.1 |56 [1.03]01]12] 57 [1.03] 0 1 58 [ 1.05 |03 |1
103001 5811903121 58] 1.00 0 1 109 | 2.14 | 0.7 | 1
102 ] 0.1 |63 [ 1.05] 0O 0 64 | 1.00 | 0O 1 68 [ 1.19 | 0.1 |1
Risks for Model 6: b (z,y) = —z — 0.9y
n A reduced sp tensorised sp tensorised poly
ris‘or\m\f ris‘or\m\f ris\or\fn\f
10 ] 0.1 001100} 0|1}001]10|0]|1]001]10/0]1
101001 01 [100] 0 |1 011000 |1 01 [1.00] 011
102 | 0.1 0.1 {100 0 |1 02 [1.00]| 0 |1 0.1 | 1.00| 0 |1
101001 13 [100]0 |1 16 [100]0 |1 16 [1.69] 0 |1
102 | 0.1 1.3 {1020 |1 1.8 {1.00] 0 |1 1.9 [ 187 0 |1
Table 9: Risks for Model 7: by (z,y) = —22 — 3cos(3z) —y
n A reduced sp tensorised sp tensorised poly
vis | or | m [ F [Jrs| or [m [ 7 |[ris[ or [ | 7
107008004 118716461 1.2]1.00] 1.1 1 0.3 | 1.68 1 2.1
10* [ 0.05 || 0.07 | 1.08 | 1.5 [ 3.8 [ 0.8 | 1.00 | 1 1 03139 1 |19
10% | 0.01 0.2 | 1.48 1 271 06| 111 |08 | 1.1 06| 13909 1
10°] 008 0.3 [128] 09220611108 |1.106]134]0.8]1.1
10% | 0.05 04 | 138 0.7 (21]09]|127 06|11 08| 135]0.7]1.1
10°]001 1.2 1210212 1.7][167] 0 1 1.6 | 1.24 | 0.2 | 1
102 | 0.1 1.6 | 1.39 |04 | 1.2 || 2.4 | 1.00 0 1 20 1] 1.19 | 0.2 1
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and, thanks to stationarity,

/0 E(Lf(X,))ds=0= t/Lf(x)h(x)dx =(Lf,h);-

s (Lf,h);2 = (f,L*h) ., we obtain the expected result.
O

Let us explicit the particular form of L* and the solutions of equation L*h =

0 under Assumption 4.
Lemma 2.

Set 51' = bi — %Z?:l Gjaij. Then

d d

d
Lg=-30,(bo) + 5 S0 | Y aydg | = ~div (o).
i=1 j=1

i=1

where l(g) = gb — %AVg. Moreover, under Assumption 4, b = —AVV and the
function
h(x) < exp (—2V (x))
is solution of the equation L*h = 0.
Proof. We have, for any function f € €2:
1A d .
Lf=5 > 0iaydif) + Z - fdw (AVf) + <b,Vf>. ®)

ij=1

By integrating by parts, for any function g € €
d . 1
- 9 (big) — 5 105 0
;/Rdf (i) 2,Z/Rda”f g
d ~
_Z/dfaz(bzg Z/ fa az] zg <f’L*>
i=1 YR

'le

<ga Lf>L2

As A is symmetric, we obtain the predicted formula.
Let us solve [(h) = 0 under Assumption 4. As b = —AVV and A is
invertible, we have to solve 2AVV = Vh. We find

h(x) o exp (—2V (x)). O

Lemma 3.
L is selfadjoint with respect to L2 := L?>(R?, r(x)dx). Under Assumptions 1- 4,
7 is the only invariant density associated with the SDE (1) (see (2)).
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Proof. The adjoint of L with respect to L2 is denoted L*™. We have:

1

L™ (g) = _L" (mg).

It is known that Vr/2r = —VV = A~1b. For any function g € €2,
. 1. o1
L*g=——=div | mgb — = AV (7g) | .
T 2

On one hand,

%div (wgf)) = div (gf)) + <V7T7T,gf)> = gdiv (B) + <Vg, B> + 2g <A*11~), f)> .
On the other hand,

1 1
—div (AV (rg)) = —div(mAVg+ gAV)
27 27

1 /Vn

1
= =div(AVg) + = { ~, AV
2d1V( g)+2< 7{_7 g>

1 . 1 vV

As A is symmetric,

<W Avg> - <A—1B,Av9> = <B,Vg>,

o’

and the last term is written

(Voay) = (b.73).
Furthermore:
%div (AV7) = %div (%B) = div (B) + <V: B> = div (B) +2 <A*16,b> .
Collecting terms, we obtain:
%div (AV (rg)) = %div (AVg) + 2 <B, vg> + gdiv (6) +2g <A*1f), B> ,

and, using (8),
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Kent (1978) demonstrates the following result:

Lemma 4.
For a function h > 0 of RY , L*" = L if and only if the transtion density of
(Xy), p(t,x,y), is h-symmetric, i.e.

pt,x,y) _ p(t,y,x)
h(y) h(x)

Vt7 X7 y’

If h is integrable, the symmetry relation implies that h (normalized) is a sta-

tionary density.

As L is selfadjoint with respect to 7(x)dx, 7 is the only stationary density.

6.2 Proof of Proposition 3

Any function t € S,,, can be written t(x) = ii_lr 0k fm,k(x). Consequently,
we have
om_q 2 om
Iel, = / ( S Qg (27 - k)) d = / u?(y)dy,
k=—r 0
where
2771 1
Z Wk gr (Y — k) Ljo,2m) (y).
k=—r
Let us notice that
[t]|2 = 2™ Jull%,  and  [[¢]F2 = [Ju]Z-. (9)

As d,, = r 4+ 2™, we only have to prove that there exists a positive constant cg

such that ||u|ls < collu|lr2. The maximum of u is attained at a point z € I =

[0, jo + 1]. We have that
Jully = llulsl  and [l > [Juls]l ..

Assume I = [0,1]. We can write

u(z 1[0 1] Z m kgr (x — k) 1[0,1] ().

k=—r

Then ulj ) € So, a vector subspace of finite dimension dy = r + 1. In this

subspace, all norms are equivalent, as a consequence we obtain that
Jeo >0, [Julp .yl < collulpyl,.
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which, with (9), ends the proof.

6.3 Proof of Theorem 1

All these proofs are adapted of Comte et al (2007). Introduce the norm

o2 = [ £ eomtoix

and the set
_ / 2 & . & [ 1
Q=S w, V(mm')e.ay, Vte ] (Sm+Sw)~{0}, TE 1< 3
in which norms ||.||,, and ||.||,, are equivalent: in €,,, we have
[ s (10)

Proposition 6.

~ D’m
E(Hbm,l — bi,KH?x]lQn) <7mE (”bm,i — bz,K”%ﬁ) + 320’8@ + 32cA.

Proof. We have:

IN

bam.i — bi,ic |12 + 2033 (Brni — bomi)

+ %Z @M - bm,i) (Xka) Ira (b) .-
k=1

[bm,i — bixcll7

On one hand,

2,0 (bmi —bmi) < 20bmi —bmillx  sup  |vn(t)]
tESm,||t||x=1
1 ~
< §||bm,¢—bm,i||3r+8 sup  |vni(1)[.

tESm,It]l-=1

On the other hand, according to the Cauchy-Schwartz inequality,

Sl

> (B = b ) (Kea) Tea (0) < 2/ = bl
k=1

n

1 — 5
-~ > Iia (b)
k=1

1

~
g”bm,i - bm,i

IN

8 n
|%L + o ZIkA (bi)Z .
k=1

Introducing (10), we have that [y — bm.il|2 < 2l[bm.s — bm.il|2 and |[bm.; —

29



bn.il|2 < 2||/l;m,i —bi k|2 +2||bi.x — bm.il|2. Collecting terms, we obtain that

1 ~
*Hbm,i - bi7KH1?L <

7 8 —
4 *”bi,K - bm,i”i +38 sup |Vn,i(t)|2 + n ; Ixa (bi)2 .

4 t€8m[It]l =1

Hence, we have

- 32 &
[bm,i=bi i |21, < Tlbmi=bix|Z432  sup  |vni(B)+= > (Tra (b:))"
€8 [t =1 "=

Thanks to Assumption 2, the last term is easily bounded:

1 DA
E [I}a (b:)] < NN E[(b:(Xs) — bi(Xya))?]ds
< cA.

It remains to bound

E ( _sup zszji(t)> :
tE€ S, |t =1

Vector subspace S, has an orthonormal basis with respect to L2. We denote it
by {¢x, A € Ay}, with card(A,,,) = D,y,. Every function t € S, can be written
ast =) ca, axpa, and its norm is obtained by the formula It)|2 = D aeA,, a3.
So,

E( sup Vﬁ,i(t)> < Y Efnni(ea)]

tESm, |t x=1 NEA,

As the process is stationary,

E[¢3 (Xpa)] = / S X)m(x)dx = 1,

and we obtain

5 1 n ) (k+1)A
E ) = oA2 E X i (Xs)d
[Vn,l (QDA)] n2ZA2 1; o (Xka) /k:A a;; (Xs)ds
. %%
- nA’

where of is defined in Assumption 3.
Proposition 7.
E([[bm,i — bikll71a:) <

‘.
nA’
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Proof. 1t is demonstrated in Comte et al. (2007), Lemma 1 p.533 (see Ap-
pendix), that

P(X) < (11)

Let usset exa = Ipa (bi)+Zip, e = (a, ... ena) and 1L, Y =11, (Y4, ..., Vi )* =
(/Z;M,i(XA)anwgm,i(XnA)) . We obtain

c
n2’

”bi,K _gm’i”i = Hbi,K - Hmbi”i + ||Hmbi - HmyiH?L
1bs,5¢ = Tinbi |7 + Mg

Ibi, 117 + llell5-

IN

Using the Cauchy-Schwartz inequality, strict stationarity and (11), we have

(02 g llnla:) < (E(b (Xo) () 7 <

c
n
Besides,

E (el 10;) < (B [A] B(25) .

Let us compute E [¢4]. According to the Burkholder inequality, we know that:

A 2

< CE L)S“EA {(i(X,) — m(xm»‘*}] ds + B [, (Xo)]

By stationarity,

C/

C
E(Ei) < CcA? + EE [a?i (XO)] < Az

Collecting terms, we have

E /b\mi_bi 21ge) < —.
(s = i) < 5

As the process is stationary, for any function ¢ with support in K,
E (Itl7) = Itl7 < millt]z..

Propositions 6 and 7 allow us to conclude the proof of Theorem 1.
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6.4 Proof of Theorem 2

We have
l[b; — b,k |17 = [1bi — bi i 1712, + 16 — by x [|7 e -

We obtain, thanks to a proof similar to the previous one, that

~ c
E (|16 — bixc 210, ) < —.

By definition of the estimator b;, for any integer m, we have
i (Be) = s (b0 + pen(ring) < Yus (bns) = Yos (b) + pen(m).
As previously, we obtain, for any m € .,
1B = buscll? < s = bl + 200 (B = b

+ % Z (Bi - bm,i) (Xka) Ixa (bi) + pen(m) — pen(my;).
k=1

We easily obtain, for any m € .#,, that

16: = birc |7 L, < Tllbmi — bix|} + 4 (pen(m) — pen(i;)) La,

32 &
+ 32 - sup i ()21, + 2 3 I (bi)°.
[t ==1,t€Sm+5m, n =

We know that

E (Ifa (big)) < cA
E (bm,i —bixll2) < m1llbm,i — bix |7z
Let us set
Gm(m') = sup |Un,i(t)]

teSm+S,,, |t =1

and introduce a penalty function p(m,m’) such that

2
no_ k105 (Dim + Dy )

The following proposition is based on a result of Baraud et al (2001b) and an

inequality of Bernstein type. We give a sketch of proof in the Appendix.

Proposition 8.
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There exists a positive numerical constant k1 such that

—D, ./

m

E[(G2(m) = p(m,m')) 1a, ], < cop—

Applying this proposition, we choose the penalty function

ko2 Dy,
nA

pen(m) >

with kK = 8x;. We have

E = E (8 sup I/gﬂv(t) + (pen(m) —pen(mi))> ]lQn]

tegm""gﬁbi tll==1

< E [8 (G’,zn(fnl) — p(m7mi)) 1o, + (pen(m) — pen(m;) + 8p(m,m;)) ]lgn} .
As

[(G7, (M) — p(m,my)) lanh < Z [(Go,(m) — p(m,m) 1q, ],

we can write

E <8 Z E [(GZ,(m') — p(m,m') 1a, ] + 2pen(m).
m’'eM,

Applying Proposition 8 and using the fact that ) e Pm < 400, we obtain

67Dml C/O.2
E<8 Z CO’SW + 2pen(m) < nAO + 2pen(m).

m'eEM,

Then, collecting terms, we have

- C
E (Hbz — bi,KHi) S mien/f/[ (77T1Hbm,i — bi,KH%Z + Spen(m)) + M + C/A

and the proof of Theorem 2 is complete.

Acknowledgment: the author wishes to thank F. Comte and V.Genon-Catalot

for helpful discussions.
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A Additional proofs

A.1 Sketch of proof of Proposition 8.

We follow the steps of Comte et al. and adapt these to dimension d. First we

prove the following lemma which is a Bernstein-type inequality:

Lemma 5.
Under the assumptions of Theorem 1, for any function t with support in K,
Ve > 0,V( > 0,

B (S 1Xea)Zin| = ne. 12 < ) <2 nAc”
Yo [tXia)Zia| = ne, |t < ¢ ) < 2exp T202¢7 )

k=1

Hence, for all x > 0,

200

% (IVW: @) =¢ el < 42> < 2exp (—nz).

where P, (.) =P (.N Q).
Proof. Let us consider a martingale (Mj) such that (exp ()\MS - % (M)S)) is

also a martingale. We have that
E (exp (AM, — X* (M), /2)) =
According to the Tchebitchev inequality, for all A > 0,

P[(Ms = c), (M), < )]

P foxp (M, — X2 (41, /2) = exp (A 7))
exp (—)\c + AZQCI) E (exp ()\M ))
exp (—)\c + )‘226/) :

IN

IN
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Hence, minimizing with respect to A, we obtain

A2 ?
> <c)< — = —— .
P (Mg >c, (M), <) )1\1;% exp ( Ac+ 5 ) exp ( 26/)

Let us consider the process
); = (Z Lika (k4+1)A] (U)t(XkA)Uz‘j(Xu)>
k=1 j

which satisfies, for all positive real u, the inequality H,.H, < 03|/t| s (in order
to avoid confusion with the martingale bracket, the euclidean scalar product
is denoted by “.” in this proof). Let us set M, = fos H,.dW,. This process

satisfies:
d n (k+1)A ) n .
M(nJrl)A = ZZt(XkA)/ O’ij(Xs)dWSJZA t(XkA)Z]lgA~
j=1k=1 kA k=1
n (k+1)A
M)ns = D00 [ aa(Xu)ds < ainael?.
k=1 kA
Moreover

:/ H, Hydu < no2 Al .
0

Then M, and exp ()\]\4(S — )‘72 (M)é) are martingales. We obtain

F o= P4 tXea)Zia 2 ne), (It < ¢?)]
< P [(M(n-i-l)A > AHE) ) (<M>(n+1)A < UgnA<2>:|
ne2A
< er (i)

To complete the proof of Proposition 8, we use that
E [(an(m') 7p(m,ml)) ]]-Qn]+ = / P {(ng(m/) 7p(m,m/))+ 1g, > 1’} dx.
0

By substituting z = k103 iT, and replacing p(m, m’) by its expression p(m, m’) =
Hla(%(DnL + Dm/)

we have
nA ’

B (G2~ plon ) 10, ], < i 28 [T, [G200) 2 28 (74 )]

Lemma 5 and the L? chaining technique of Baraud et al. (2001b) allow to

obtain the announced result.
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A.2 Proof of inequality (11)
The following lemma is proved in Baraud et al. (2001a).

Lemma 6.

Let us set n = p,q, and consider .7, the largest vector space generated by the
families of functions F,,, for m € .#, (see Section 3). The dimension of .7, is
equal to N,,. For all positive A, we have

P(QS) < 2n8x (gud) + 207 ex (—A WQ"),
( ) 5X(q ) p 0 anLn((ZS)

where Ly, (¢) satisfies
Ln (9) < 63Ny

Comte et al. (2007) use this lemma to end the proof of the inequality (11).
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