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Abstract

Let Saff := {−2i∂t − ∂r2 + V (t, r) | V ∈ C∞(R/2πZ × R)} be the space of Schrödinger
operators in (1 + 1)-dimensions with periodic time-dependent potential. The action on Saff

of a large infinite-dimensional reparametrization group SV [5, 7], called the Schrödinger-
Virasoro group and containing the Virasoro group, is proved to be Hamiltonian for a certain
symplectic structure on Saff . More precisely, the action of SV appears to be a projected
coadjoint action of a group of pseudo-differential symbols, G, of which SV is a quotient,
while the symplectic structure is inherited from the corresponding Kirillov-Kostant-Souriau
form.
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0 Introduction

The Schrödinger-Virasoro Lie algebra sv was originally introduced in Henkel[2] as a natural
infinite-dimensional extension of the Schrödinger algebra. Recall the latter is defined as the
algebra of projective Lie symmetries of the free Schrödinger equation in (1+1)-dimensions

(−2iM∂t − ∂r2)ψ(t, r) = 0. (0.1)

These act on equation (0.1) as the following first-order operators

Ln = −tn+1∂t −
1

2
(n+ 1)tnr∂r +

i

4
M(n+ 1)ntn−1r2 − (n+ 1)λtn

Ym = −tm+ 1
2 ∂r + iM(m+

1

2
)tm− 1

2 r

Mp = iMtp (0.2)

with λ = 1/4 and n = 0,±1, m = ±1
2 , p = 0. The 0th-order terms in (0.2) correspond

on the group level to the multiplication of the wave function by a phase. To be explicit, the
6-dimensional Schrödinger group S acts on ψ by the following transformations

(L−1, L0, L1) : ψ(t, r) → ψ′(t′, r′) = (ct+ d)−1/2e−
1
2
iMcr2/(ct+d)ψ(t, r) (0.3)

where t′ = at+b
ct+d , r′ = r

ct+d with ad− bc = 1;

(Y± 1
2
) : ψ(t, r) → ψ(t, r′) = e−iM((vt+r0)(r−v/2)ψ(t, r) (0.4)

where r′ = r − vt− r0;
(M0) : ψ(t, r) → eiMγψ(t, r). (0.5)

The Schrödinger group is isomorphic to a semi-direct product of SL(2,R) (corresponding
to time-reparametrizations (0.3)) by the Heisenberg group H1 (corresponding to the Galilei
transformations (0.4), (0.5)). Note that the last transformation (0.5) (multiplication by a con-
stant phase) is generated by the commutators of the Galilei transformations (0.4) - these do not
commute because of the added phase terms, which produce a central extension.

The free Schrödinger equation comes out naturally when considering many kinds of prob-
lems in out-of-equilibrium statistical physics. Its analogue in equilibrium statistical physics is
the Laplace equation ∆ψ = 0. In two-dimensional space, the latter equation is invariant by
local conformal transformations which generate (up to a change of variables) the well-known
(centerless) Virasoro algebra Vect(S1), otherwise known as the Lie algebra of C∞-vector fields
on the torus S1 := {eiθ, θ ∈ [0, 2π]}. There is no substitute for Vect(S1) when time-dependence
is included, but the Schrödinger-Virasoro Lie algebra

sv ≃ 〈Ln, Ym,Mp | n, p ∈ Z,m ∈
1

2
+ Z〉 (0.6)

shares some properties with it. First, the Lie subalgebra span(Ln, n ∈ Z) is isomorphic to
Vect(S1). Actually, sv is isomorphic to a semi-direct product Vect(S1) by a nilpotent Lie algebra.
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Second, there exists a natural action of the Schrödinger-Virasoro group SV integrating sv (see
[5]) on an affine space Saff := {−2i∂t−∂r2+V (t, r)} of Schrödinger operators with time-periodic
potential, which generalizes the well-known action φ∗ : ∂t2 + u(t) → ∂t2 + (φ̇(t))2(u ◦ φ)(t) +
1
2Θ(φ)(t) (Θ=Schwarzian derivative, see below) of the Virasoro group on Hill operators. The
infinitesimal action of sv on Saff , denoted by dσ1/4, is introduced in section 1. It is essentially
obtained by conjugating Schrödinger operators with the above functional transformations (0.2).

The main result of this paper is the following.

Theorem.

There exists a Poisson structure on Saff = {−2i∂t−∂r2+V (t, r)} for which the infinitesimal
action dσ1/4 of sv is Hamiltonian.

The analogue in the case of Hill operators is well-known (see for instance [1]). Namely, the
action of the Virasoro group on the space H of Hill operators is equivalent to its affine coadjoint
action with central charge c = 1

2 , with the identification ∂t2 + u(t) → u(t)dt2 ∈ vir∗1
2

, where vir∗c
is the affine hyperplane {(X, c) | X ∈ (Vect(S1))∗}. Hence this action preserves the canonical
KKS (Kirillov-Kostant-Souriau) structure on vir∗1

2

≃ H. As well-known, one may exhibit a

bi-Hamiltonian structure on vir∗ which provides an integrable system on H associated to the
Korteweg-De Vries equation.

The above identification does not hold true any more in the case of the Schrödinger action
of SV on the space of Schrödinger operators, which is not equivalent to its coadjoint action (see
[5], section 3.2). Hence the existence of a Poisson structure for which the action on Schrödinger
operators is Hamiltonian has to be proved in the first place. It turns out that the action on
Schrödinger operators is more or less the restriction of the coadjoint action of a much larger
group G on its dual. The Lie algebra of G is introduced in Definition 5.2. The way we went
until we came across this Lie algebra g is a bit tortuous. The first idea (as explained in [3])
was to see sv as a subquotient of an algebra DΨD of extended pseudodifferential symbols on the

line: one checks easily that the assignment Lf → f(ξ)∂ξ, Yg → g(ξ)∂
1
2
ξ , Mh → h(ξ) gives a

linear application sv → DΨD := R[ξ, ξ−1]] [∂
1
2
ξ , ∂

− 1
2

ξ ]] which respects the Lie brackets of both
Lie algebras, up to unpleasant terms which are pseudodifferential symbols with negative order.
Define DΨD≤κ as the subspace of pseudodifferential symbols with order ≤ κ. Then DΨD≤1 is a
Lie subalgebra of DΨD, DΨD≤− 1

2
is an ideal, and the above assignment defines an isomorphism

sv ≃ DΨD≤1/DΨD≤− 1
2
.

The second idea (sketched in [6]) was to use a non-local transformation Θ : DΨD → ΨD (ΨD

being the usual algebra of pseudo-differential symbols) which maps ∂
1
2
ξ to ∂r and ξ to 1

2r∂
−1
r (see

Definition 2.4). The transformation Θ is formally an integral operator, simply associated to the
heat kernel, which maps the first-order differential operator −2iM∂t − ∂ξ into −2iM∂t − ∂r2.
The operator −2iM∂t − ∂ξ (which is simply the ∂z̄-operator in light-cone coordinates) is now
easily seen to be invariant under an infinite-dimensional Lie algebra which generates (as an
associative algebra) an algebra isomorphic to DΨD. One has thus defined a natural action of
DΨD on the space of solutions of the free Schrödinger equation (−2iM∂t − ∂r2)ψ = 0.
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The crucial point now is that (after conjugation with Θ, i.e. coming back to the usual (t, r)-
coordinates) the action of DΨD≤1 coincides up to pseudodifferential symbols of negative order
with the above realization (0.2) of the generators Ln, Ym, Mp (n, p ∈ Z,m ∈ 1

2 + Z). In other
words, loosely speaking, the abstract isomorphism sv ≃ DΨD≤1/DΨD≤− 1

2
has received a con-

crete interpretation, and one has somehow reduced a problem concerning differential operators
in two variables t, r into a problem concerning time-dependent pseudodifferential operators in
one variable, which is a priori much simpler.

Integrable systems associated to Poisson structures on the loop algebra Lt(ΨD) over ΨD
(with the usual Kac-Moody cocycle (X,Y ) →

∮
K(Ẋ(t), Y (t) dt, where K is Adler’s trace on

ΨD) have been studied by A. Reiman ???. In our case computations show that the sv-action

on Schrödinger operators is related to the coadjoint action of Lt((ΨDr)≤1), where Lt( ˜(ΨDr)≤1)
is a central extension of Lt((ΨDr)≤1) which is unrelated to the Kac-Moody cocycle.

Actually, the above scheme works out perfectly fine only for the restriction of the sv-action to
the nilpotent part of sv. For reasons explained in sections 3 and 4, the generators of Vect(S1) ⊂
sv play a particular rôle. So the action dσ1/4 of sv is really obtained through the projection
on the second component of the coadjoint action of an extended Lie algebra g := Vect(S1) ⋉

Lt( ˜(ΨDr)≤1). The definition of g requires in itself some work and is given only at the end of
section 5.

It is natural to expect that there should exist some bi-Hamiltonian structure on Saff allowing
to define some unknown integrable system. We hope to answer this question in the future.

Note that the action dσ1/4 restricted to the (stable) affine subspace Saff
≤2 := {−2iM∂t −

∂r2 + V2(t)r2 + V1(t)r + V0(t)} has been shown in [7] to be Hamiltonian for a totally different
Poisson structure. The two constructions are unrelated.

Here is the outline of the article. The definitions and results from [5] needed on the
Schrödinger-Virasoro algebra and its action on Schrödinger operators are briefly recalled in
section 1. Section 2 on pseudo-differential operators is mainly introductive, except for the def-
inition of the non-local transformation Θ. The realization of DΨD≤1 as symmetries of the free
Schrödinger equation is explained in section 3. Sections 4 and 5 are devoted to the construction
of the extended Lie algebra LPsiDr and its extension g. Finally, the projected coadjoint action
of g is defined in section 6, and the action dσ1/4 of sv on Schrödinger operators is obtained as a
restriction of this action to a stable submanifold in section 7.

Notation: In the sequel, the derivative with respect to r, resp. t will always be denoted by
a prime (′), resp. by a dot, namely, V ′(t, r) := ∂rV (t, r) and V̇ (t, r) := ∂tV (t, r) (except the
third-order time derivative d3V

dt3 , for typographical reasons).

1 Definition of the action of sv on Schrödinger operators

We recall in this preliminary section the properties of the Schrödinger-Virasoro algebra sv proved
in [5] that will be needed throughout the article.
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We shall denote by Vect(S1) the Lie algebra of 2π-periodic C∞-vector fields. It is generated
by (ℓn; n ∈ Z), ℓn := ieinθ∂θ, with the following Lie brackets: [ℓn, ℓp] = (n − p)ℓn+p. Setting
t = eiθ ∈ S1, one has ℓn = −tn+1∂t. It may be seen as the Lie algebra of Diff(S1), which is the
group of orientation-preserving smooth diffeomorphisms of the torus.

For any λ ∈ R, Diff(S1) admits a representation on the space of (−λ)-densities

Fλ := {f(θ)(dθ)−λ, f ∈ C∞(R/2πZ)}

defined by the natural action by change of variables,

πλ(φ−1)f = (φ̇)−λf ◦ φ.

Definition 1.1 (Schrödinger-Virasoro algebra) (see [5], Definition 1.2)

We denote by sv the Lie algebra with generators Ln, Ym,Mn(n ∈ Z,m ∈ 1
2 +Z) and following

relations (where n, p ∈ Z,m,m′ ∈ 1
2 + Z) :

[Ln, Lp] = (n− p)Ln+p

[Ln, Ym] = (
n

2
−m)Yn+m, [Ln,Mp] = −pMn+p;

[Ym, Ym′ ] = (m−m′)Mm+m′ ,

[Ym,Mp] = 0, [Mn,Mp] = 0.

If f (resp. g, h) is a Laurent series, f =
∑

n∈Z fnt
n+1, resp. g =

∑
n∈κ+Z gnt

n+ 1
2 , h =∑

n∈Z hnt
n, then we shall write

Lf =
∑

fnLn, Yg =
∑

gnYn, Mh =
∑

hnMn. (1.1)

Let g0 =span(Ln, n ∈ Z) and h =span(Ym,Mp, m ∈ 1
2 + Z, p ∈ Z). Then g0 ≃ Vect(S1)

and h are Lie subalgebras of sv, and sv ≃ g0 ⋉ h enjoys a semi-direct structure. Note also that
h is pronilpotent.

The Schrödinger-Virasoro algebra may be exponentiated into a group SV = G0 ⋉H, where
G0 ≃ Diff(S1) and H is a nilpotent Lie group (see [5], Theorem 1.4).

Definition 1.2 (see [5], Definition 1.3)

Denote by dπλ the representation of sv as differential operators of order one on R2 with
coordinates t, r defined by

dπλ(Lf ) = −f(t)∂t −
1

2
ḟ(t)r∂r +

1

4
iMf̈(t)r2 − λḟ(t)

dπλ(Yg) = −g(t)∂r + iMġ(t)r

dπλ(Mh) = iMh(t) (1.2)
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Note that dπλ(Ln), dπλ(Ym), dπλ(Mp) coincide with the formulas (0.2) given in the Intro-
duction.

The infinitesimal representation dπλ of sv may be exponentiated into a representation πλ of
the group SV (see [5], Proposition 1.6). We shall not need explicit formulas in this article. Let
us simply write the action of time-diffeomorphisms:

(πλ(φ; 0)f)(t′, r′) = (φ̇(t))−λe
1
4
i
φ̈(t)

φ̇(t)
r2
f(t, r) (1.3)

if φ ∈ G0 ≃ Diff(S1) induces the coordinate change (t, r) → (t′, r′) = (φ(t), r

√
φ̇(t)). It appears

clearly in this formula that the parameter λ is a ’scaling dimension’ or the weight of a density.

Let us now introduce the manifold Saff of Schrödinger operators we want to consider.

Definition 1.3 (Schrödinger operators) (see [5], Definition 2.1)

Let S lin be the vector space of second order operators on R2 defined by

D ∈ S lin ⇔ D = h(−2iM∂t − ∂r2) + V (t, r), h, V ∈ C∞(R2)

and Saff ⊂ S lin the affine subspace of ’Schrödinger operators’ given by the hyperplane h = 1.

In other words, an element of Saff is the sum of the free Schrödinger operator −2iM∂t−∂r2
and of a potential V .

The action of SV on Schrödinger operators is essentially the conjugate action of π1/4:

Proposition 1.4 (see [5], Proposition 2.5, Proposition 2.6)

1. Let σ1/4 : SV → Hom(S lin,S lin) the representation of the group of SV on the space of
Schrödinger operators defined by the left-and-right action

σ1/4(g) : D → π5/4(g)Dπ1/4(g)
−1, g ∈ SV,D ∈ S lin.

Then σ1/4 restricts to an affine action on the affine subspace Saff which is given by the
following formulas:

σ1/4(φ; 0).(−2iM∂t − ∂r2 + V (t, r)) =

−2i∂t − ∂r2 + φ′(t)V (φ(t), r
√
φ′(t)) +

1

2
r2Θ(φ)(t) (1.4)

σ1/4(1; (a, b)).(−2iM∂t − ∂r2 + V (t, r)) =

−2iM∂t − ∂r2 + V (t, r − a(t)) − 2ra′′(t) − (2b′(t) − a(t)a′′(t)). (1.5)

where Θ : φ→ φ′′′

φ′ − 3
2

(
φ′′

φ′

)
2 is the Schwarzian derivative.
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2. The infinitesimal action dσ1/4 : X → d
dt |t=0

(
σ1/4(exp tX)

)
of sv writes (see notations in

the Introduction) :

dσ1/4(Lf )(V ) = −fV̇ −
1

2
ḟ(rV ′ + 2V ) +

1

8
r2
d3V

dt3

dσ1/4(Yg)(V ) = −gV̇ −
1

2
g̈r

dσ1/4(Mh)(V ) = −ḣ (1.6)

This action by reparametrization has been studied elsewhere [7]. Once restricted to the

stable submanifold Saff
≤2 := {−2i∂t − ∂r2 + V0(t) + V1(t)r + V2(t)r2} of Schrödinger operators

with time-dependent quadratic potential, it exhibits a rich variety of finite-codimensional orbits,
whose classification is obtained by generalizing classical results due to A. A. Kirillov on orbits of
Hill operators under the Virasoro group. Also, a parametrization of operators by their stabilizers
yields a natural symplectic structure for which the σ1/4-action is Hamiltonian. These ideas do

not carry over to the whole space Saff whose symplectic structure will be obtained below by a
totally different method.

2 Algebras of pseudodifferential symbols

Definition 2.1 (algebra of formal pseudodifferential symbols) Let ΨD := R[z, z−1]] [∂z, ∂
−1
z ]]

be the associative algebra of Laurent series in z, ∂z with defining relation [∂z, z] = 1.

Using the coordinate z = eiθ, θ ∈ R/2πZ, one may see elements of ΨD as formal pseudodif-
ferential operators with periodic coefficients.

The algebra ΨD comes with a trace, called Adler’s trace, defined in the Fourier coordinate θ
by

Tr

(
N∑

q=−∞
fq(θ)∂

q
θ

)
=

∫ 2π

0
f−1(θ) dθ. (2.1)

Coming back to the coordinate z, this is equivalent to setting

Tr(a(z)∂q
z ) = δq,−1 .

1

2iπ

∮
a(z)dz (2.2)

where 1
2iπ

∮
is the Cauchy integral giving the residue a−1 of the Laurent series

∑N
p=−∞ apz

p.

For any n ≤ 1, the vector subspace generated by the pseudo-differential operators D =
fn(z)∂n

z + fn−1(z)∂
n−1
z + . . . of degree ≤ n is a Lie subalgebra of ΨD that we shall denote by

ΨD≤n. We shall sometimes write D = O(∂n
z ) for a pseudodifferential operator of degree ≤ n.

Also, letting OD = ΨD≥0 = {
∑n

k=0 fk(z)∂
k
z , n ≥ 0} (differential operators) and volt = ΨD≤−1

6



(called: Volterra algebra), we shall denote by (D+,D−) the decomposition of D ∈ ΨD along the
direct sum OD ⊕ volt.

We shall also need the following ’extended’ algebra of formal pseudodifferential symbols.

Definition 2.2 (algebra of extended pseudodifferential symbols) Let DΨD be the extended

pseudo-differential algebra generated as an associative algebra by ξ, ξ−1 and ∂
1
2
ξ , ∂

− 1
2

ξ .

Let D ∈ DΨD. As in the case of the usual algebra of pseudodifferential symbols, we shall
write D = O(∂κ

z ) (κ ∈ 1
2Z) for an extended pseudodifferential symbol with degree ≤ κ, and

denote by DΨD≤κ the Lie subalgebra span(fj(ξ)∂
j
ξ ; j = κ, κ− 1

2 , κ− 1, . . .) if κ ≤ 1.

The Lie algebra DΨD contains two interesting subalgebras for our purposes:

(i) span(f1(ξ)∂ξ , f0(ξ); f1, f0 ∈ C∞(S1)) which is isomorphic to Vect(S1) ⋉ F0;

(ii) DΨD≤1 :=span(fκ(ξ)∂κ
ξ ; κ = 1, 1

2 , 0,−
1
2 , . . . , fκ ∈ C∞(S1)) which is the Lie algebra gen-

erated by span(f1(ξ)∂ξ, f 1
2
(ξ)∂

1/2
ξ , f0(ξ); f1, f 1

2
, f0 ∈ C∞(S1)).

The Lie algebra ΨD≤1 may be integrated to a group in the following way. Consider first
the pronilpotent Lie group Volt := exp volt = {1 + f−1(ξ)∂

−1
ξ + . . .} obtained by the formal

exponentiation of pseudo-differential symbols, expV =
∑

k≥0
V k

k! , V ∈ volt. It is easily extended

to the semi-direct product group Volt = expF0 ⋉ Volt (where expF0 = expC∞(S1) ≃ {f ∈
C∞(S1) | ∀θ ∈ [0, 2π], f(eiθ) 6= 0}) which integrates ΨD≤0 ≃ F0 ⋉ volt. Finally, Diff(S1) acts
naturally on Volt, which yields a Lie group Diff(S1)⋉Volt integrating ΨD≤1 ≃ Vect(S1)⋉ΨD≤0.

This explicit construction does not work for DΨD≤1 because the formal series
∑

k≥0
V k

k! is

not in C∞[ξ, ξ−1]] [∂ξ, ∂
−1
ξ ]] if V = f1/2(ξ)∂

1
2
ξ + O(∂ξ0), f1/2 6≡ 0. Yet the Campbell-Hausdorff

formula makes it possible to integrate DΨD≤1 by a similar procedure into an abstract group
DG≤1:

Lemma 2.3 The Lie algebra DΨD≤1 may be exponentiated into a group DG≤1.

Proof.

First exponentiate DΨD≤1/2 =span(fκ(ξ)∂κ
ξ ; κ = 1

2 , 0,−
1
2 , . . .) by defining DG≤ 1

2
:=

expDΨD≤ 1
2

with multiplication given by the Campbell-Hausdorff formula

exp

(
f(ξ)∂

1
2
ξ +D1

)
exp

(
g(ξ)∂

1
2
ξ +D2

)

= exp

{(
(f(ξ) + g(ξ))∂

1
2
ξ +D1 +D2 + . . .

)
+

1

2

[
f(ξ)∂

1
2
ξ +D1, g(ξ)∂

1
2
ξ +D2

]
+ . . .

}

(2.3)
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(D1,D2 ∈ DΨD≤0); the first Lie bracket is DΨD≤0-valued, and the successive iterated brackets
belong to DΨD≤κ1, DΨD≤κ2, . . . where (κn)n∈N∗ is a strictly decreasing sequence (with κ1 =
−1

2), hence the series converges.

Then define the semi-direct product DG≤1 := Diff(S1) ⋉ DG≤ 1
2

by the following natural

action ρ of Diff(S1) on DG≤ 1
2
:

– let ρ′ : Diff(S1) → Lin(DΨD≤ 1
2
) be the linear action defined by

ρ′(φ)(f∂κ
ξ ) = (f ◦ φ−1) . (φ′ ◦ φ−1 . ∂ξ)

κ, κ ≤
1

2

where (φ′ ◦ φ−1 . ∂ξ)
1
2 =

√
φ′ ◦ φ−1∂

1
2
ξ + . . . is the usual square root of operators (recall φ′ > 0

by definition), and

(φ′ ◦ φ−1 . ∂ξ)
κ =

[
(φ′ ◦ φ−1 . ∂ξ)

1
2

]2κ

=

(
∂
− 1

2
ξ (φ′ ◦ φ−1)−

1
2 . (1 + ∂

− 1
2

ξ (φ′ ◦ φ−1)−
1
2O(∂

− 1
2

ξ ))−1

)−2κ

∈ O(∂κ
ξ ) (2.4)

if κ ≤ 0;

– if φ ∈ Diff(S1), one lets ρ(φ) expD := exp(ρ′(φ)D) ∈ DG≤ 1
2
.

�

It turns out that a certain non-local transformation gives an isomorphism between DΨD and
ΨD. For the sake of the reader, we shall in the sequel add the name of the variable as an index
when speaking of algebras of (extended or not) pseudodifferential symbols.

Definition 2.4 (non-local transformation Θ) Let Θ : DΨDξ → ΨDr be the associative al-
gebra isomorphism defined by

∂
1
2
ξ → ∂r, ∂

− 1
2

ξ → ∂−1
r

ξ →
1

2
r∂−1

r , ξ−1 → 2∂rr
−1 (2.5)

The inverse morphism Θ−1 : ∂r → ∂
1
2
ξ , r → 2ξ∂

1
2
ξ is easily seen to be an algebra isomorphism

because the defining relation [∂r, r] = 1 is preserved by Θ−1. It may be seen formally as

the integral transformation ψ(r) → ψ̃(ξ) :=
∫ +∞
−∞

e−r2/4ξ√
ξ
ψ(r) dr (one verifies straightforwardly
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for instance that r∂rψ goes to 2ξ∂ξψ̃ and that ∂r2ψ goes to ∂ξψ̃). In other words, assuming
ψ ∈ L1(R), one has ψ̃(ξ) = (Pξψ)(0) (ξ ≥ 0) where (Pξ, ξ ≥ 0) is the usual heat semi-group. Of
course, this does not make sense at all for ξ < 0.

Remark. Denote by Er = [r∂r, .] the Euler operator. Let ΨD(0), resp. ΨD(1) be the vector
spaces generated by the operators D ∈ ΨD such that Er(D) = nD where n is even, resp. odd.
Then ΨD(0) is an (associative) subalgebra of ΨD, and one has

[ΨD(0),ΨD(0)] = ΨD(0), [ΨD(0),ΨD(1)] = ΨD(1), [ΨD(1),ΨD(1)] = ΨD(0).

Now, the inverse image of D ∈ ΨDr by Θ−1 belongs to ΨDξ ⊂ DΨDξ if and only if D ∈ (ΨDr)(0).

Lemma 2.5 (pull-back of Adler’s trace) The pull-back by Θ of Adler’s trace on ΨDr yields
a trace on DΨD defined by

TrDΨDξ
(a(ξ)∂q

ξ ) := TrΨDr

(
Θ(a(ξ)∂q

ξ )
)

= 2δq,−1 .
1

2iπ

∮
a(ξ)dξ. (2.6)

Proof.

Note first that the Lie bracket of ΨDr, resp. DΨDξ is graded with respect to the adjoint
action of the Euler operator Er := [r∂r, .], resp. Eξ := [ξ∂ξ, .], and that Θ ◦ Eξ = 1

2Er ◦ Θ. Now
TrΨDrD = 0 if D ∈ ΨDr is not homogeneous of degree 0 with respect to Er, hence the same
is true for TrDΨDξ

. Consider D := ξj∂j
ξ = Θ−1((1

2r∂
−1
r )j∂2j

r ): then TrDΨDξ
(D) = 0 if j ≥ 0

because (as one checks easily by an explicit computation) Θ(D) ∈ OD; and TrDΨDξ
(D) = 0 if

j ≤ −2 because Θ(D) = O(∂−2
r ).

�

In order to obtain time-dependent equations, one needs to add an extra dependence on a
formal parameter t of all the algebras we introduce. One obtains in this way loop algebras,
whose formal definition is as follows:

Definition 2.6 (loop algebras) Let g be a Lie algebra. Then the loop algebra over g is the
Lie algebra

Ltg := g[t, t−1]]. (2.7)

Elements of Ltg may also be considered as Laurent series, or simply as functions t → X(t),
where X(t) ∈ g.

The transformation Θ yields immediately (by lacing with respect to the time-variable t) an
algebra isomorphism

LtΘ : Lt(DΨDξ) → Lt(ΨDr), D → (t→ Θ(D(t))). (2.8)
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3 Time-shift transformation and symmetries of the free Schrödinger

equation

In order to define extended symmetries of the Schrödinger equation, one must first introduce
the following time-shift transformation.

Definition 3.1 (time-shift transformation Tt) Let Tt : DΨDξ → Lt(DΨDξ) be the linear
transformation defined by

Tt

(
f(ξ)∂κ

ξ

)
= (Ttf(ξ))∂κ

ξ (3.1)

where:
TtP (ξ) = P (t+ ξ) (3.2)

for polynomials P , and

Ttξ
−k = (t+ ξ)−k := t−k

∞∑

j=0

(−1)j
k(k + 1) . . . (k + j − 1)

j!
(ξ/t)j . (3.3)

In other words, for any Laurent series f ∈ C[ξ, ξ−1]],

Ttf(ξ) =
∞∑

j=0

f (j)(t)

j!
ξj.

Then Tt is an injective Lie algebra homomorphism, with left inverse St given by

St(g(t, ξ)) =
1

2iπ

∮
g(ξ, t)

dt

t
. (3.4)

Proof. Straightforward.

�

Now comes an essential remark (see Introduction) which we shall first explain in an informal
way. The free Schrödinger equation reads in the ’coordinates’ (t, ξ)

(−2iM∂t − ∂ξ)ψ̃(t, ξ) = 0. (3.5)

In the complex coordinates z = t− 2iMξ, z̄ = t+ 2iMξ, one simply gets (up to a constant) the
∂̄-operator, whose algebra of Lie symmetries is span(f(t−2iMξ)∂ξ, g(t+2iMξ)∂t) for arbitrary
functions f, g. An easy but crucial consequence of these considerations is the following:

10



Definition 3.2 (X
(i)
f -generators) Let, for f ∈ C[ξ, ξ−1]] and j ∈ 1

2Z,

X
(j)
f = Θt(−f(−2iMξ)∂j

ξ ) (3.6)

where Θt is the composition of the non-local transformation Θ and the time-shift Tt,

Θt := Lt(Θ) ◦ Tt. (3.7)

Lemma 3.3 (invariance of the Schrödinger equation) The free Schrödinger equation ∆0ψ(t, r) =

0 is invariant under the Lie algebra of transformations generated by X
(i)
f , i ∈ 1

2Z .

Proof. Straightforward. �

The remarkable fact is that (denoting by ḟ , f̈ , d3f
dt3 the time-derivatives of f of order 1, 2, 3)

X
(1)
f = −f(t)∂r2 + iMḟ(t)r∂r +

1

2
M2f̈(t)r2 −

(
1

2
M2f̈(t)r +

i

6

d3f

dt3
r3

)
∂−1

r +O(∂−2
r );

(3.8)

X
( 1
2
)

g = −g(t)∂r + iMġ(t)r +O(∂−1
r ); (3.9)

X
(0)
h = −h(t) +O(∂−1

r ). (3.10)

In other words (up to constant multiplicative factors), the projection (X
(k)
f )+ of X

(k)
f , k = 1, 1

2 , 0
onto OD forms a Lie algebra which coincides with the realization dπ0 (see Definition 1.2), apart

from the fact that −2iM∂t is substituted by ∂r2 in the formula for X
(1)
f . This discrepancy is

not too alarming since −2iM∂t ≡ ∂r2 on the kernel of the free Schrödinger operator. As we

shall see below, one may alter the X
(1)
f in order to ’begin with’ −f(t)∂t as expected, but then

the X
(1)
f appear to have a specific definition.

4 Central cocycles of (ΨDr)≤1 and derivations

The above symmetry generators of the free Schrödinger equation, X
(i)
f , i ≥ 1 may be seen as

elements of Lt(ΨDr). The original idea (following the scheme for Hill operators recalled in the
Introduction) was to try and embed the space of Schrödinger operators Saff into the dual of
Lt(ΨDr) and realize the action dσ1/4 of Proposition 1.4 as part of the coadjoint representation
of an appropriate central extension of Lt(ΨDr).

Unfortunately this scheme is a little too simple: it allows to retrieve only the action of the Y -
andM -generators, as could have been expected from the remarks at the end of section 3. It turns
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out that the X
(i)
f , i ≤ 1

2 may be seen as elements of Lt((ΨDr)≤1), while the realization dπ0(Lf )
(see Definition 1.2) of the generators in Vect(S1) ⊂ sv involve outer derivations of this looped
algebra. Then the above scheme works correctly, provided one chooses the right central extension
of Lt((ΨDr)≤1). As explained below, there are many possible families of central extensions, and
the correct one is obtained by ’looping’ a cocycle c3 ∈ H2((ΨDr)≤1,R) which does not extend
to the whole Lie algebra ΨDr.

4.1 Central cocycles of (ΨDr)≤1

We shall (almost) determineH2(ΨD≤1), using its natural semi-direct product structure: ΨD≤1 =
Vect(S1) ⋉ ΨD≤0.

One has (either by using the Hochschild-Serre spectral sequence or by ???):

H2(ΨD≤1) = H2(Vect(S1),R) ⊕H1(Vect(S1),H1(ΨD≤0)) ⊕ InvVect(S1)H2(ΨD≤0). (4.1)

The one-dimensional space H2(Vect(S1),R) is generated by the Virasoro cocycle, which we
shall denote by c0.

For the second piece, elementary computations give [ΨD≤0,ΨD≤0] = ΨD≤−2. So H1(ΨD≤0)
is isomorphic to ΨD≤0/ΨD≤−2, i.e. to the space of symbols of type f0 + f−1∂

−1. In terms of
density modules, one hasH1(ΨD≤0) = F0 ⊕F1. So H1(ΨD≤0) = (F0 ⊕F1)∗ = F−1 ⊕F0 by the
usual duality, and H1(Vect(S1),H1(ΨD≤0) = H1(Vect(S1),F−1 ⊕F0) = H1(Vect(S1),F−1) ⊕
H1(Vect(S1),F0). From the results of Fuks[], one knows thatH1(Vect(S1),F1) is one-dimensional,
generated by f∂ −→ f ′′dx, andH1(Vect(S1),F0) is two-dimensional, generated by f∂ −→
fandf∂ −→ f ′. So we have proved that H1(Vect(S1),H1(ΨD≤0) is three-dimensional with
generators c1, c2 and c3 as follows:

c1(g∂,
∑

k=−∞
0fk∂

k) =

∫

S1

g
′′

f0 dt (4.2)

c2(g∂,
∑

k=−∞
0fk∂

k) =

∫

S1

gf−1 dt (4.3)

c3(g∂,
∑

k=−∞
0fk∂

k) =

∫

S1

g
′

f−1 dt (4.4)

Let us finally consider the third piece InvVect(S1)H2(ΨD≤0).We shall once more make use of
a decomposition into a semi-direct product: setting V olt = ΨD≤−1, one has ΨD≤0= F0 ⋉ Volt,
where F0 is considered as an abelian Lie algebra, acting non-trivially on V olt. We do not know
how to compute the cohomology of V olt, because of its ”pronilpotent” structure, but we shall
make the following:

Conjecture:
InvF0H2(V olt) = 0. (4.5)
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We shall now work out the computations modulo this conjecture. first one getsH2(ΨD≤0) =
H2(F0) ⊕H1(F0,H1(V olt))

Then InvVect(S1)H2(ΨD≤0) = InvVect(S1)H2(F0) ⊕ InvVect(S1)H1(F0,H1(V olt)). Since F0

is abelian, one has H2(F0) = Λ2(F∗
0 ), and InvVect(S1)(Λ2(F∗

0 )) is one-dimensional, generated
by the well-known cocycle

c4(f, g) =

∫

S1

(g
′

f − f
′

g) dt. (4.6)

A direct computation then shows that [V olt, V olt] = ΨD≤−3 , so H1(V olt) = F−1 ⊕ F−2

and H1(V olt) = F0 ⊕ F1 as Vect(S1)-module. Then H1(F0,H1(V olt)) is easily determined
by direct computation, as well as InvVect(S1)H1(F0,H1(V olt)); the latter is one-dimensional,
generated by the following cocycle:

c5(g,
∑

k=−∞
0fk∂

k) =

∫

S1

gf−1 dt, (4.7)

Let us summarize our results in the following:

Proposition 4.1 Assuming conjecture (4.5) holds true, the space H2(ΨD≤1)is six-dimensional,
generated by the cocycles ci, i = 0, . . . , 5, defined above.

Remarks:

1. If conjecture (4.5) turned out to be false, it could only add some supplementary generators;
in any case, we have proved that H2(ΨD≤1) is at least six-dimensional.

2. The natural inclusion i : ΨD≤1 −→ ΨD induces i∗ : H2ΨD −→ H2(ΨD≤1); one may then
determine the image by i∗ of the two generators of H2(ΨD) determined by Kravchenko and
Khesin[]. Set cKK1(D1,D2) =

∫
S1 κ([Logr,D1],D2)dr and cKK2(D1,D2) =

∫
S1 κ([Log∂,D1],D2)dr.

Then i∗cKK1 = c2 and i∗cKK2 = c0 + c1 + c4.

The right cocycle for our purposes turns out to be c3: one gets a centrally extended Lie
algebra of pseudodifferential symbols Ψ̃D≤1 as follows

Definition.

Let Ψ̃D≤1 be the central extension of ΨD≤1 associated with the cocycle 2c3.

4.2 Derivations of the looped centrally extended algebra

Let us introduce now the looped algebra Lt( ˜(ΨDr)≤1) in order to allow for time-dependence.
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An element of L(Ψ̃D≤1) is a pair (D(t), λ(t)) where λ ∈ C[t, t−1]] and D(t) ∈ Lt((ΨDr)≤1).
By a slight abuse of notation, we shall write c3(D1,D2) (D1,D2 ∈ Lt((ΨDr)≤1)) for the func-
tion t → c3(D1(t),D2(t)), so now c3 has to be seen as a function-valued central cocycle of
Lt((ΨDr)≤1). In other words, we consider the looped version of the exact sequence

0 −→ R −→ ˜(ΨDr)≤1 −→ (ΨDr)≤1 −→ 0, (4.8)

namely,

0 −→ R[t, t−1]] −→ Lt( ˜(ΨDr)≤1) −→ Lt((ΨDr)≤1) −→ 0. (4.9)

Lemma 4.2 (derivations of Lt( ˜(ΨDr)≤1)) The Lie algebra Der(Lt( ˜(ΨDr)≤1)) of Lie deriva-

tions of Lt( ˜(ΨDr)≤1) includes the following outer derivations:

(i) time-reparametrizations f(t)∂t : (D(t), λ(t)) → (f(t)Ḋ(t), f(t)λ̇(t));

(ii) time-dependent Euler operators f(t)Er defined by:

f(t)Er (g(t)rp(r∂r)
q), λ(t)) = (f(t)g(t) . prp(r∂r)

q, 0) . (4.10)

Proof.

(i) is not specific of Lt( ˜(ΨDr)≤1) (such infinitesimal time reparametrizations may be consid-
ered for any loop algebra), so let us concentrate on (ii). If one forgets first about the central
extension, f(t)Er may be identified with the adjoint action of f(t)r∂r which is an inner deriva-
tion. So one must only check that the action of f(t)Er is compatible with the central extension,
namely,

(0, c3 (f(t)Er(g1(t)r
p1∂q1

r ), g2(t)r
p2∂q2

r ) − c3 (f(t)Er(g2(t)r
p2∂q2

r ), g1(t)r
p1∂q1

r )) = 0. (4.11)

This identity is trivial except if q1 = −1, q2 = 1. Then

c3
(
f(t)Er(g1(t)r

p1∂−1
r ), g2(t)r

p2∂r

)
= (p1 + 1)fg1g2 . p1δp1+p2,0 (4.12)

and
c3
(
f(t)Er(g2(t)r

p2∂r), g1(t)r
p1∂−1

r

)
= (p2 − 1)fg1g2 . p2δp1+p2,0 (4.13)

hence the left-hand side of (4.11) is 0.

�
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5 I-embedding of (DΨDξ)≤1 into the looped algebra g

This section, as explained in the introduction to section 4, is devoted to the construction of
an explicit embedding (called: I-embedding) of the abstract algebra of extended pseudodiffer-
ential symbols (DΨDξ)≤1 into a Lie algebra g which is a semi-direct product, g ≃ Vect(S1) ⋉

Lt( ˜(ΨDr)≤1). Loosely speaking, the image I((DΨDξ)≤1) is made up of the X
(j)
f , j ≤ 1

2 and the

X
(1)
f with ∂r2 substituted by −2iM∂t (see end of section 3).

Theorem 5.1 (homomorphism I) Let I : (DΨDξ)≤1 ≃ Vect(S1)ξ⋉(DΨDξ)≤ 1
2
→֒ Der(Lt( ˜(ΨDr)≤1))⋉

Lt( ˜(ΨDr)≤1) be the mapping defined by

(−
i

2M
f(−2iMξ)∂ξ,D) → (−f(t)∂t −

1

2
ḟ(t)Er,

i

2M
(Θt(−f(−2iMξ)∂ξ))≤0 + Θt(D)) (5.1)

where by definition
(∑N

k=−∞ f(t, r)∂k
r

)
≤0

:=
∑

k=−∞ 0f(t, r)∂k
r .

Then I is a Lie algebra homomorphism.

Remark:

Note first that L′
f := −f(t)(−2iM∂t − ∂r2) is an independent copy of Vect(S1), by which

we mean that [L′
f ,L

′
g] = L′

{f,g} = L′
fg′−f ′g and [L′

f ,X
(i)
f ] = 0 for all i. This is immediate in

the ’coordinates’ (t, ξ) since Θ(L′
f ) = −f(t)(−2iM∂t − ∂ξ) commutes trivially with Θ(X

(i)
f ) =

−f(t − 2iMξ)∂i
ξ . If one leaves aside the second coordinate in Lt( ˜(ΨDr)≤1), i.e. the central

extension, then I(− i
2Mf(−2iMξ)∂ξ) may be identified with

i

2M
(L′

f + X
(1)
f ) ≡ −f(t)∂t −

1

2
ḟ(t)r∂r +

iM

4
f̈(t)r2 + . . .

which coincides with dπ0(Lf ) (see Definition 1.2). Hence (up to the central extension once
again), I|Vect(S1)ξ×{0} is a homomorphism. Moreover, the I(− i

2Mf(−2iMξ)∂ξ) have the same

action on the X
(i)
f , i ∈ 1

2Z as

i

2M
X

(1)
f =

i

2M
Θt(−f(−2iMξ)∂ξ) = −f(t)∂r2 −

1

2
ḟ(t)r∂r + +

iM

4
f̈(t)r2 + . . .

Proof of Theorem 5.1

Forgetting about the central extension, the Theorem is true by the above remark.

Now c3(Θt(D1),Θt(D2))) = 0 if D1,D2 ∈ (DΨDξ)≤ 1
2

since Dj = fj(t) + O(∂r0), j = 1, 2,

hence I|{0}×(DΨDξ)
≤ 1

2

is a homomorphism.
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Similarly, c3(Θt(D1),D) = 0 ifD ∈ Lt((ΨDr))≤0. Note also that (letting ρ0(Lf ) := −f(t)∂t−
1
2 ḟ(t)Er ∈ Der(Lt( ˜(ΨDr)≤1))) one has plainly ρ0(L{f,g}) = [ρ0(Lf ), ρ0(Lg)] (see Lemma 4.2).

Hence (letting ρ(Lf ) = I(− i
2Mf(−2iMξ)∂ξ))

[ρ(Lf ), I(D)]
Der(Lt( ˜(ΨDr)≤1))⋉Lt( ˜(ΨDr)≤1)

= [
i

2M
(L′

f + X
(1)
f ),Θt(D)]ΨDt,r

= [dπ0(Lf ),Θt(D)]ΨDt,r

=
i

2M
[X

(1)
f ,Θt(D)]ΨDt,r (5.2)

(see remarks before the proof) if D ∈ (DΨDξ)≤ 1
2
, where [ . , . ]ΨDt,r stands for the usual Lie

bracket of pseudo-differential symbols in two variables.

Similarly,

[ρ(Lf ), ρ(Lg)]Der(Lt( ˜(ΨDr)≤1))⋉Lt( ˜(ΨDr)≤1)
=

(
ρ0(L{f,g}), ρ0(Lf ).

i

2M
(Θt(−g(−2iMξ)∂ξ))≤0

−ρ0(Lg).
i

2M
(Θt(−f(−2iMξ)∂ξ))≤0 +

(
i

2M

)
2
[
(Θt(−f(−2iMξ)∂ξ))≤0 , (Θt(−g(−2iMξ)∂ξ))≤0

]
Lt( ˜(ΨDr)≤1)

)

=

(
ρ0(L{f,g}),

[
−f(t)∂t −

1

2
ḟ(t)r∂r,

i

2M
(Θt(−g(−2iMξ)∂ξ))≤0

]

ΨDt,r

−

[
−g(t)∂t −

1

2
ġ(t)r∂r,

i

2M
(Θt(−f(−2iMξ)∂ξ))≤0

]

ΨDt,r

+

(
i

2M

)
2
[
(Θt(−f(−2iMξ)∂ξ))≤0 , (Θt(−g(−2iMξ)∂ξ))≤0

]
ΨDt,r

)

= ρ(L{f,g}). (5.3)

�

Definition 5.1 (ρ-action of V ect(S1) on Lt( ˜(ΨDr)≤1)) Let Vect(S1)t be the image by I in

Der(Lt( ˜(ΨDr)≤1)) ⋉ Lt( ˜(ΨDr)≤1) of the Lie subalgebra (Vect(S1)ξ , 0). We denote by

ρ : Vect(S1)t → gl(Der(Lt( ˜(ΨDr)≤1)) ⋉ Lt( ˜(ΨDr)≤1)) (5.4)

the adjoint action of Vect(S1)t on Der(Lt( ˜(ΨDr)≤1)) ⋉ Lt( ˜(ΨDr)≤1). Hence one has an embed-

ding of the semi-direct product Vect(S1)t ⋉ρ Lt( ˜(ΨDr)≤1) into Der(Lt( ˜(ΨDr)≤1))⋉Lt( ˜(ΨDr)≤1).

In other words, the mapping I factorizes through a mapping I ′ : (DΨDξ)≤1 →֒ Vect(S1)t ⋉ρ

Lt( ˜(ΨDr)≤1).

We may now finally introduce the Lie algebra g announced in the Introduction (see also
introduction to section 4), together with the I-embedding (DΨDξ)≤1 →֒ g.

Definition 5.2 Let g0 = Vect(S1)t, h = Lt( ˜(ΨDr)≤1) and g := g0 ⋉ρ h, so I ′ maps (DΨDξ)≤1

into g.
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As we shall see in the next two sections, the coadjoint representation of the semi-direct
product g is the key to define a symplectic structure on Saff for which the action of SV is
Hamiltonian.

6 Projected coadjoint action of g

Recall first the following easy lemma (see [5], Lemma 3.1)

Lemma 6.1 Let g = g0 ⋉ h be a semi-direct product of two Lie algebras g0 and h. Then the
coadjoint action of g on g∗ is given by

ad∗
g(L,D).(λ, δ) = 〈ad∗

g0
(L)λ− D̃.δ, L̃∗(δ) + ad∗

h(D).δ〉

where by definition
〈D̃.δ, L〉g∗0×g0 = 〈L̃∗(δ),D〉h∗×h = 〈δ, [L,D]〉h∗×h.

Proof. Straightforward. �

Let π1 : h → g be the canonical Lie algebra embedding and π∗1 : g∗ → h∗ the dual linear
Poisson morphism.

The coadjoint action ad∗
g: g∗ → g∗ defines a Poisson morphism for the canonical KKS

(Kirillov-Kostant-Souriau) structure on g∗. By composing with the Poisson morphism π∗1 : g∗ →
h∗ and restricting to h∗, one obtains the ’projected’ coadjoint action

π∗1 ◦ ad∗
g : (L,D) : δ → L̃∗(δ) + ad∗

h(D).δ (6.1)

which is a Poisson morphism for the KKS structure on h∗.

We shall consider below the projected coadjoint action π∗1 ◦ ad∗
g corresponding to the Lie

algebra g0 ≃ Vect(S1) ⋉ Lt( ˜(ΨDr)≤1) introduced in Definition 5.2.

7 The action of sv on Schrödinger operators as a projected coad-

joint action

This section is devoted to the proof of the main Theorem announced in the Introduction, which
we recall here:

Theorem 7.1 The restriction of the projected coadjoint action π∗1 ◦ ad∗
g|sv on the submanifold

{(V (t, r)∂−2
r , 1)} ⊂ h∗ coincides with the infinitesimal action dσ1/4 of sv on Saff = {−2iM∂t −

∂r2 + V (t, r)}.
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Proof of the Theorem.

Since an element of h = Lt( ˜(ΨDr)≤1) writes (W (t), λ(t)) with W (t) ∈ (ΨDr)≤1, it is natural
(using Adler’s trace) to represent an element of the restricted dual h∗ as a couple (D(t)dt, h(t)dt)
with D ∈ Lt((ΨDr)≥−2) and h ∈ C∞(S1). The coupling between h and its dual h∗ writes then

〈(D(t)dt, h(t)dt) , (W (t), λ(t))〉h∗×h =
1

2iπ

∮
(TrΨDr(D(t)W (t)) + h(t)λ(t)) dt. (7.1)

The first important remark is that the projected coadjoint action π∗1 ◦ ad∗ of (DΨDξ)≤1 on
a homogeneous element (V (t, r)∂−2

r dt, h(t)dt) ∈ h∗ of degree -2 quotients out onto an action of
the Schrödinger-Virasoro group: namely, let κ ≤ −1

2 and (W,λ) = (
∑

j≤1Wj(t, r)∂
j
r , λ(t)) ∈ h,

〈π∗1 ◦ ad∗
f(ξ)∂−κ

ξ
(V (t, r)∂−2

r dt, h(t)dt),W 〉

= 〈(V (t, r)∂−2
r dt, h(t)dt),


f(t)∂−2κ

r +O(∂−2κ−1
r ),

∑

j≤1

Wj(t, r)∂
j
r




h

〉

= 0 (7.2)

since the Lie bracket on the right-hand side produces a pseudodifferential operator of degree
≤ −1 and no central charge.

Let us now study successively the projected coadjoint action of the Y , M and L generators
of sv on homogeneous elements (V (t, r)∂−2

r dt, h(t)dt) ∈ h∗ of degree −2.

Recall from the Introduction that the derivative with respect to r, resp. t is denoted by ′,
resp. by a dot, namely, V ′(t, r) := ∂rV (t, r) and V̇ (t, r) := ∂tV (t, r).

Action of the Y -generators

Let W =
∑

j≤1Wj(t, r)∂
j
r ∈ Lt((ΨDr)≤1) as before. A computation gives

〈π∗1 ◦ ad∗
Yg

(V (t, r)∂−2
r dt, h(t)dt),W 〉 =

〈(V (t, r)∂−2
r dt, h(t)dt),

[
g(t)∂r +

1

2
ġ(t)r +

1

8
g̈(t)r2∂−1

r +O(∂−2
r ),

W1(t, r)∂r +O(∂r0)]h〉

= 〈(V (t, r)∂−2
r dt, h(t)dt), (g(t)W ′

1(t, r)∂r +O(∂r0),
1

2
g̈(t) .

1

2iπ

∮
rW1(r)dr)〉

(7.3)

Generally speaking (by definition of the duality given by Adler’s trace), the terms in the
above expression that depend on Wi, i = 1, 0, . . . give the projection of ad∗

Yg
(Ddt, h(t)dt) on the

component ∂−i−1
r .

Hence altogether one has proved:

18



π∗1 ◦ ad∗
Yg

((V (t, r)∂−2
r , 1)) =

(
(−g(t)V ′(t, r) +

1

2
g̈(t)r)∂−2

r , 0

)
(7.4)

as expected.

Action of the M -generators

It may be deduced from that of the Y -generators since the Lie brackets of the Y -generators
generate all M -generators.

Action of the Virasoro part

Let ρ0(Lf ) := f(t)∂t + 1
2 ḟ(t)Er denote the action of Vect(S1)t on h by derivation as in

Theorem 5.1.

One computes:

〈π∗1 ◦ ad∗
Lf

(Ddt, h(t)dt),W 〉 =

〈(V (t, r)∂−2
r dt, h(t)dt), ρ0(Lf ) (W1(t, r)∂r +O(∂r0))

+

[
1

8
r2f̈(t) +

(
−

1

8
f̈(t)r +

1

48

d3f

dt3
r3

)
∂−1

r ,W1(t, r)∂r +O(∂r0)

]

h

〉

= 〈
(
(V (t, r)∂−2

r dt, h(t)dt
)
,

(f(t)Ẇ1 +
1

2
ḟ(t)(rW ′

1 −W1))∂r +O(∂r0),
1

2iπ

(
−

1

4
f̈(t)

∮
W1dr +

1

8

d3f

dt3

∮
r2W1dr

)
〉

(7.5)

Hence:

π∗1 ◦ ad∗
Lf

(V (t, r)∂−2
r ) =

(
−f(t)V̇ −

1

2
ḟ(t)(rV ′ + 2V ) −

1

4
f̈(t) +

1

8
r2
d3f

dt3

)
∂−2

r (7.6)

as expected.
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