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On the structure of fractional degree vortices in
a spinor Ginzburg–Landau model

Stan Alama∗ Lia Bronsard† Petru Mironescu‡

October 23, 2008

Abstract

We consider a Ginzburg–Landau functional for a complex vector order parameter
Ψ = (ψ+, ψ−), whose minimizers exhibit vortices with half-integer degree. By studying
the associated system of equations in R2 which describes the local structure of these
vortices, we show some new and unconventional properties of these vortices. In partic-
ular, one component of the solution vanishes, but the other does not. We also prove the
existence and uniqueness of equivariant entire solutions, and provide a second proof of
uniqueness, valid for a large class of systems with variational structure.

1 Introduction

Recent papers in the physics literature have introduced spin-coupled (or spinor) Ginzburg–

Landau models for complex vector-valued order parameters in order to account for ferro-

magnetic (or antiferromagnetic) effects in high-temperature superconductors [KR] and in

optically confined Bose–Einstein condensates [IM]. In [AB2] two of the authors studied one

such model, for a complex pair of order parameters and showed that minimizers exhibit

new types of vortices, with fractional degrees. In this paper we consider the structure of

these fractional degree vortices, and show that their cores are qualitatively different from

Ginzburg–Landau vortices.
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Consider the following model problem, related to the superconductivity model introduced

in [KR]. Let Ω ⊂ R2 be a smooth, bounded domain, and Ψ ∈ H1(Ω;C2). We define an

energy functional,

Eε(Ψ) =
1

2

∫
Ω

{
|∇Ψ|2 +

1

2ε2

(
|Ψ|2 − 1

)2
+

2γ

ε2
(ψ1 × ψ2)

2
}
dx,

where Ψ = (ψ1, ψ2), ψ1 × ψ2 = Im (ψ1ψ2), γ > 0 and ε > 0 are parameters. The quantity

S = ψ1 × ψ2 = Im {ψ1 ψ2}

is interpreted as the z-component of a spin vector, which in this two-dimensional model is

assumed to be orthogonal to the plane of Ω.

As ε → 0, energy minimizers should converge pointwise to the manifold on which the

potential term F (Ψ) = (|Ψ|2 − 1)
2
+ γ

2
(ψ1 × ψ2)

2 vanishes. Since γ > 0, we obtain a two-

dimensional surface (a 2-torus) Σ ⊂ S3 ⊂ C2 parametrized by two real phases, φ, ω:

Σ : Ψ = G(φ, ω) := (eiφ cosω , eiφ sinω).

Notice that G is doubly-periodic with minimal period G(φ+ π, ω± π) = G(φ, ω), with each

phase executing a half cycle. For a smooth function Ψ(x) taking values in Σ and a simple

closed curve C contained in the domain of Ψ we may therefore define a pair of half-integer

valued degrees (dφ, dω) corresponding to the winding numbers of the two phases around Σ.

From the above observation, these degrees satisfy dφ, dω ∈ 1
2
Z, and dφ + dω ∈ Z.

When auxilliary conditions force one or the other of the two phases φ, ω to have nontrivial

winding number the minimizer Ψ(x) cannot take values in Σ at every point in Ω and in the

limit we observe vortices, just as in the classical Ginzburg–Landau model. Each isolated

vortex will carry a pair of half-integer degrees, (dφ, dω) as above.

The results of [AB2] describe the minimizers and their energies as ε → 0, with a given

Dirichlet boundary condition Ψ|∂Ω = g, where g = (g1, g2) is a given smooth function

g : ∂Ω → Σ. The boundary condition admits degrees Dφ, Dω corresponding to its winding

in each of the phases around ∂Ω. Assume for simplicity that Dφ ≥ |Dω|. The main theorem

of [AB2] then states that the minimizers can exhibit vortices of three different topological

types: two species of fractional degree vortices, (dφ, dω) = (1
2
, 1

2
) or (1

2
,−1

2
), and an integer-

degree vortex, (dφ, dω) = (1, 0). The integer-degree vortex can be seen as a superposition of

the two different fractional-degree vortices at the same location in Ω, and indeed the energy

expansion shows that there is a weak interaction which favors the combination of two nearby

fractional-degree vortices into a single (1, 0)-vortex.
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We expect, however, that these distinct types of vortices are very different in their micro-

scopic structure. In order to resolve the singularity at each vortex, the order parameter Ψ

must deviate from the minimal manifold Σ ⊂ C2. The surface Σ being of codimension two,

there are two degrees of freedom for this to occur. The order parameter can choose to violate

the condition |Ψ| = 1 and develop a zero at the core of the vortex, as is the case for the

usual Ginzburg–Landau vortices. But there is another possibility: Ψ can rotate along the

sphere |Ψ| = 1 and violate the condition S = 0, thus acquiring non-zero spin in its core and

avoiding the vanishing of |Ψ| altogether. The integer-degree (dφ, dω) = (1, 0) vortices will

take the first option, and resemble usual Ginzburg–Landau vortices, but our results in this

paper confirm that the two species of fractional-degree vortices will indeed prefer the second

approach, and exhibit this new “coreless” structure. To do this, we blow up the minimizers

around each vortex and study the associated limiting problem of entire solutions to the PDE

system in the whole of R2, using techniques introduced for the Ginzburg–Landau equation

by Brezis, Merle, & Rivière [BMR], Mironescu [M], and Shafrir [S].

In order to describe our results, we introduce a change of variable as in [AB1], [AB2] which

simplifies the accounting of degrees. Vortices are best described in terms of the (integer)

indices [n+, n−],

n+ = dφ + dω, n− = dφ − dω, (dφ, dω) = n+(1/2 , 1/2) + n−(1/2 , −1/2),

which count the number of these two species of fractional-degree vortices rather than their

winding. Remarkably, this may be achieved via the linear transformation in the range,

ψ± :=
1√
2
(ψ1 ± iψ2).

In the new coordinates we denote our order parameter as Ψ = [ψ+, ψ−]. Now the surface Σ

is described more simply,

Σ : |ψ+|2 =
1

2
= |ψ−|2,

and is parametrized as

Ψ =

[
1√
2
eiα+ ,

1√
2
eiα−

]
with phases α± carrying whole number degrees [n+, n−]. Note the following correspondences

between the degrees (dφ, dω) and the integer indices [n+, n−]:

(dφ, dω) =
(

1

2
,
1

2

)
↔ [n+, n−] = [1, 0], (dφ, dω) =

(
1

2
,−1

2

)
↔ [n+, n−] = [0, 1],

(dφ, dω) = (1, 0) ↔ [n+, n−] = [1, 1].
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In these coordinates, the spin is given by S = 1
2
(|ψ−|2 − |ψ+|2).

The equations for entire vortex solutions Ψ(x) = [ψ+, ψ−] then become,

−∆ψ+ = (1− |Ψ|2)ψ+ + γ(|ψ−|2 − |ψ+|2)ψ+, (1) Eq+

−∆ψ− = (1− |Ψ|2)ψ− − γ(|ψ−|2 − |ψ+|2)ψ−. (2) Eq-

Solutions to (1–2) obtained by blowing up will satisfy an integrability condition,∫
R2

{(
|Ψ|2 − 1

)2
+ γ

(
|ψ−|2 − |ψ+|2

)2
}
dx <∞, (3) BMRcond

analogous to the condition of [BMR] for the classical Ginzburg–Landau equation. It follows

from arguments of [BMR] (see Lemma 2.3) that any solution satisfying (3) has a degree pair

at infinity: n± = deg
(
ψ±
|ψ±| ;SR

)
(with SR the circle of radius R,) for all sufficiently large radii

R. As was the case for the classical Ginzburg–Landau equations [BMR], the integral in (3)

is quantized: ∫
R2

{(
|Ψ|2 − 1

)2
+ γ

(
|ψ−|2 − |ψ+|2

)2
}
dx = π

(
n2

+ + n2
−

)
. (4) quantized

This fact, together with some asymptotic estimates of the behavior of solutions at infinity,

will be proven in Proposition 2.1.

We would like to relate solutions of (1–2) to energy minimization. If Ω ⊂ R2 is a bounded

domain, we may define an energy locally by

E(Ψ; Ω) =
∫
Ω

{
1

2
|∇Ψ|2 +

1

4

(
|Ψ|2 − 1

)2
+
γ

4

(
|ψ−|2 − |ψ+|2

)2
}
dx (5) Energy

This energy diverges when either of ψ+, ψ− has nontrivial winding number at infinity, so it

is not well-defined when Ω = R2. Instead, we define locally minimizing solutions in R2 in

the sense of De Giorgi: we say that Ψ is a locally minimizing solution of (1–2) if (3) holds

and if for every bounded regular domain Ω ⊂ R2,

E(Ψ; Ω) ≤ E(Φ; Ω)

holds for every Φ = [ϕ+, ϕ−] ∈ H1(Ω;C2) with Φ|∂Ω = Ψ|∂Ω. We prove the following result

concerning fractional-degree vortex solutions:

locminthm Theorem 1.1 Suppose Ψ is a locally minimizing solution of (1–2) with degree pair [n+, n−] =

[1, 0]. Then there exists a constant φ− ∈ [0, 2π) such that ψ−(x)eiφ− > 0 is real and positive

in R2.
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In particular, the ψ−-component of the order parameter is bounded away from zero in R2,

and the qualitative behavior is as we expected, with |Ψ| bounded away from zero and S =
1
2
(|ψ−|2 − |ψ+|2) > 0 in the core. An analogous result is obtained for the [n+, n−] = [0, 1]-

vortex, except that now it is ψ+ which is bounded away from zero and the spin S < 0 in

the core. By a straightforward argument, solutions obtained by blowing up minimizers of Eε

around a vortex always yield local minimizers in the sense of De Giorgi, and hence we infer

the following result:

epsthm Theorem 1.2 Assume Ψε = [ψε+, ψε−] is a family of minimizers of Eε as ε→ 0. If p ∈ Ω is

such that Ψε converges in some deleted neighborhood Bδ(p) \ {p} to a canonical Σ-harmonic

map with degrees [n+, n−] = [1, 0] at p, then for small ε, |ψε−(x)| is bounded away from zero

in Bδ(p).

Special solutions to (1–2) are obtained by an equivariant ansatz, ψ±(x) = f±(r)ein±θ,

in polar coordinates (r, θ) in R2, with f± a pair of real-valued functions. In section 3 we

show that for each fixed choice of degrees n± at infinity, there exist unique equivariant entire

solutions satisfying (3). Uniqueness is proven using the method of Brezis & Oswald [BO].

In section 4 we give an alternative proof of uniqueness of equivariant solutions by means of

an extension of the Krasnoselskii theorem [K] to systems with variational structure.

We also study the interesting role of the parameter γ in the monotonicity of the fractional-

degree vortex profiles. When 0 < γ < 1 the component of the order parameter which does

not vanish (for example, f− for the [n+, n−] = [1, 0] vortex) is monotone decreasing, and

approaches its limiting value at infinity from above. When γ ≥ 1, all vortices of any degree

combination have density profiles which increase with r, just as in the Ginzburg–Landau

case.

monotone Theorem 1.3 Assume Ψ(x) = [f+(r)ein+θ, f−(r)ein−θ] is an equivariant solution satisfying

(3).

(i) If γ ≥ 1, then f ′±(r) ≥ 0 for all r > 0, for any degrees [n+, n−].

(ii) If 0 < γ < 1, n+ ≥ 1, and n− = 0, then f ′+(r) ≥ 0 and f ′−(r) ≤ 0 for all r > 0.

The methods used in Section 3 are derived from the work of Alama, Bronsard & Giorgi

[ABG1, ABG2] on the SO(5)-model, which also featured a vector-valued order parameter

and two different species of vortex profiles.

A natural open question is whether all locally minimizing solutions to (1–2) must be

radial. This fact was proven by Mironescu [M] for the classical Ginzburg–Landau equation,
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by dividing any given solution by an equivariant one (which must be of degree ±1,) and cal-

culating a sort of Pohozaev identity for the equation satisfied by the quotient. Our equations

being a coupled system, the above procedure fails since the equation for the quotient is no

longer clearly of gradient form. Although our system is in many ways very similar to the

scalar Ginzburg–Landau equation, and many analytic results may be extended from one to

the other, we have been careful in verifying which techniques derived for the scalar equation

may be adapted to the system (1–2).

2 Locally minimizing solutions

In this section we study solutions which are locally minimizing in the sense of De Giorgi, and

prove Theorem 1.1. The proof is based on the following asymptotic description of solutions:

asympt Proposition 2.1 Let Ψ be a solution of (1–2) in R2 satisfying (3). There exist constants

β+, β− such that ψ± → 1√
2
ei(n±θ+β±) uniformly as |x| → ∞. Moreover:

(i) If [n+, n−] = [1, 0], then as r = |x| → ∞,

|ψ+(x)|2 =
1

2
− γ + 1

4γ

1

r2
+ o

(
1

r2

)
, |ψ−(x)|2 =

1

2
− γ − 1

4γ

1

r2
+ o

(
1

r2

)
. (6) asympt10

(ii) If [n+, n−] = [1, 1], then as r = |x| → ∞,

|ψ±(x)|2 =
1

2
− 1

2r2
+ o

(
1

r2

)
. (7) asympt11

asymptrem Remark 2.2 We observe that this asymptotic result already shows the qualitative difference

between the case 0 < γ < 1 and the case γ ≥ 1, at least in the case of the fractional degree

vortices. We will confirm this difference in monotonicity of the vortex profiles in our analysis

of the equivariant (radially symmetric) vortex solutions in the next section.

Proof of Theorem 1.1: By the first part of Proposition 2.1, we may assume without loss of

generality that ψ−(x) → 1√
2

uniformly as |x| → ∞. In particular, if we fix any δ < 1
2
√

2
,

there exists a radius R = R(δ) such that |ψ−(x) − 1√
2
| < δ for all |x| ≥ R. Let Ω = BR(0),

and for x ∈ Ω define

ψ̃+(x) = ψ+(x), ψ̃−(x) = |Reψ−(x)|+ i Imψ−(x).

Note that Ψ̃ := [ψ̃+, ψ̃−] ∈ H1(Ω;C2), E(Ψ̃; Ω) = E(Ψ; Ω), and (by the choice of R,)

Ψ̃|∂Ω = Ψ|∂Ω. Therefore, Ψ̃ is also a local minimizer of E, in the sense described above. This
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implies that Ψ̃ also solves the Euler–Lagrange equations (1–2) in Ω. In particular, u = Re ψ̃−

is a non-negative solution of

−∆u+
(
(1− γ)|ψ̃+|2 + (1 + γ)|ψ̃−|2 − 1

)
u = 0,

which is strictly positive on ∂Ω = SR (again, by the choice of R.) By the Strong Maximum

Principle, in fact u = Re ψ̃−(x) > 0 in Ω. This implies Ψ̃ = Ψ, and

Reψ−(x) > 0 in R2.

Now let α be a constant with |α| < π
2
, and consider ψ̂−(x) := ψ−(x)eiα. Note that

Ψ̂ := [ψ+, ψ̂−] is again a solution to (1–2), with the same energy in any domain Ω. By

Proposition 2.1 and our definition of ψ̂− we now have ψ̂−(x) → 1√
2
eiα uniformly as |x| → ∞.

Choosing δ = δ(α) > 0 such that Bδ(
1√
2
eiα) is strictly contained inside the right half-plane

{Re z > 0}, there exists a radius R = R(α) such that |ψ̂−(x)− 1√
2
eiα| < δ whenever |x| ≥ R.

Repeating the above argument, we conclude that Re ψ̂−(x) > 0 in R2. Equivalently,

Imψ−(x) ≤ (cotα) Reψ−(x) when 0 < α < π/2,

Imψ−(x) ≥ (cotα) Reψ−(x) when −π/2 < α < 0.

Letting α→ ±π
2

we conclude Imψ−(x) ≡ 0.

♦

To prove Proposition 2.1 we use the following modification of a similar result from [BMR]:

bmr Lemma 2.3 Let Ψ be an entire solution of (1–2) satisfying (3).

(i) |Ψ(x)| ≤ 1 for all x ∈ R2 and |ψ±(x)|2 → 1
2

uniformly as |x| → ∞.

(ii) There exist constants R0 > 0, n± ∈ Z, and smooth functions ρ±(x), φ±(x) for |x| ≥ R0

such that

Ψ(x) = [ψ+(x), ψ−(x)] =
[
ρ+(x)ei(n+θ+φ+(x)), ρ−(x)ei(n−θ+φ−(x))

]
,

with ∫
|x|>R0

(
|∇ρ±|2 + |∇φ±|2

)
<∞. (8) bmrest

Proof: Statement (i) follows as in Step 1 of the proof of Theorem 1 in [BMR]. Indeed, the

quantity U(x) := |Ψ(x)|2 satisfies the equation

1

2
∆U = (U − 1)u+

γ

2
S2 + |∇Ψ|2,
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and hence the estimate U = |Ψ|2 < 1 follows from the strong maximum principle. The

uniform convergence as |x| → ∞ then follows as in [BMR] from standard elliptic estimates,

(3), and the following elementary inequality [AB2]:

2 min{1, γ}
[(
|ψ+|2 −

1

2

)2

+
(
|ψ−|2 −

1

2

)2
]
≤
(
|Ψ|2 − 1

)2
+ 4γS2.

The existence of R0, ρ±, ψ± is an immediate consequence of (i). The first part of (ii) is an

immediate consequence of the uniform limit |x| → ∞. To prove (8), we write the equations

for ϕ± = n±θ + φ± and ρ±:

div
(
ρ2
±∇ϕ±

)
= 0,

−∆ρ± + |∇ϕ±|2ρ± = (1− ρ2
+ − ρ2

−)ρ± ∓ γ(ρ2
− − ρ2

+)ρ±.

The equations for ϕ± are identical to those in [BMR], and the analysis there applies with no

modification. The equations for ρ± are of the same form, and the same approach as [BMR]

leads easily to the same conclusion with only minor changes. We leave the details to the

interested reader.

♦
Proof of Proposition 2.1: The proof follows Shafrir [S]. Let Rm → ∞ be any increasing

divergent sequence, εm = 1/Rm, and let 0 < a < 1 < b be fixed. Denote by Ω = Bb(0)\Ba(0)

and Ωm = BbRm \BaRm(0). Consider the rescaled solutions

Ψm(x) = [ψm+(x), ψm−(x)] = Ψ(Rm x).

Then Ψm satisfies

−∆ψm± +
1

ε2m

(
(1± γ)|ψm+|2 + (1∓ γ)|ψm−|2 − 1

)
ψm± = 0 in Ω. (9) singpert

We now apply Lemma 2.3 to obtain R0 > 0 and ρ±, φ± defined for |x| ≥ R0. Since large

|x| is equivalent to large m we may write, for large m, ψm± = ρm± exp(i(n±θ + φm±(x))).

As in [S], we use (8) to calculate∫
Ω
|∇Ψm|2 =

∫
Ωm

|∇Ψ|2 =
∫
Ωm

∑
±

[
|∇ρ±|2 + ρ2

±|n±∇θ +∇φ±|2
]

=
∫
Ωm

∑
±

[
|∇ρ±|2 + ρ2

±

(
n2
±
r2

+
2n±
r2

∇φ± · (−y, x) + |∇φ±|2
)]

=
∫
Ωm

∑
±

1

2

n2
±
r2

+ o(1)

= π
(
n2

+ + n2
−

)
ln
b

a
+ o(1). (10) upper
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Up to a subsequence, we find Ψm ⇀ Ψ̃ in H1(Ω; Σ).

We claim that the convergence Ψm → Ψ̃ is strong in H1(Ω; Σ), and

Ψ̃(x) =
1√
2
[ei(n+θ+β+), ei(n+θ+β−)], (11) Psitilde

with β± real constants. Indeed, since Ψ̃ takes values in Σ we may represent it locally as

Ψ̃ = 1√
2
[exp(iϕ+(x)), exp(iϕ−(x))], where ϕ± are possibly multivalued, real-valued functions.

By standard arguments we derive a lower bound which matches (10):∫
Ω
|∇ψ̃±|2 ≥

∫ b

a

∫ 2π

0

1

2

(
∇ϕ± · θ̂

)2
r dθ dr

≥ 1

2

∫ b

a

[∫
Sr

∂ϕ±
∂s

dsr
]2

∫ 2π
0 1 r dθ

dr

=
∫ b

a

πn2
±
r

dr = π n2
± ln

b

a
.

By lower semicontinuity, we conclude that this inequality is indeed an equality,
∫
Ω |∇Ψ̃|2 =

π(n2
+ + n2

−) ln b
a
. Hence, the convergence is strong in H1. In addition, we have the case of

equality in the Cauchy-Schwarz inequality used in the second line of the lower bound above,

which implies (11), and the claim is established.

We now employ the main idea of [S]: to use the local convergence results away from

vortices for the singularly perturbed problem (9), derived for the Ginzburg–Landau equation

in [BBH1] and extended to our spinor system in [AB2]. By Theorem 4.1 in [AB2], Ψm → Ψ̃

in Ck
loc(Ω) for any k ≥ 0, and∥∥∥∥∥ 1

ε2m

{
(1± γ)|ψ̃m+|2 + (1∓ γ)|ψ̃m−|2 − 1

}
+ 2|∇ψ̃m±|2

∥∥∥∥∥
Ck

loc
(Ω)

→ 0, for all k ≥ 0.

Note that the Ck
loc convergence of Ψm to Ψ̃ implies that we may replace 2|∇ψ̃m±|2 by

n2
±
r2

in

the above estimate. Evaluating along ∂B1(0) ⊂ Ω,∥∥∥R2
m

{
(1± γ)|ψ+(Rmx)|2 + (1∓ γ)|ψ−(Rmx)|2 − 1

}
+ n2

±

∥∥∥
L∞(∂B1(0))

→ 0.

Since Rm was an arbitrary divergent sequence we may conclude that the above holds for

general r →∞, that is,{
(1± γ)|ψ+(x)|2 + (1∓ γ)|ψ−(x)|2 − 1

}
+
n2
±
r2

= o
(

1

r2

)
,

uniformly as |x| = r →∞. This then implies that

|ψ+|2 =
1

2
−
n2

+(γ + 1) + n2
−(γ − 1)

4γ

1

r2
+ o

(
1

r2

)
,

|ψ−|2 =
1

2
−
n2

+(γ − 1) + n2
−(γ + 1)

4γ

1

r2
+ o

(
1

r2

)
,
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as r →∞. The conclusions (6) and (7) then follow immediately.

To obtain the uniform limit of φ±(x), we note that by taking the imaginary part of the

equations (1–2) in polar form we arrive at the same equation (for conservation of current)

as in the classical Ginzburg–Landau equation,

div
(
ρ2
±∇(n±θ + φ±)

)
= 0.

Therefore the assertion that φ±(x) → β± uniformly as |x| → ∞ follows exactly as in [S].

♦
We note the following further estimate which will be useful in our study of equivariant

solutions in the next section:

derivs Corollary 2.4 Under the hypotheses above, with ρ± = |ψ±|, we have:

∂ρ±
∂r

=
n2

+(γ ± 1) + n2
−(γ ∓ 1)

2
√

2γ

1

r3
+ o

(
1

r3

)
∂2ρ±
∂r2

= −3
√

2

4γ

[
n2

+(γ ± 1) + n2
−(γ ∓ 1)

] 1

r4
+ o

(
1

r4

)
.

These follow by differentiation in the Ck
loc estimates above.

Finally, we prove the quantization of the potential term for any entire solution satisfying

(3):

BMRprop Proposition 2.5 Let (for any choice of [n+, n−]) Ψ = [ψ+, ψ−] be a solution of (1–2) satis-

fying (3). Then ∫
R2

{(
|Ψ|2 − 1

)2
+ γ

(
|ψ−|2 − |ψ+|2

)2
}
dx = π

(
n2

+ + n2
−

)
.

Proof: The proof continues from that of Lemma 2.3, following Step 3 in the proof of

Theorem 1 in [BMR]. By the Pohozaev identity applied to our system,

1

r

∫
Br

G(Ψ) dx+
∫
∂Br

∣∣∣∣∣∂ψ+

∂r

∣∣∣∣∣
2

+

∣∣∣∣∣∂ψ−∂r
∣∣∣∣∣
2
 ds =

∫
∂Br

∣∣∣∣∣∂ψ+

∂τ

∣∣∣∣∣
2

+

∣∣∣∣∣∂ψ−∂τ
∣∣∣∣∣
2

+G(Ψ)

 ds, (12) Po

where τ indicates the unit tangent to ∂Br and

G(Ψ) :=
(
|Ψ|2 − 1

)2
+ γ

(
|ψ−|2 − |ψ+|2

)2
.

Define

E(R) :=
∫
BR

G(Ψ) dx, E :=
∫
R2
G(Ψ) dx,
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and note that E(R) → E as R→∞, as well as

1

lnR

∫ R

0

E(r)

r
dr → E, R→∞.

Integrating (12) over r ∈ (0, R),∫
BR

∣∣∣∣∣∂ψ+

∂r

∣∣∣∣∣
2

+

∣∣∣∣∣∂ψ−∂r
∣∣∣∣∣
2
+

∫ R

0

E(r)

r
dr =

∫
BR

∣∣∣∣∣∂ψ+

∂τ

∣∣∣∣∣
2

+

∣∣∣∣∣∂ψ−∂τ
∣∣∣∣∣
2
+

1

2
E(R). (13) Po1

The radial derivatives |∂ψ+

∂r
|2 are estimated as in (2.46) of [BMR], using (8) to obtain∫

BR

∣∣∣∣∣∂ψ+

∂r

∣∣∣∣∣
2

+

∣∣∣∣∣∂ψ−∂r
∣∣∣∣∣
2
 ≤ C

uniformly as R→∞. The difference in our case is in the tangential derivative,∣∣∣∣∣∣
∣∣∣∣∣∂ψ±∂τ

∣∣∣∣∣
2

−
n2
±

2r2

∣∣∣∣∣∣ ≤ |∇ρ±|2 +
∣∣∣∣ρ2 − 1

2

∣∣∣∣ n2
±
r2

+ 2ρ2
±
n±
r
|∇φ±|+ |∇φ±|2,

where we have decomposed ψ±(x) = ρ± e
i(n±θ+φ±) as in the proof of Lemma 2.3. Note the

extra factor 1
2

which appears in our case since ρ± = |ψ±| → 1/
√

2 as |x| → ∞. Continuing

as in (2.49), (2.50) of [BMR], we divide (13) by lnR and pass to the limit to obtain:∫
R2
G(Ψ) dx = lim

R→∞

1

lnR

∫
BR

∣∣∣∣∣∂ψ+

∂τ

∣∣∣∣∣
2

+

∣∣∣∣∣∂ψ−∂τ
∣∣∣∣∣
2
 = lim

R→∞

1

lnR

∫
BR

n2
±

2r2
dx = π(n2

+ + n2
−).

♦

3 Equivariant solutions

In this section we consider special solutions of the equations (1–2) of the form

ψ+(x) = f+(r) ein+θ, ψ−(x) = f−(r) ein−θ,

in polar coordinates (r, θ) with given degree pair [n+, n−] ∈ Z2. By taking complex conjugates

if necessary, we may assume that n± ≥ 0. When f ≥ 0, the system (1–2) reduces to the

following system of ODEs,

−1
r

(
rf ′±

)′
+

n2
±
r2
f± +

(
f 2

+ + f 2
− − 1

)
f± ∓ γ

(
f 2
− − f 2

+

)
f± = 0, for r ∈ (0,∞),

f±(r) ≥ 0 for all r ∈ [0,∞),

f±(R) → 1√
2

as r →∞,

f±(0) = 0 if n± 6= 0, f ′±(0) = 0 if n± = 0.


(14) ODE

We begin with their existence and uniqueness:
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exist Lemma 3.1 Let n± ∈ Z be given. Then there exists a unique solution [f+(r), f−(r)] to (14)

for r ∈ [0,∞) such that: f± ∈ C∞((0,∞)), f±(r) > 0 for all r > 0,
∫∞
0 (1− f 2

+− f 2
−)2 r dr <

∞, and f±(r) ∼ rn± for r ∼ 0. In particular, Ψ(x) = [f+(r)ein+θ, f−(r)ein−θ] is an entire

solution of (1–2) in R2 satisfying (3).

Proof: To obtain existence we consider first the simpler problem defined in the ball BR,

R > 0,

−1
r

(
rf ′±

)′
+

n2
±
r2
f± +

(
f 2

+ + f 2
− − 1

)
f± ∓ γ

(
f 2
− − f 2

+

)
f± = 0, for 0 < r < R,

f±(R) = 1√
2

f±(0) = 0 if n± 6= 0, f ′±(0) = 0 if n± = 0.


(15) ODE_R

The existence of such a solution follows easily, for example, by minimization of the energy

ER
n+,n−(f+, f−) =

1

2

∫ R

0

∑
i=±

[
(f ′i)

2 +
n2
±
r2
f 2
i

]
+

1

2

[
(f 2

+ + f 2
− − 1)2 + γ(f 2

− − f 2
+)2

] r dr,
(16) ER

over Sobolev functions satisfying the appropriate boundary conditions at r = 0 and r = R.

Denote by [fR,+(r), fR,−(r)] any solution of (15). As in the proof of (i) of Lemma 2.3 we

have the simple a priori bound |Ψ|2 = (f 2
+(r) + f 2

−(r)) ≤ 1 for any solution to (16). By

standard elliptic estimates, there exists a subsequence Rn → ∞ for which the solutions

[fR,+, fR,−] → [f∞,+, f∞,−] in C1,α
loc [0,∞), and the limit functions [f∞+ (r), f∞− (r)] give (weak)

solutions to the ODE on (0,∞) with the same boundary condition at r = 0. By standard

estimates we obtain the behavior f∞,± ∼ rn± near r = 0, and therefore ψ±(x) = f∞,±(r)ein±θ

is regular at x = 0 and solves (1–2) in R2.

On the other hand, by the Strong Maximum Principle, we have either f± > 0 in (0,∞),

or f± ≡ 0 in (0,∞). Therefore, in order to conclude, it suffices to establish (3). For this

purpose we derive a Pohozaev identity: we multiply the equation of fR,±(r) by r2 f ′R,±(r)

and integrate with respect to r ∈ (0, R). We obtain:

R2
(
(f ′R,+(R))2 + (fR,−(R))2

)
+
∫ R

0

[
(1− f 2

R,+ − f 2
R,−)2 + γ(f 2

R,− − f 2
R,+)2

]
r dr =

1

2
(n2

++n2
−).

By uniform convergence on [0, R0] for any R0 > 0 we have∫ R0

0

[
(1− f 2

∞,+ − f 2
∞,−)2 + γ(f 2

∞,− − f 2
∞,+)2

]
r dr ≤ 1

2
(n2

+ + n2
−),

and so letting R0 → ∞ we recover the condition (3). This completes the existence part of

Lemma 3.1.
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To prove uniqueness we use the basic approach of Brezis & Oswald [BO]. Let [n+, n−] ∈
Z2 be given, and suppose [f+, f−] and [g+, g−] are two solutions of (14). Denote by ∆rf :=
1
r
(r f ′(r))′ the Laplacian for radial functions. Then we have:

−∆rf+

f+

+
∆rg+

g+

= −
[
(1 + γ)

(
f 2

+ − g2
+

)
+ (1− γ)

(
f 2
− − g2

−

)]
. (17) pluseq

−∆rf−
f−

+
∆rg−
g−

= −
[
(1− γ)

(
f 2

+ − g2
+

)
+ (1 + γ)

(
f 2
− − g2

−

)]
. (18) minuseq

We then multiply (17) by (f 2
+ − g2

+) and (18) by (f 2
− − g2

−), and integrate over 0 < r < ∞.

Since ψ±(x) = f±(r)ein±θ defines a solution of the system (1–2) satisfying the condition (3),

the estimates of Proposition 2.1 and Corollary 2.4 hold for f±, g±. In particular the integrals

converge, and we may integrate by parts. As in [BO] we obtain:

0 ≤
∫ ∞

0


∣∣∣∣∣f ′+ − f+

g+

g′+

∣∣∣∣∣
2

+

∣∣∣∣∣g′+ − g+

f+

f ′+

∣∣∣∣∣
2

+

∣∣∣∣∣f ′− − f−
g−
g′−

∣∣∣∣∣
2

+

∣∣∣∣∣g′− − g−
f−
f ′−

∣∣∣∣∣
2
 r dr

= −
∫ ∞

0

{
(1 + γ)

(
f 2

+ − g2
+

)2
+ 2(1− γ)

(
f 2

+ − g2
+

) (
f 2
− − g2

−

)
+ (1 + γ)

(
f 2
− − g2

−

)2
}
r dr

≤ −2 min{1, γ}
∫ ∞

0

[(
f 2

+ − g2
+

)2
+
(
f 2
− − g2

−

)2
]
r dr,

since the quadratic form (1 + γ)X2 + 2(1 − γ)XY + (1 + γ)Y 2 ≥ 2 min{1, γ}(X2 + Y 2) is

positive definite. Hence f±(r) = g ± (r) for all r ∈ (0,∞), and we have proven uniqueness.

♦

We next present the proof of Theorem 1.3 on the monotonicity of the radial profiles.

First, we define the spaces

X0 := H1((0,∞); r dr),

Xn :=

{
u ∈ X0 :

∫ ∞

0

u2

r2
r dr <∞

}
, ‖u‖2

Xn
=
∫ ∞

0

[
(u′)2 + u2 +

n2

r2
u2

]
r dr.

Of course the spaces Xn, n 6= 0 are all equivalent, but we define them this way for notational

convenience. It is not difficult to show (see [ABG1]) that for |n| ≥ 1, Xn is continuously

embedded in the space of continuous functions on (0,∞) which vanish at r = 0 and as

r → ∞, and that C∞0 ((0,∞)) is dense in X1. It is possible to define a global variational

framework for the equivariant problems in affine spaces based on Xn+ , Xn− to prove existence

of solutions. The energy is the same as in (16), except it must be “renormalized” to prevent

divergence of the
n2
±
r2

term at infinity. Here we are only interested in the (formal) second

variation of this renormalized energy,

D2En+,n−(f+, f−)[u+, u−] :=
∫ ∞

0

{∑
i=±

[
(u′i)

2 +
n2
±
r2
u2
i + (f 2

+ + f 2
− − 1)u2

i

]
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+2(f+u+ + f−u−)2 + 2γ(f−u− − f+u+)2

+γ(f 2
− − f 2

+)(u2
− − u2

+)
}
r dr,

defined for [u+, u−] ∈ Xn+ ×Xn− .

We have the following remarkable fact about admissible radial solutions:

nondeg Lemma 3.2 For any n± ∈ Z, if [f+, f−] is the (unique) admissible radial solution of (14),

D2En+,n−(f+, f−)[u+, u−] > 0 for all [u+, u−] ∈ Xn+ ×Xn− \ {[0, 0]}.

In other words, the radial solutions are non-degenerate local minimizers of the renor-

malized energy. An analogous statement for the Ginzburg–Landau equation with magnetic

field was derived in [ABG1], and this observation then became the main step in the proof

of uniqueness of equivariant solutions proved there. The basic idea is that were there two

admissible solutions to the equivariant vortex equations, each being a local minimizer of the

energy there would be a third, non-minimizing solution via the Mountain–Pass Theorem.

The argument was achieved by restriction to a convex constraint set (to eliminate the possi-

bility of non-admissible solutions, which might not be local minimizers.) The method works

because the constraints play the role of a sub- and super-solution pair for the Ginzburg–

Landau equations, and hence the mountain pass solutions obtained would lie in the interior

of the constraint set. Unfortunately, in our vector-valued case the sub-solution structure is

not apparent and the argument does not seem to carry over.

Proof of Lemma 3.2: We follow [ABG1], and note the following calculus identity:

f 2(r)

[(
u(r)

f(r)

)′]2

= (u′)2 − 2
uu′f ′

f
+ u2 (f ′)2

f 2
= (u′)2 −

(
u2

f

)′
f ′.

Let u± ∈ C∞0 ((0,∞)) (if n± = 0, take u± ∈ C∞0 ([0,∞)) instead.) Then [
u2
+

f+
,
u2
−
f−

] gives an

admissible test function in the weak form of the system (14),

0 = DEn+,n−(f+, f−)

[
u2

+

f+

,
u2
−
f−

]

=
∫ ∞

0

{∑
i=±

(u′i)
2 +

n2
i

r2
u2
i − f 2

i

[(
ui
fi

)′]2


+(f 2
+ + f 2

− − 1)(u2
+ + u2

−) + γ(f 2
− − f 2

+)(u2
− − u2

+)
}
r dr.

Rearranging, we obtain the useful identity,∫ ∞

0

{∑
i=±

(
(u′i)

2 +
n2
i

r2
u2
i

)
+ (f 2

+ + f 2
− − 1)(u2

+ + u2
−) + γ(f 2

− − f 2
+)(u2

− − u2
+)
}
r dr
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=
∫ ∞

0

∑
i=±

f 2
i

[(
ui
fi

)′]2

≥ 0.

We then substitute into the expression for the second variation (19):

D2En+,n−(f+, f−)[u+, u−] =
∫ ∞

0

{∑
i=±

f 2
i

[(
ui
fi

)′]2

+ 2(f+u+ + f−u−)2 + 2γ(f−u− − f+u+)2
}

≥
∫ ∞

0

{
2(f+u+ + f−u−)2 + 2γ(f−u− − f+u+)2

}
, (19) 2varbelow

valid for all u± ∈ C∞0 ((0,∞)) (or, u± ∈ C∞0 ([0,∞)) if the respective n± = 0.) The case

of general u± ∈ X1 (or X0, in case one of n± = 0,) then follows by density. Clearly,

D2En+,n−(f+, f−) ≥ 0 (as a quadratic form.) If it were zero for some [u+, u−], then we would

have f+u+ = f−u− = −f+u+ almost everywhere. Since f±(r) > 0 for r > 0, we conclude

that the second variation is strictly positive definite, as claimed.

♦

Proof of Theorem 1.3: Let u±(r) := f ′±(r). Differentiating the equation (14), we obtain

0 = −u′′± −
1

r
u′± +

n2
±
r2
u± + (f 2

+ + f 2
− − 1)u± + 2(f+u+ + f−u−)f±

∓ 2γ(f−u− − f+u=)f± −
2n2

±
r3

f± +
1

r2
u±. (20) ueq

We observe that all but the last two terms form part of the second variation of energy, (19).

Define

v± = min{0, u±} ≤ 0, w± = max{0, u±} ≥ 0.

First, assume γ ≥ 1. We multiply the respective equation in (20) by v±, (and use

v+w+ = 0 and v−w− = 0,) and integrate by parts. Note that by conclusion (ii) of Lemma 3.1,

f±(r) > 0 for all r and f±(r) ∼ rn± for r near zero. Therefore, if n± ≥ 1, u±(r) = f ′±(r) > 0 in

some neighborhood r ∈ (0, δ). Thus, in case n± ≥ 1, v± is supported away from r = 0. By the

asymptotic estimates of Corollary 2.4 we may then conclude that v± ∈ Xn± . Furthermore,∫ ∞

0
v±

(
u′′± +

1

r
u′±

)
r dr = −

∫ ∞

0
(v′±)2 r dr,

with no boundary terms. In case n± = 0, then u± ∈ X0 by the regularity of solutions, and

u±(0) = f ′±(0) = 0. The integration by parts formula above again holds with no boundary

condition in this case as well. Combining terms and recognizing that many terms form part

of the second variation of energy (19), we obtain:

0 = D2En+,n−(f+, f−)[v+, v−] + 2(1− γ)
∫ ∞

0
f+ f−(w− v+ + v−w+) r dr

+
∑
i=±

∫ ∞

0

[
1

r2
v2
i −

2n2
i

r3
fi vi

]
r dr.
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Each term above has a sign, and we obtain

0 ≤ D2En+,n−(f+, f−)[v+, v−] ≤ −
∫ ∞

0

1

r2
(v2

+ + v2
−) r dr < 0,

a contradiction to Lemma 3.2 unless both v± ≡ 0, that is unless f ′±(r) ≥ 0 for all r > 0.

This proves (i).

Now assume 0 < γ < 1, n− = 0 and n+ ≥ 1. This time we multiply the equation for u+

by v+ and the equation for u− by w−, and again integrate by parts. Just as in the previous

case, w− ∈ X0, and the boundary term in the integration will all vanish. This time we

obtain:

0 = D2En+,n−(f+, f−)[v+, w−] + 2(1− γ)
∫ ∞

0
f+ f−(v+v− + w+w−) r dr

+
∫ ∞

0

(
1

r2
(v2

+ + w2
−)−

2n2
+

r3
f+v+

)
r dr.

Since f+ > 0, v+ ≤ 0 and v+v−, w+w− ≥ 0, we conclude

D2En+,n−(f+, f−)[v+, w−] ≤ −
∫ ∞

0

1

r2
(v2

+ + w2
−) r dr < 0,

a contradiction with Lemma 3.2 unless v+ ≡ 0 and w− ≡ 0. That is, unless f ′+(r) ≥ 0 and

f ′−(r) ≤ 0 for all r > 0.

♦

4 Another approach to uniqueness

We give a second proof of the uniqueness of the equivariant solutions

[ψ+, ψ−] =
[
f+(r)ein+θ, f−(r)ein−θ

]
which is based on an extension of Krasnoselskii’s method [K] to variational elliptic systems.

For a vector u = (u1, . . . , um) ∈ Rm, we say u is positive, and write u > 0, if ui > 0 for

all i = 1, . . . ,m. We denote by u2 = (u2
1, . . . , u

2
m).

Kras Theorem 4.1 Suppose G : Ω×Rm → R, and G(x, u) is strictly convex in u > 0 for every

fixed x ∈ Ω ⊂ Rn. Then, there is at most one positive solution u to
−∆uj + ∂uj

G(x, u2)uj = 0, x ∈ Ω, j = 1, . . . ,m
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(21) Ke
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Proof: Define the energy associated to this problem,

E(u) =
1

2

∫
Ω

(
|∇u|2 +G(x, u2)

)
for u ∈ H1

0 (Ω;Rm). Suppose u, v are both positive solutions of (21), and define wj so

that vj(x) = uj(x)wj(x) for all j = 1, . . . ,m. By the Hopf boundary lemma, w ∈ C1(Ω).

Multiplying the equation for uj by 1
2
uj(w

2
j − 1) and integrating by parts, we arrive at the

identity

1

2

∫
Ω

(
|∇uj|2(w2

j − 1) + 2ujwj∇uj · ∇wj
)

= −1

2

∫
Ω
u2
j(w

2
j − 1)∂uj

G(x, u2). (22) id

Next, we expand the energy of v, using the above identity:

E(v) = E(u1w1, . . . , umwm)

=
1

2

m∑
j=1

∫
Ω

(
w2
j |∇uj|2 + 2ujwj∇uj · ∇wj + u2

j |∇wj|2 +G(x, v2)
)

=
1

2

m∑
j=1

∫
Ω

(
|∇uj|2 − u2

j(w
2
j − 1)∂uj

G(x, u2) + u2
j |∇wj|2 +G(x, v2)

)

= E(u) +
1

2

∫
Ω
u2
j |∇wj|2 +

1

2

∫
Ω

G(x, v2)−G(x, u2)−
m∑
j=1

(v2
j − u2

j)∂uj
G(x, u2)

 .
By the strict convexity of G, we have

G(x, t)−G(x, s)−
m∑
j=1

(tj − sj)∂sj
G(x, s) ≥ 0

for all x ∈ Ω and for all s, t > 0 in Rm, with equality if and only if s = t. In particular,

if u 6≡ v, we have E(v) > E(u). Reversing the roles of the variables u and v we also see

E(u) > E(v), a contradiction unless u = v.

♦

general Remark 4.2 By the same proof, we obtain uniqueness for the more general semilinear

variational system,
−div (Aj(x)∇uj) + ∂uj

G(x, u2)uj = 0, x ∈ Ω, j = 1, . . . ,m
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

with Aj(x) symmetric, n× n elliptic matrix-valued functions in Ω.
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The vortex profiles f±(r) being defined on the semi-infinite interval r ∈ [0,∞), we must

modify this basic uniqueness theorem to fit this setting. In particular, the energy associated

to the equivariant vortices is infinite on the entire interval. However, by the basic estimates

proven in Proposition 2.1, the difference between the energies of two solutions will converge.

In this setting, we let u = (f+(r), f−(r)) and

G(r, s, t) =
n2

+

r2
s+

n2
−
r2
t+

1

2
(1− s− t)2 +

γ

2
(s− t)2 .

It is easy to verify that this G is strictly convex in (s, t) > 0 for each r ∈ [0,∞); indeed, its

Hessian is the constant matrix

D2
(s,t)G(r, s, t) =

[
1 + γ 1− γ
1− γ 1 + γ

]
.

The equations (15) for f±(r) take the form
−∆rfj + ∂fj

G(r, f2
+, f

2
−)fj = 0, r ∈ [0,∞), j = +,−

f±(r) > 0, r ∈ [0,∞),
f±(r) → 1√

2
, r →∞.

(23) Ve

Recall from the proof of Lemma 3.1 that f±(r) ∼ r|n±| as r → 0 when n 6= 0, and if n± = 0,

we have f ′±(0) = 0. We recall also the localized energies in r ∈ [0,∞) defined by (16), which

take the form

ER
n+,n−(f+, f−) =

1

2

∫ R

0

 ∑
j=+,−

(f ′j(r))
2 +G(r, f2

+, f
2
−)

 r dr
Now assume that there are two such solutions, u = (f+, f−) > 0 and v = (g+, g−) > 0,

and as above we let w be chosen with vj = ujwj, j = +,−. By Lemma 3.1 we have

w ∈ C1[0,∞) and uniformly bounded. Because we no longer have a Dirichlet condition at

r = R, the identity (22) takes the form:

1

2

∫ R

0

(
(f ′j)

2(w2
j − 1) + 2fj, wj f

′
jw

′
j

)
r dr

= −1

2

∫ R

0
f 2
j (w

2
j − 1)∂fj

G(r, f2
+, f

2
−) r dr + rf ′j(r)fj(r)(w

2
j (r)− 1)

∣∣∣R
0

= −1

2

∫ R

0
f 2
j (w

2
j − 1)∂fj

G(r, f2
+, f

2
−) r dr + o(1),

for j = +,− and as R→∞, where we have used Proposition 2.1 to estimate the boundary

term at r = R → ∞ and Lemma 3.1 to eliminate the term at r = 0. As in the proof of
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Theorem 4.1 we compare the energies using the above identity,

ER
n+,n−(g+, g−)− ER

n+,n−(f+, f−)

= ER
n+,n−(v)− ER

n+,n−(u)

=
1

2

∫ R

0

∑
j=+,−

u2
j(w

′
j)

2r dr + o(1)

+
1

2

∫ R

0

G(r, v2)−G(r, u2)−
∑

j=+,−
(v2
j − u2

j)∂uj
G(r, u2)

 r dr.
By the estimates of Proposition 2.1, the term

n2
±
r2

(f 2
± − g2

±)

is integrable, as are all the other terms which appear in the energy density. Hence the

left-hand side converges as R→∞ and using Fatou’s Lemma, we conclude

lim
R→∞

(ER
n+,n−(g+, g−)− ER

n+,n−(f+, f−)) ≥

1

2

∫ ∞

0

G(r, v2)−G(r, u2)−
∑

j=+,−
(v2
j − u2

j)∂uj
G(r, u2)

 r dr > 0,

unless u = v, by the strict convexity of G(r, s, t) in (s, t) > 0. Reversing the role of u and v,

we arrive at a contradiction unless u = v.

References

AB1 [AB1] S. Alama, L. Bronsard, “Des vortex fractionnaires pour un modèle Ginzburg–Landau
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