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Abstract
This paper describes an R package implementing large sample tests and confidence
intervals (based on the central limit theorem) for various parameters. The one and
two sample mean and variance contexts are considered. The statistics for all the
tests are expressed in the same form, which facilitates their presentation. In the
variance parameter cases, the asymptotic robustness of the classical tests depends
on the departure of the data distribution from normality measured in terms of the
kurtosis of the distribution.
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1 Introduction

When you are interested in testing a variance parameter for a large sample in the non Gaussian
framework, it is not easy to find a test implemented in the standard statistical software. In fact,
we could not find one! The only available tool is the chi-square variance test tailor-made to
the Gaussian context. This test is however commonly used by practicians even if the Gaussian
assumption fails. We applied it to a data set of size n = 1000 with an empirical distribution very
different from a normal distribution. The p-value of the chi-square variance test with alternative
hypothesis H1: σ2 < 1 is % which leads us to accept the alternative hypothesis at level α = 5%.
Is it reasonable to use this test when we know that it cannot be used in the non Gaussian
framework because of its sensitivity to departures from normality, e.g. Box (1953)?

From a mathematical point of view, one may wonder why no alternative test has been yet
implemented since the asymptotic properties of the sample variance are well-known. Things are
much easier in the sample mean study because the one sample t-test is known to be robust to
departures from normality for large samples, e.g. Ozgur and Strasser (2004). This results from
a direct application of the central limit theorem. The same remarks are valid when comparing
the two-sample t-test (difference of means test) which is robust for large samples and the Fisher
test (ratio of variances test) which is not.

In the statistical framework, one may be a simple user, a tool developer, a theoretician or any
combination of the above. There are natural interactions between these different communities
and it is expected that their knowledge should be shared, above all for tasks that have now
become very basic. It is well-known for a theoretician, see e.g. Casella and Berger (1990), that a

1



common method for constructing a large sample test statistic may be based on an estimator that
has an asymptotic normal distribution. Suppose we wish to test a hypothesis about a parameter
θ, and θ̂n is some estimator of θ based on a sample of size n. If we can prove some form of the

central limit theorem to show that as n → +∞, (θ̂n − θ)/σ̂bθ
d→ N (0, 1) where σ̂2

bθ is a convergent

(in probability) estimate of V ar(θ̂n), then one has the basis for an approximate test. This scheme
based on the central limit theorem will be called the CLT procedure. We have already specified
that we did not find any alternative to the chi-square variance test for testing a variance when
the normality assumption fails. On the contrary, the problem of the robustness (to departures
from normality) of tests for comparing two (or more) variances has been widely treated in the
literature, see e.g. Box (1953), Conover et al. (1981), Tiku et al. (1986), Pan (1999) and the
references therein. Some alternative procedures to the Fisher test are implemented in R: the
Bartlett test (bartlett.test), the Fligner test (fligner.test), the Levene test (levene.test
available in the lawstat package), etc. However to our best knowledge, for large samples, simple
alternatives based on the CLT procedure have never been proposed or implemented.

The main objective of this paper is to propose a unified framework, based on the CLT proce-
dure, for large samples to test various parameters such as the mean, the variance, the difference
or ratio of means or variances. This approach also allows direct derivation of asymptotic con-
fidence intervals. Tests and confidence intervals are then implemented in our new R package,
called asympTest. This modest contribution also solves the problem of finding a robust (to non-
normality) alternative to the chi-square variance test for large samples. It also provides a very
simple alternative to the Fisher test. However, note that the purpose of this paper is not to
compare our tests to their competitors in terms of power. Finally, a first course of statistical in-
ference usually presents mean tests in both Gaussian and asymptotical frameworks and variance
tests restricted to the Gaussian case. The unified approach presented here is is very similar to
the classical t-test from a mathematical point of view and gives us the opportunity to propose a
more complete teaching framework with no additional difficulty.

The paper is organized as follows. Section 2 deals with the mathematical concepts and
describes our main notation. We also propose a mathematical explanation of the reason why the
chi-square variance test and the Fisher test are not appropriate even when the sample size is very
large. Finally, a general framework is also proposed that allows us to derive some asymptotic
statistical tests for the mean, the variance and the difference (and ratio) of means or variances.
In Section 3, the R package asympTest is presented. It notably includes the procedures described
in the previous section. Finally, Sections 4, 5 and 6 are devoted to some discussions and the
proofs of our results.

2 Mathematical development

2.1 Notation

For one-sample tests, let us denote by Y = (Y1, . . . , Yn) a sample of n independent and identically
distributed random variables with mean µ and variance σ2. These parameters are classically
estimated by

µ̂ (Y) = Y =
1

n

n∑

i=1

Yi and σ̂2 (Y) =
1

n − 1

n∑

i=1

(Yi − µ̂ (Y))
2
.
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In the two-sample context, let Y(1) =
(
Y

(1)
1 , . . . , Y

(1)

n(1)

)
and Y(2) =

(
Y

(2)
1 , . . . , Y

(2)

n(2)

)
denote two

independent samples of n(1) and n(2) random variables with respective means µ(1) and µ(2) and
variances σ2

(1) and σ2
(2). We also define the following parameters and their estimated versions by

denoting Y =
(
Y(1),Y(2)

)
:

• Difference of (weighted) means: dµ = µ(1) − ρ × µ(2) (ρ ∈ R) and d̂µ (Y) = µ̂(1)
(
Y(1)

)
−

ρ × µ̂(2)
(
Y(2)

)
.

• Difference of (weighted) variances: dσ2 = σ2
(1)−ρ×σ2

(2) (ρ ∈ R) and d̂σ2 (Y) = σ̂2
(1)

(
Y(1)

)
−

ρ × σ̂2
(2)

(
Y(2)

)
.

• Ratio of means: rµ = µ(1)

µ(2) and r̂µ (Y) =
dµ(1)(Y(1))
dµ(2)(Y(2))

.

• Ratio of variances: rσ2 =
σ2
(1)

σ2
(2)

and r̂σ2 (Y) =
dσ2
(1)(Y

(1))
dσ2
(2)(Y(2))

.

The known parameter ρ is, in our definition of dµ and dσ2 , intrinsically nonnegative. But
note that there is no mathematical problem to deal with negative values of ρ.

In order to compare the Gaussian framework and the general one, we propose to denote by
YG (resp. Y(1),G, Y(2),G) a vector (resp. two independent vectors) of n (resp. n(1) and n(2))
Gaussian random variables with mean µ (resp. µ(1) and µ(2)) and variance σ2 (resp. σ2

(1) and

σ2
(2)). In the two-sample context, let us also denote YG =

(
Y(1),G,Y(2),G

)
.

In the sequel, we will use the notation := to define some quantity. For some random variable

Z and some distribution L, Z  L (resp.
approx
 L) means that Z follows (resp. approximately

follows) the distribution L.

2.2 About the Chi-square and Fisher tests

In this section, we concentrate on parameters σ2 and rσ2 . The classical statistics of the chi-square
test of variance and the Fisher test of ratio of variances are defined by

ΛG
cσ2,σ2

(Y) := (n − 1)
σ̂2 (Y)

σ2
and ΛG

drσ2 ,rσ2
(Y) :=

r̂σ2

(
Y(1),Y(2)

)

rσ2

.

The notation ΛG
cσ2,σ2

expresses that the statistic is a measure of the departure of σ̂2 from σ2 in

the Gaussian framework. When the data are Gaussian, it is well-known that

ΛG
cσ2,σ2

(YG) χ2(n − 1) and ΛG
drσ2 ,rσ2

(YG) F
(
n(1) − 1, n(2) − 1

)
.

However, as shown in Fig. 1, both results become untrue (even approximately) under non-
normality assumption. The theoretical reason may be explained as follows. Let n(1) = n and
assume that there exists α > 0 such that n(2) = αn(1). Assume also that Y (resp. Y (1) and Y (2))
has a finite kurtosis k := E((Y − µ)4)/V ar(Y ) (resp. k(1) and k(2)). Then, as n → +∞,

ΛG
cσ2,σ2

(Y) − (n − 1)
√

n − 1

d−→ N (0, k − 1) (1)

√
n
(
ΛG

drσ2 ,rσ2
(Y) − 1

)
d−→ N

(
0, k(1) − 1 +

k(2) − 1

α

)
. (2)
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This result is a consequence of a more general one stated in Section 2.3 and proved in Section 6.
Equations (1) and (2) lead to the following approximations

ΛG
cσ2,σ2

(Y)
approx
 N (n − 1, (k − 1)(n − 1)) and ΛG

drσ2 ,rσ2
(Y)

approx
 N

(
1,

k(1) − 1

n(1)
+

k(2) − 1

n(2)

)
.

When data are Gaussian ans when n is large, one obtains the well-known approximations

χ2(n − 1) ≃ N (n − 1, 2(n − 1)) and F
(
n(1), n(2)

)
≃ N

(
1,

2

n(1)
+

2

n(2)

)

since k = k(1) = k(2) = 3 We can underline that ΛG
cσ2,σ2

(Y) (resp. ΛG
drσ2 ,rσ2

(Y)) and ΛG
cσ2,σ2

(YG)

(resp. ΛG
drσ2 ,rσ2

(YG)) differ in terms of asymptotical variances. More precisely, the gap between

the two frameworks is essentially governed by the kurtosis. Indeed, as n → +∞
V ar(ΛG

cσ2,σ2
(Y))

V ar(ΛG
cσ2,σ2

(YG))
→ k − 1

2
and

V ar(ΛG
drσ2 ,rσ2

(Y))

V ar(ΛG
drσ2 ,rσ2

(YG))
→ k(1) − 1 + k(2)

−1
α

2
(
1 + 1

α

) .

Tab. 1 proposes the computations of these asymptotic ratios for different distributions. This
allows the reader to assess the risk of using the classical statistics ΛG

cσ2,σ2
and ΛG

drσ2 ,rσ2
under the

non-normality assumption even when the size of the sample is large.

Y
d
= Y (1) d

= Y (2)
 L

Test L = χ2(ν) L = E(λ) L = U([a, b])

Variance test 1 + 6
ν

4 2
5

Ratio of variances test 1 + 6
ν

4 2
5

Table 1: Ratio of asymptotic variances (non gaussian/gaussian) k−1
2 and

k(1)
−1+ k(2)

−1
α

2(1+ 1
α)

in the

case where k = k(1) = k(2) and α = 1.

2.3 Large sample tests based on the central limit theorem

The parameters σ2, dµ and dσ2 can be viewed as particular means. Therefore, the idea (widely
used in asymptotic theory) is to design asymptotic tests and confidence intervals thanks to the
central limit theorem. The variables r̂µ (Y) − rµ and r̂σ2 (Y) − rσ2 can also be expressed in
terms of means to which a central limit theorem can be applied. In order to unify asymptotic
results, we define θ as one of the parameters µ, σ2, dµ, dσ2 , rµ and rσ2 . By applying a central
limit theorem, the law of large numbers and Slutsky’s theorem (see Section 6), one obtains, as
n → +∞,

∆̂bθ,θ
(Y) :=

θ̂ (Y) − θ

σ̂bθ (Y)

d−→ N (0, 1), (3)

where σ̂bθ (Y) is the standard error of θ̂ (Y). The assumptions under which the central limit
theorem can be applied and the definition of σ̂bθ (Y) are stated in Tab. 2. R functions have been
implemented to evaluate the standard errors of the estimates of θ, see Tab. 3.
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Figure 1: Histograms of m = 10000 replications of test statistics of variance test (left) and
ratio of variance tests (right) in the Gaussian context. The simulation has been done as follows:

n = n(1) = n(2) = 500, Y
d
= Y (1) d

= Y (2)
 χ2(5) (top), E(1) (middle) and U([0, 5]) (bottom).
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θ Assumptions σ̂bθ (Y)

µ E
(
Y 2

i

)
< +∞

√
σ̂2 (Y)

n

σ2 E
(
Y 4

i

)
< +∞

√√√√ σ̂2
Ÿ

(
Ÿ
)

n

dµ E

((
Y

(j)
i

)2
)

< +∞, j = 1, 2

√
σ̂2

(1)

(
Y(1)

)

n(1)
+ ρ2 ×

σ̂2
(2)

(
Y(2)

)

n(2)

dσ2 E

((
Y

(j)
i

)4
)

< +∞, j = 1, 2

√√√√ σ̂2
Ÿ (1)

(
Ÿ(1)

)

n(1)
+ ρ2 ×

σ̂2
Ÿ (2)

(
Ÿ(2)

)

n(2)

rµ µ(2) 6= 0, E

((
Y

(j)
i

)2
)

< +∞, j = 1, 2 1˛̨
˛ dµ(2)(Y(2))

˛̨
˛

√
dσ2
(1)(Y(1))

n(1) + r̂µ (Y)
2 ×

dσ2
(2)(Y(2))

n(2)

rσ2 σ2
(2) 6= 0, E

((
Y

(j)
i

)4
)

< +∞, j = 1, 2 1
dσ2
(2)(Y(2))

√
σ̂2

Ÿ (1)(Ÿ(1))
n(1) +r̂σ2 (Y)

2 σ̂2

Ÿ (2)(Ÿ(2))
n(2)

Table 2: Standard errors of estimates of θ. For the sake of simplicity we denote by Ÿ := (Y −µ)2,

Ÿ := (Y − µ̂ (Y))
2
, σ2

Ÿ
:= V ar

(
Ÿ
)

and σ̂2
Ÿ

(
Ÿ
)

:= 1
n−1

∑n

i=1

(
(Yi − µ̂ (Y))

2 − σ̂2 (Y)
)2

.

θ Dataset(s) σ̂bθ (y) in R

µ y seMean(y)

σ2 y seVar(y)

dµ y1, y2 seDMean(y1,y2,rho=1)

dσ2 y1, y2 seDVar(y1,y2,rho=1)

rµ y1, y2 seRMean(y1,y2)

rσ2 y1, y2 seRVar(y1,y2)

Table 3: Standard errors of estimates of θ in R.
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Remark 1 The figures Fig. 2, Fig. 3 and Fig. 4 allow the reader to illustrate the mathematical
result (3).

Remark 2 The asymptotic result (3) allows us to easily construct statistical hypothesis tests and
confidence intervals, see e.g. Casella and Berger (1990) p. 385 for development.

Remark 3 The alternative hypothesis H1 comparing the ratio of means or variances to some
reference value r0 may be expressed in terms of the comparison of the weighted differences dµ :=
µ(1) − r0µ

(2) or dσ2 := σ2
(1) − r0σ

2
(2) to 0, the value of ρ being fixed to r0.

3 Using asympTest

The R package asympTest consists of a main function asymp.test and six auxiliary ones designed
to compute standard errors of estimates of different parameters, see Tab. 3. The auxiliary func-
tions should not be very useful for the user, except if he/she wants to compute himself/herself
the confidence interval. The function asymp.test has been written in the same spirit as the
R functions t.test or var.test. The arguments of asymp.test, its value and the result-
ing outputs are inspired from the ones of t.test or var.test. In particular, the function
asympt.test returns an object of class “htest” (which is the general class of test objects in R,
see R Development Core Team (2004)).

The main arguments of the function asymp.test are:

• x: vector of data values.

• y: optional vector of data values.

• parameter: parameter under testing, must be one of “mean”, “var”, “dMean”, “dVar”,
“rMean”, “rVar”.

• alternative: alternative hypothesis, must be one of “two.sided” (default), “greater” or
“less”.

• reference: reference value of the parameter under the null hypothesis.

• conf.level: confidence level of the interval (default is 0.95). The type-one error is then
fixed to 1-conf.level.

• rho: optional parameter (only used for parameters ”dMean” and ”dVar”) for penalization
(or enhancement) of the contribution of the second parameter.

The user may only specify the first letters of the parameter or alternative.
In order to illustrate this function, let us consider the iris data available in R. This famous

(Fisher’s or Anderson’s Fisher (1935); Anderson (1935)) data set gives the measurements (in
centimeters) of the four variables sepal length and width, and petal length and width, for 50
flowers from each species of iris: setosa, versicolor, and virginica.

1 > data(iris)

2 > attach(iris)

3 > names(iris)

4 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

5 > levels(iris$Species)

6 [1] "setosa" "versicolor" "virginica"
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Figure 2: Histograms of m = 10000 replications of
bθ(Y)−θ

cσbθ(Y) for θ = µ, σ2, dµ, dσ2 , rµ and rσ2 .

The simulation has been done as follows: n = n(1) = n(2) = 500, Y (1)
 χ2(5), Y (2)

 χ2(5).
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Figure 3: Histograms of m = 10000 replications of
bθ(Y)−θ

cσbθ(Y) for θ = µ, σ2, dµ, dσ2 , rµ and rσ2 .

The simulation has been done as follows: n = n(1) = n(2) = 500, Y (1)
 E(1), Y (2)

 E(1).
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Figure 4: Histograms of m = 10000 replications of
bθ(Y)−θ

cσbθ(Y) for θ = µ, σ2, dµ, dσ2 , rµ and rσ2 . The

simulation has been done as follows: n = n(1) = n(2) = 500, Y (1)
 U([0, 5]), Y (2)

 E(0.5).
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The following table presents the p-values of all the Shapiro-Wilk normality tests for the
different variables and the three species.

Let us concentrate on the variable Petal.Width for which the Gaussian assumption seems to
be wrong for each one of the three species. The empirical means and variances are given below:

1 > by(Petal.Width,Species,function(e) c(mean=mean(e),var=var(e)))

2 Species: setosa

3 mean var

4 0.24600000 0.01110612

5 ------------------------------------------------------------

6 Species: versicolor

7 mean var

8 1.32600000 0.03910612

9 ------------------------------------------------------------

10 Species: virginica

11 mean var

12 2.02600000 0.07543265

Is the mean petal width of setosa species less than 0.5 ?

1 > require(asympTest)

2 > asymp.test(Petal.Width[Species=="setosa"],par="mean",alt="l",ref=0.5)

3

4 One-sample asymptotic mean test

5

6 data: Petal.Width[Species == "setosa"]

7 statistic = -17.0427, p-value < 2.2e-16

8 alternative hypothesis: true mean is less than 0.5

9 95 percent confidence interval:

10 -Inf 0.2705145

11 sample estimates:

12 mean

13 0.246

Is the mean petal width of virginica species larger than the versicolor one ?

1 > asymp.test(Petal.Width[Species=="virginica"],

2 + Petal.Width[Species=="versicolor"],"dMean","g",0)

3

4 Two-sample asymptotic difference of means test

5

6 data: Petal.Width[Species == "virginica"] and Petal.Width[Species == "versicolor"]

7 statistic = 14.6254, p-value < 2.2e-16

8 alternative hypothesis: true difference of means is greater than 0

9 95 percent confidence interval:

10 0.621274 Inf

11 sample estimates:

12 difference of means

13 0.7

Is the mean petal width of virginica species 4 times larger than the setosa one ?
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1 > asymp.test(Petal.Width[Species=="virginica"],

2 + Petal.Width[Species=="setosa"],"rMean","g",4)

3

4 Two-sample asymptotic ratio of means test

5

6 data: Petal.Width[Species == "virginica"] and Petal.Width[Species == "setosa"]

7 statistic = 8.0936, p-value = 3.331e-16

8 alternative hypothesis: true ratio of means is greater than 4

9 95 percent confidence interval:

10 7.374946 Inf

11 sample estimates:

12 ratio of means

13 8.235772

This may also be done via a difference of weighted means test.

1 > asymp.test(Petal.Width[Species=="virginica"],

2 + Petal.Width[Species=="setosa"],"dMean","g",0,rho=4)

3

4 Two-sample asymptotic difference of (weighted) means test

5

6 data: Petal.Width[Species == "virginica"] and Petal.Width[Species == "setosa"]

7 statistic = 14.6447, p-value < 2.2e-16

8 alternative hypothesis: true difference of (weighted) means is greater than 0

9 95 percent confidence interval:

10 0.9249653 Inf

11 sample estimates:

12 difference of (weighted) means

13 1.042

4 Type I error risks

4.1 Comparison between classical and asymptotic variance tests

In the context of large samples, two simulation studies are proposed in order to show the lack
of reliability of the classical tests for variance parameters compared with the asymptotic tests
studied in this paper. For each of the following examples, 10000 simulations of samples of size
n = 1000 have been performed.

1. Let us consider testing H0 : σ2 = 1 versus H1 : σ2 < 1 with data sampled from distribution
E(1) (i.e., under H0).

In the case where α = 5%, the probability of accepting the alternative hypothesis is % for
the asymptotic test and % for the chi-square test.

2. Let us consider test H0 : σ2
(1) = σ2

(2) versus H1 : σ2
(1) 6= σ2

(2) with data sampled from

distribution U([0, 5]) for both samples (i.e., under H0).

In the case where α = 5%, the probability of accepting the alternative hypothesis is % for
the asymptotic test and % for the Fisher test.

12



In both cases, the probabilities for Type I errors are worse for the classical tests than for the
corresponding well-suited asymptotic tests. This is a direct consequence of the previous results
summarized by figure Fig. 1.

4.2 Back to the example of the introduction

Now, one may wonder what the consequences of these previous results are for pratical purposes.
Let us consider again the example presented in the introduction. In order to illustrate the two-
samples case, we propose a second example. In the following R outputs, the data of the first
(resp. second) example are denoted by y (resp. y1 and y2). These samples have a size n=1000
and their empirical distributions, proposed below, do not seem to fit normal distributions.

The following output provides the p-value of the chi-square test for the first example.

1 > pchisq((length(y)-1)*var(y)/1,length(y)-1)

Due to the apparent non normality of the data, one may prefer to apply the corresponding
asymptotic test:

1 > asymp.test(y,par="var",alt="l",ref=1)

The two decisions do not match, but since the empirical variance is , one may think that σ2

is slightly inferior to 1. In which case, we have to be cautious because our sample might be of
the same kind as the % of Table ??.

The following output provides the p-value of the Fisher test for the second example.

1 > var.test(y1,y2)

Due to the apparent non normality of the data, one may prefer to apply the corresponding
asymptotic test:

1 > asymp.test(y1,y2,"dVar")

The two decisions do not match, but since the empirical variances are and , one may think
that σ2

(1) and σ2
(2) are slightly different. In which case, we have to be cautious because our sample

might be of the same kind as the % of Table ??.
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5 Discussion

We have presented an R package implementing large sample tests for various parameters. The
interesting point is that each test statistic can be written in the same form, as follows:

∆̂bθ,θ
(Y) :=

θ̂ (Y) − θ

σ̂bθ (Y)
.

This form clearly expresses the departure of the estimate from the true parameter, normalized by
some quantity measuring the precision of the estimate. This approach is then attractive and easy
to present. In the Gaussian framework, the one and two-sample t-tests follow this idea whereas
the chi-square variance test and the Fisher test do not. One may wonder if it is possible to embed
the classical Gaussian framework within this formalism. More precisely, for an estimate θ̂ (Y) of

some parameter θ with standard deviation σbθ =

√
V ar(θ̂ (Y)), let us propose the test statistic

∆bθ,θ
(Y) :=

θ̂ (Y) − θ

σbθ
or

θ̂ (Y) − θ

σ̃bθ
(4)

in the case where σbθ or possibly some known asymptotic equivalent σ̃bθ of σbθ only depends on θ,
or

∆̂bθ,θ
(Y) :=

θ̂ (Y) − θ

σ̂bθ (Y)
(5)

otherwise, where σ̂bθ (Y) is a consistent estimate of σbθ.
In the large sample framework, the parameters µ, σ2, dµ, rµ, dσ2 and rσ2 fall into the case of

equation (5) and the corresponding statistic approximately follows a N (0, 1) distribution. In this
same context, the proportion parameter falls into the case of equation (4) with σbp =

√
p(1 − p)/n.

In the Gaussian framework, the parameters µ and dµ leading to the one-sample and two-
sample t-tests also fall into the case of equation (5). Let us now concentrate on parameters σ2

and rσ2 (corresponding to the chi-square variance test and the Fisher test). It is known that the

variance of σ̂2
(
YG

)
and an asymptotic equivalent of the variance of r̂σ2

(
YG

)
are of the form

σ2
cσ2

=
1

n

(
µ̇4 −

n − 3

n − 1
µ̇2

2

)
and σ̃2

drσ2
=

1

n(1)

µ̇
(1)
4 − (µ̇

(1)
2 )2

(µ̇
(2)
2 )2

+
1

n(2)
r2
σ2

µ̇
(2)
4 − (µ̇

(2)
2 )2

(µ̇
(2)
2 )2

where µ̇k = E
(
(Y − E(Y ))k

)
is the k−th centered moment of Y (with our notation µ̇2 = σ2).

For Gaussian variables, µ̇4 = 3(µ̇2)
2 which leads to

σ2
cσ2

=
2

n − 1
σ4 and σ̃2

drσ2
= 2r2

σ2

(
1

n(1)
+

1

n(2)

)
.

Now, in order to build a test, let us give the distributions of ∆G
cσ2,σ2

(YG) and ∆G
drσ2 ,rσ2

(YG)

expressed in terms of ΛG
cσ2,σ2

(YG) and ΛG
drσ2 ,rσ2

(YG):

∆G
cσ2,σ2

(YG) :=
σ̂2
(
YG

)
− σ2

σcσ2

=

ΛG
d
σ2,σ2

(YG)

n−1 σ2 − σ2

σ2
√

2/(n − 1)
 

χ2(n − 1) − (n − 1)√
2(n − 1)

and

∆G
drσ2 ,rσ2

(YG) :=
r̂σ2

(
YG

)
− rσ2

σ̃drσ2

=
rσ2ΛG

drσ2 ,rσ2
(YG) − rσ2

rσ2

√
2/n(1) + 2/n(2)

 

F(n(1) − 1, n(2) − 1) − 1√
2/n(1) + 2/n(2)

.
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One may propose a name for the previous two free distributions: centered reduced chi-square
distribution and centered reduced Fisher distribution respectively denoted by χ2

cr(·) and Fcr(·, ·).
If these distributions were implemented such that one may evaluate quantiles and p-values, one
could build two new tests directly based on ∆G

cσ2,σ2
(YG) and ∆G

drσ2 ,rσ2
(YG). Of course, these two

new tests would be strictly equivalent to the classical chi-square variance test and Fisher test
and would then fall into the same formalism.

Let us now comment on the concept of robustness in the Gaussian framework. In the par-
ticular case of mean hypothesis testing, this robustness is expressed by the fact that ∆G

bµ,µ(YG)

is equal to ∆bµ,µ(YG) with the same asymptotic distribution N (0, 1). When considering the two
new cases θ = σ2 or θ = rσ2 , ∆G

bθ,θ
(YG) is no longer equal to ∆bθ,θ

(YG) but have at least the

same asymptotic distribution N (0, 1). However, one can prove that ∆G
bθ,θ

(YG) and ∆bθ,θ
(YG)

are asymptotically equivalent in probability, which may be viewed as some kind of robustness.

6 Proofs

In this section, we only prove (3). The results (1) and (2) are direct consequences. Recall that
for each parameter, some assumptions are needed essentially in order to apply the central limit
theorem. They are summarized in Tab. 2.

Parameter µ:

This is a direct application of the central limit theorem.
Parameter σ2:

By definition

σ̂2 (Y) − σ2 =
1

n − 1

n∑

i=1

((
Yi − Y

)2 − σ2
)

=
1

n − 1

n∑

i=1

(
(Yi − µ)

2 − σ2
)
− n

n − 1

(
Y − µ

)2
.

From the CLT, the law of large numbers and Slutsky’s Theorem (see e.g. Ferguson (1996)), it
comes that as n → +∞ √

n
(
Y − µ

)2 P−→ 0.

Therefore, as n → +∞,

√
n
(
σ̂2 (Y) − σ2

)
d−→ N (0, V ar((Y − µ)2)).

Since σcσ2 :=
√

V ar((Y −µ)2)
n

can be consistently estimated by σ̂cσ2 (Y) :=

√
cσ2
Ÿ
(Ÿ)
n

, see Tab. 2, we

obtain as n → +∞
∆̂cσ2,σ2(Y) :=

σ̂2 (Y) − σ2

σ̂cσ2 (Y)

d−→ N (0, 1).

Parameter dµ:

Recall that n = n(1) and n(2) = αn(1). As n → +∞,

√
n
(
d̂µ (Y) − dµ

)
=

√
n
(
µ̂(1)

(
Y(1)

)
− µ(1)

)
− ρ ×

√
nα√
α

(
µ̂(2)

(
Y(2)

)
− µ(2)

)

d−→ N
(

0, σ2
(1) + ρ2 ×

σ2
(2)

α

)
.
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Since σcdµ
:=

√
σ2
(1)

+ρ2
×

σ2
(2)
α

n
can be consistently estimated by

σ̂cdµ
(Y) :=

√
σ̂2

(1)

(
Y(1)

)

n(1)
+ ρ2 ×

σ̂2
(2)

(
Y(2)

)

n(2)
,

we obtain as n → +∞
∆̂cdµ,dµ

(Y) :=
d̂µ (Y) − dµ

σ̂cdµ
(Y)

d−→ N (0, 1).

Parameter dσ2 :

As n → +∞,

√
n
(
d̂σ2 (Y) − dσ2

)
=

√
n
(
σ̂2

(1)(1)
(
Y(1)

)
− σ2

(1)

)
− ρ ×

√
nα√
α

(
σ̂2

(2)

(
Y(2)

)
− σ2

(2)

)

d−→ N
(

0, σ2
¨Y (1)

+ ρ2 ×
σ2

¨Y (2)

α

)
.

Since σddσ2
:=

√
σ2

¨
Y (1)

+ρ2

σ2
¨

Y (2)

α

n
can be consistently estimated by

σ̂ddσ2
(Y) :=

√√√√ σ̂2
¨Y (1)

(
Ÿ(1)

)

n
+ ρ2 ×

σ̂2
¨Y (2)

(
Ÿ(2)

)

nα
=

√√√√ σ̂2
¨Y (1)

(
Ÿ(1)

)

n(1)
+

σ̂2
¨Y (2)

(
Ÿ(2)

)

n(2)
,

we obtain as n → +∞
d̂σ2 (Y) − dσ2

σ̂ddσ2
(Y)

d−→ N (0, 1).

Parameter rµ:

Using Slutsky’s Theorem, one may assert that as n → +∞

√
n (r̂µ (Y) − rµ) =

√
n

(
µ̂(1)

(
Y(1)

)

µ̂(2)
(
Y(2)

) −
µ(1)

µ(2)

)

=
√

n

(
µ̂(1)

(
Y(1)

)
− µ(1)

µ̂(2)
(
Y(2)

) + µ(1)

(
1

µ̂(2)
(
Y(2)

) −
1

µ(2)

))

n→+∞∼ √
n

(
µ̂(1)

(
Y(1)

)
− µ(1)

µ(2)
+

√
nα√
α

µ(1)

(µ(2))2

(
µ(2) − µ̂(2)

(
Y(2)

)))

d−→ N
(

0,
σ2

(1)

(µ(2))2
+

(
µ(1)

(µ(2))2

)2 σ2
(2)

α

)
.
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Since, σcrµ
:=

√
σ2
(1)

(µ(2))2
+

„
µ(1)

(µ(2))2

«2 σ2
(2)
α

n
can be consistently estimated by

σ̂crµ
(Y) :=

√√√√√
dσ2
(1)(Y(1))

dµ(2)(Y(2))

n
+

( dµ(1)(Y(1))
dµ(2)(Y(2))

2

)2

σ̂2
(2)

(
Y(2)

)

nα

=
1

µ̂(2)
(
Y(2)

)

√
σ̂2

(1)

(
Y(1)

)

n(1)
+ r̂µ (Y)

σ̂2
(2)

(
Y(2)

)

n(2)

we obtain as n → +∞,
r̂µ (Y) − rµ

σ̂crµ
(Y)

d−→ N (0, 1).

Parameter rσ2 :

The proof follows the ideas developed for the parameters σ2, dσ2 and rµ, and thus is left to
the reader.
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