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Introduction

The Schrödinger-Virasoro Lie algebra sv was originally introduced in Henkel [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF] as a natural infinite-dimensional extension of the Schrödinger algebra. Recall the latter is defined as the algebra of projective Lie symmetries of the free Schrödinger equation in (1+1)-dimensions (-2iM∂ t -∂ r 2)ψ(t, r) = 0.

(0.1)

These act on equation (0.1) as the following first-order operators

L n = -t n+1 ∂ t - 1 2 (n + 1)t n r∂ r + i 4 M(n + 1)nt n-1 r2 -(n + 1)λt n Y m = -t m+ 1 2 ∂ r + iM(m + 1 2 )t m-1 2 r M p = iMt p (0.2)
with λ = 1/4 and n = 0, ±1, m = ± 1 2 , p = 0. The 0th-order terms in (0.2) correspond on the group level to the multiplication of the wave function by a phase. To be explicit, the 6-dimensional Schrödinger group S acts on ψ by the following transformations (L -1 , L 0 , L 1 ) : ψ(t, r) → ψ ′ (t ′ , r ′ ) = (ct + d) -1/2 e -1 2 iMcr2/(ct+d) ψ(t, r) (0.3)

where t ′ = at+b ct+d , r ′ = r ct+d with ad -bc = 1;

(Y ± 1 ) : ψ(t, r) → ψ(t, r ′ ) = e -iM((vt+r 0 )(r-v/2) ψ(t, r) (

where r ′ = r -vt -r 0 ; (M 0 ) : ψ(t, r) → e iMγ ψ(t, r).

(0.5)

The Schrödinger group is isomorphic to a semi-direct product of SL(2, R) (corresponding to time-reparametrizations (0.3)) by the Heisenberg group H 1 (corresponding to the Galilei transformations (0.4), (0.5)). Note that the last transformation (0.5) (multiplication by a constant phase) is generated by the commutators of the Galilei transformations (0.4) -these do not commute because of the added phase terms, which produce a central extension.

The free Schrödinger equation comes out naturally when considering many kinds of problems in out-of-equilibrium statistical physics. Its analogue in equilibrium statistical physics is the Laplace equation ∆ψ = 0. In two-dimensional space, the latter equation is invariant by local conformal transformations which generate (up to a change of variables) the well-known (centerless) Virasoro algebra Vect(S1), otherwise known as the Lie algebra of C ∞ -vector fields on the torus S1 := {e iθ , θ ∈ [0, 2π]}. There is no substitute for Vect(S1) when time-dependence is included, but the Schrödinger-Virasoro Lie algebra

sv ≃ L n , Y m , M p | n, p ∈ Z, m ∈ 1 2 + Z (0.6)
shares some properties with it. First, the Lie subalgebra span(L n , n ∈ Z) is isomorphic to Vect(S1). Actually, sv is isomorphic to a semi-direct product Vect(S1) by a nilpotent Lie algebra.

Second, there exists a natural action of the Schrödinger-Virasoro group SV integrating sv (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF]) on an affine space S af f := {-2i∂ t -∂ r 2+V (t, r)} of Schrödinger operators with time-periodic potential, which generalizes the well-known action φ * : ∂ t 2 + u(t) → ∂ t 2 + ( φ(t))2(u • φ)(t) + 1 2 Θ(φ)(t) (Θ=Schwarzian derivative, see below) of the Virasoro group on Hill operators. The infinitesimal action of sv on S af f , denoted by dσ 1/4 , is introduced in section 1. It is essentially obtained by conjugating Schrödinger operators with the above functional transformations (0.2).

The main result of this paper is the following.

Theorem.

There exists a Poisson structure on S af f = {-2i∂ t -∂ r 2+V (t, r)} for which the infinitesimal action dσ 1/4 of sv is Hamiltonian.

The analogue in the case of Hill operators is well-known (see for instance [START_REF] Guieu | L'Algèbre et le Groupe de Virasoro: aspects géométriques et algébriques, généralisations[END_REF]). Namely, the action of the Virasoro group on the space H of Hill operators is equivalent to its affine coadjoint action with central charge c = 1 2 , with the identification

∂ t 2 + u(t) → u(t)dt2 ∈ vir * 1 2
, where vir * c is the affine hyperplane {(X, c) | X ∈ (Vect(S1)) * }. Hence this action preserves the canonical KKS (Kirillov-Kostant-Souriau) structure on vir * 1 2

≃ H. As well-known, one may exhibit a bi-Hamiltonian structure on vir * which provides an integrable system on H associated to the Korteweg-De Vries equation.

The above identification does not hold true any more in the case of the Schrödinger action of SV on the space of Schrödinger operators, which is not equivalent to its coadjoint action (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF], section 3.2). Hence the existence of a Poisson structure for which the action on Schrödinger operators is Hamiltonian has to be proved in the first place. It turns out that the action on Schrödinger operators is more or less the restriction of the coadjoint action of a much larger group G on its dual. The Lie algebra of G is introduced in Definition 5.2. The way we went until we came across this Lie algebra g is a bit tortuous. The first idea (as explained in [START_REF] Henkel | Supersymmetric extensions of Schrödinger invariance[END_REF]) was to see sv as a subquotient of an algebra DΨD of extended pseudodifferential symbols on the line: one checks easily that the assignment

L f → f (ξ)∂ ξ , Y g → g(ξ)∂ 1 2 ξ , M h → h(ξ) gives a linear application sv → DΨD := R[ξ, ξ -1 ]] [∂ 1 2 ξ , ∂ -1 2
ξ ]] which respects the Lie brackets of both Lie algebras, up to unpleasant terms which are pseudodifferential symbols with negative order. Define DΨD ≤κ as the subspace of pseudodifferential symbols with order ≤ κ. Then DΨD ≤1 is a Lie subalgebra of DΨD, DΨD ≤-1 2 is an ideal, and the above assignment defines an isomorphism sv ≃ DΨD ≤1 /DΨD ≤-1 2 .

The second idea (sketched in [6]) was to use a non-local transformation Θ : DΨD → ΨD (ΨD being the usual algebra of pseudo-differential symbols) which maps ∂ 1 2 ξ to ∂ r and ξ to 1 2 r∂ -1 r (see Definition 2.4). The transformation Θ is formally an integral operator, simply associated to the heat kernel, which maps the first-order differential operator

-2iM∂ t -∂ ξ into -2iM∂ t -∂ r 2.
The operator -2iM∂ t -∂ ξ (which is simply the ∂ z -operator in light-cone coordinates) is now easily seen to be invariant under an infinite-dimensional Lie algebra which generates (as an associative algebra) an algebra isomorphic to DΨD. One has thus defined a natural action of DΨD on the space of solutions of the free Schrödinger equation (-2iM∂ t -∂ r 2)ψ = 0.

The crucial point now is that (after conjugation with Θ, i.e. coming back to the usual (t, r)coordinates) the action of DΨD ≤1 coincides up to pseudodifferential symbols of negative order with the above realization (0.2) of the generators L n , Y m , M p (n, p ∈ Z, m ∈ 1 2 + Z). In other words, loosely speaking, the abstract isomorphism sv ≃ DΨD ≤1 /DΨD ≤-1 2 has received a concrete interpretation, and one has somehow reduced a problem concerning differential operators in two variables t, r into a problem concerning time-dependent pseudodifferential operators in one variable, which is a priori much simpler.

Integrable systems associated to Poisson structures on the loop algebra L t (ΨD) over ΨD (with the usual Kac-Moody cocycle (X, Y ) → K( Ẋ(t), Y (t) dt, where K is Adler's trace on ΨD) have been studied by A. Reiman ???. In our case computations show that the sv-action on Schrödinger operators is related to the coadjoint action of L t ((ΨD r ) ≤1 ), where L t ( (ΨD r ) ≤1 ) is a central extension of L t ((ΨD r ) ≤1 ) which is unrelated to the Kac-Moody cocycle. Actually, the above scheme works out perfectly fine only for the restriction of the sv-action to the nilpotent part of sv. For reasons explained in sections 3 and 4, the generators of Vect(S1) ⊂ sv play a particular rôle. So the action dσ 1/4 of sv is really obtained through the projection on the second component of the coadjoint action of an extended Lie algebra g := Vect(S1) ⋉ L t ( (ΨD r ) ≤1 ). The definition of g requires in itself some work and is given only at the end of section 5.

It is natural to expect that there should exist some bi-Hamiltonian structure on S af f allowing to define some unknown integrable system. We hope to answer this question in the future.

Note that the action dσ 1/4 restricted to the (stable) affine subspace [START_REF] Unterberger | A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger-Virasoro group[END_REF] to be Hamiltonian for a totally different Poisson structure. The two constructions are unrelated.

S af f ≤2 := {-2iM∂ t - ∂ r 2 + V 2 (t)r2 + V 1 (t)r + V 0 (t)} has been shown in
Here is the outline of the article. The definitions and results from [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF] needed on the Schrödinger-Virasoro algebra and its action on Schrödinger operators are briefly recalled in section 1. Section 2 on pseudo-differential operators is mainly introductive, except for the definition of the non-local transformation Θ. The realization of DΨD ≤1 as symmetries of the free Schrödinger equation is explained in section 3. Sections 4 and 5 are devoted to the construction of the extended Lie algebra LP siDr and its extension g. Finally, the projected coadjoint action of g is defined in section 6, and the action dσ 1/4 of sv on Schrödinger operators is obtained as a restriction of this action to a stable submanifold in section 7.

Notation: In the sequel, the derivative with respect to r, resp. t will always be denoted by a prime ( ′ ), resp. by a dot, namely, V ′ (t, r) := ∂ r V (t, r) and V (t, r) := ∂ t V (t, r) (except the third-order time derivative d3V dt3 , for typographical reasons).

Definition of the action of sv on Schrödinger operators

We recall in this preliminary section the properties of the Schrödinger-Virasoro algebra sv proved in [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF] that will be needed throughout the article.

We shall denote by Vect(S1) the Lie algebra of 2π-periodic C ∞ -vector fields. It is generated by (ℓ n ; n ∈ Z), ℓ n := ie inθ ∂ θ , with the following Lie brackets: [ℓ n , ℓ p ] = (n -p)ℓ n+p . Setting t = e iθ ∈ S1, one has ℓ n = -t n+1 ∂ t . It may be seen as the Lie algebra of Diff(S1), which is the group of orientation-preserving smooth diffeomorphisms of the torus.

For any λ ∈ R, Diff(S1) admits a representation on the space of (-λ)-densities

F λ := {f (θ)(dθ) -λ , f ∈ C ∞ (R/2πZ)}
defined by the natural action by change of variables,

π λ (φ -1 )f = ( φ) -λ f • φ. Definition 1.1 (Schrödinger-Virasoro algebra) (see [5], Definition 1.2)
We denote by sv the Lie algebra with generators

L n , Y m , M n (n ∈ Z, m ∈ 1 2 + Z) and following relations (where n, p ∈ Z, m, m ′ ∈ 1 2 + Z) : [L n , L p ] = (n -p)L n+p [L n , Y m ] = ( n 2 -m)Y n+m , [L n , M p ] = -pM n+p ; [Y m , Y m ′ ] = (m -m ′ )M m+m ′ , [Y m , M p ] = 0, [M n , M p ] = 0. If f (resp. g, h) is a Laurent series, f = n∈Z f n t n+1 , resp. g = n∈κ+Z g n t n+ 1 2 , h = n∈Z h n t n , then we shall write L f = f n L n , Y g = g n Y n , M h = h n M n . (1.1) Let g 0 =span(L n , n ∈ Z) and h =span(Y m , M p , m ∈ 1 2 + Z, p ∈ Z).
Then g 0 ≃ Vect(S1) and h are Lie subalgebras of sv, and sv ≃ g 0 ⋉ h enjoys a semi-direct structure. Note also that h is pronilpotent.

The Schrödinger-Virasoro algebra may be exponentiated into a group SV = G 0 ⋉ H, where G 0 ≃ Diff(S1) and H is a nilpotent Lie group (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF], Theorem 1.4).

Definition 1.2 (see [5], Definition 1.3)

Denote by dπ λ the representation of sv as differential operators of order one on R2 with coordinates t, r defined by

dπ λ (L f ) = -f (t)∂ t - 1 2 ḟ (t)r∂ r + 1 4 iM f (t)r2 -λ ḟ (t) dπ λ (Y g ) = -g(t)∂ r + iM ġ(t)r dπ λ (M h ) = iMh(t) (1.2)
Note that dπ λ (L n ), dπ λ (Y m ), dπ λ (M p ) coincide with the formulas (0.2) given in the Introduction.

The infinitesimal representation dπ λ of sv may be exponentiated into a representation π λ of the group SV (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF], Proposition 1.6). We shall not need explicit formulas in this article. Let us simply write the action of time-diffeomorphisms:

(π λ (φ; 0)f )(t ′ , r ′ ) = ( φ(t)) -λ e 1 4 i φ(t) φ(t) r2 f (t, r) (1.3) if φ ∈ G 0 ≃ Diff(S1) induces the coordinate change (t, r) → (t ′ , r ′ ) = (φ(t), r φ(t)
). It appears clearly in this formula that the parameter λ is a 'scaling dimension' or the weight of a density.

Let us now introduce the manifold S af f of Schrödinger operators we want to consider.

Definition 1.3 (Schrödinger operators) (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF], Definition 2.1)

Let S lin be the vector space of second order operators on R2 defined by

D ∈ S lin ⇔ D = h(-2iM∂ t -∂ r 2) + V (t, r), h, V ∈ C ∞ (R2)
and S af f ⊂ S lin the affine subspace of 'Schrödinger operators' given by the hyperplane h = 1.

In other words, an element of S af f is the sum of the free Schrödinger operator -2iM∂ t -∂ r 2 and of a potential V .

The action of SV on Schrödinger operators is essentially the conjugate action of π 1/4 : Proposition 1.4 (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF], Proposition 2.5, Proposition 2.6) 1. Let σ 1/4 : SV → Hom(S lin , S lin ) the representation of the group of SV on the space of Schrödinger operators defined by the left-and-right action

σ 1/4 (g) : D → π 5/4 (g)Dπ 1/4 (g) -1 , g ∈ SV, D ∈ S lin .
Then σ 1/4 restricts to an affine action on the affine subspace S af f which is given by the following formulas:

σ 1/4 (φ; 0).(-2iM∂ t -∂ r 2 + V (t, r)) = -2i∂ t -∂ r 2 + φ ′ (t)V (φ(t), r φ ′ (t)) + 1 2 r2Θ(φ)(t) (1.4) σ 1/4 (1; (a, b)).(-2iM∂ t -∂ r 2 + V (t, r)) = -2iM∂ t -∂ r 2 + V (t, r -a(t)) -2ra ′′ (t) -(2b ′ (t) -a(t)a ′′ (t)). (1.5)
where

Θ : φ → φ ′′′ φ ′ -3 2 φ ′′ φ ′ 2 is the Schwarzian derivative.
2. The infinitesimal action dσ 1/4 : X → d dt | t=0 σ 1/4 (exp tX) of sv writes (see notations in the Introduction) :

dσ 1/4 (L f )(V ) = -f V - 1 2 ḟ (rV ′ + 2V ) + 1 8 r2 d3V dt3 dσ 1/4 (Y g )(V ) = -g V - 1 2 gr dσ 1/4 (M h )(V ) = -ḣ (1.6)
This action by reparametrization has been studied elsewhere [START_REF] Unterberger | A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger-Virasoro group[END_REF]. Once restricted to the stable submanifold

S af f ≤2 := {-2i∂ t -∂ r 2 + V 0 (t) + V 1 (t)r + V 2 (t)r2}
of Schrödinger operators with time-dependent quadratic potential, it exhibits a rich variety of finite-codimensional orbits, whose classification is obtained by generalizing classical results due to A. A. Kirillov on orbits of Hill operators under the Virasoro group. Also, a parametrization of operators by their stabilizers yields a natural symplectic structure for which the σ 1/4 -action is Hamiltonian. These ideas do not carry over to the whole space S af f whose symplectic structure will be obtained below by a totally different method.

2 Algebras of pseudodifferential symbols Definition 2.1 (algebra of formal pseudodifferential symbols)

Let ΨD := R[z, z -1 ]] [∂ z , ∂ -1
z ]] be the associative algebra of Laurent series in z, ∂ z with defining relation

[∂ z , z] = 1.
Using the coordinate z = e iθ , θ ∈ R/2πZ, one may see elements of ΨD as formal pseudodifferential operators with periodic coefficients.

The algebra ΨD comes with a trace, called Adler's trace, defined in the Fourier coordinate θ by

Tr N q=-∞ f q (θ)∂ q θ = 2π 0 f -1 (θ) dθ.
(2.1)

Coming back to the coordinate z, this is equivalent to setting Tr(a(z)∂ q z ) = δ q,-1 .

1 2iπ a(z)dz (2.2)
where

1 2iπ
is the Cauchy integral giving the residue a -1 of the Laurent series N p=-∞ a p z p . For any n ≤ 1, the vector subspace generated by the pseudo-differential operators

D = f n (z)∂ n z + f n-1 (z)∂ n-1 z + .
. . of degree ≤ n is a Lie subalgebra of ΨD that we shall denote by ΨD ≤n . We shall sometimes write D = O(∂ n z ) for a pseudodifferential operator of degree ≤ n. Also, letting

OD = ΨD ≥0 = { n k=0 f k (z)∂ k z , n ≥ 0} (differential operators) and volt = ΨD ≤-1
(called: Volterra algebra), we shall denote by (D + , D -) the decomposition of D ∈ ΨD along the direct sum OD ⊕ volt.

We shall also need the following 'extended' algebra of formal pseudodifferential symbols.

Definition 2.2 (algebra of extended pseudodifferential symbols) Let DΨD be the extended pseudo-differential algebra generated as an associative algebra by ξ, ξ -1 and ∂

1 2 ξ , ∂ -1 2 ξ .
Let D ∈ DΨD. As in the case of the usual algebra of pseudodifferential symbols, we shall write

D = O(∂ κ z ) (κ ∈ 1 2 Z
) for an extended pseudodifferential symbol with degree ≤ κ, and denote by DΨD ≤κ the Lie subalgebra span(f j (ξ)∂ j ξ ; j = κ, κ -1 2 , κ -1, . . .) if κ ≤ 1. The Lie algebra DΨD contains two interesting subalgebras for our purposes:

(i) span(f 1 (ξ)∂ ξ , f 0 (ξ); f 1 , f 0 ∈ C ∞ (S1)) which is isomorphic to Vect(S1) ⋉ F 0 ; (ii) DΨD ≤1 :=span(f κ (ξ)∂ κ ξ ; κ = 1, 1 2 , 0, -1 2 , . . . , f κ ∈ C ∞ (S1)) which is the Lie algebra gen- erated by span(f 1 (ξ)∂ ξ , f 1 2 (ξ)∂ 1/2 ξ , f 0 (ξ); f 1 , f 1 2 , f 0 ∈ C ∞ (S1)).
The Lie algebra ΨD ≤1 may be integrated to a group in the following way. Consider first the pronilpotent Lie group Volt : This explicit construction does not work for DΨD ≤1 because the formal series k≥0

= exp volt = {1 + f -1 (ξ)∂ -1 ξ + . . .} obtained by the formal exponentiation of pseudo-differential symbols, exp V = k≥0 V k k! , V ∈ volt. It is easily extended to the semi-direct product group Volt = exp F 0 ⋉ Volt (where exp F 0 = exp C ∞ (S1) ≃ {f ∈ C ∞ (S1) | ∀θ ∈ [0, 2π], f (e iθ ) = 0}) which integrates ΨD ≤0 ≃ F 0 ⋉ volt.
V k k! is not in C ∞ [ξ, ξ -1 ]] [∂ ξ , ∂ -1 ξ ]] if V = f 1/2 (ξ)∂ 1 2
ξ + O(∂ ξ 0), f 1/2 ≡ 0. Yet the Campbell-Hausdorff formula makes it possible to integrate DΨD ≤1 by a similar procedure into an abstract group DG ≤1 : Lemma 2.3 The Lie algebra DΨD ≤1 may be exponentiated into a group DG ≤1 .

Proof.

First exponentiate DΨD

≤1/2 =span(f κ (ξ)∂ κ ξ ; κ = 1 2 , 0, -1 2 , . . .) by defining DG ≤ 1 2 := exp DΨD ≤ 1 2
with multiplication given by the Campbell-Hausdorff formula exp f (ξ)∂ ) be the linear action defined by

1 2 ξ + D 1 exp g(ξ)∂ 1 2 ξ + D 2 = exp (f (ξ) + g(ξ))∂ 1 2 ξ + D 1 + D 2 + . . . + 1 2 f (ξ)∂ 1 2 ξ + D 1 , g(ξ)∂ 1 2 ξ + D 2 + . . .
ρ ′ (φ)(f ∂ κ ξ ) = (f • φ -1 ) . (φ ′ • φ -1 . ∂ ξ ) κ , κ ≤ 1 2
where (φ

′ • φ -1 . ∂ ξ ) 1 2 = φ ′ • φ -1 ∂ 1 2
ξ + . . . is the usual square root of operators (recall φ ′ > 0 by definition), and

(φ ′ • φ -1 . ∂ ξ ) κ = (φ ′ • φ -1 . ∂ ξ ) 1 2 2κ = ∂ -1 2 ξ (φ ′ • φ -1 ) -1 2 . (1 + ∂ -1 2 ξ (φ ′ • φ -1 ) -1 2 O(∂ -1 2 ξ )) -1 -2κ ∈ O(∂ κ ξ ) (2.4) if κ ≤ 0; -if φ ∈ Diff(S1), one lets ρ(φ) exp D := exp(ρ ′ (φ)D) ∈ DG ≤ 1 2 .
It turns out that a certain non-local transformation gives an isomorphism between DΨD and ΨD. For the sake of the reader, we shall in the sequel add the name of the variable as an index when speaking of algebras of (extended or not) pseudodifferential symbols. Definition 2.4 (non-local transformation Θ) Let Θ : DΨD ξ → ΨD r be the associative algebra isomorphism defined by

∂ 1 2 ξ → ∂ r , ∂ -1 2 ξ → ∂ -1 r ξ → 1 2 r∂ -1 r , ξ -1 → 2∂ r r -1 (2.5) The inverse morphism Θ -1 : ∂ r → ∂ 1 2 ξ , r → 2ξ∂ 1 2
ξ is easily seen to be an algebra isomorphism because the defining relation [∂ r , r] = 1 is preserved by Θ -1 . It may be seen formally as the integral transformation ψ(r) → ψ(ξ) := +∞ -∞ e -r2/4ξ √ ξ ψ(r) dr (one verifies straightforwardly for instance that r∂ r ψ goes to 2ξ∂ ξ ψ and that ∂ r 2ψ goes to ∂ ξ ψ). In other words, assuming ψ ∈ L1(R), one has ψ(ξ) = (P ξ ψ)(0) (ξ ≥ 0) where (P ξ , ξ ≥ 0) is the usual heat semi-group. Of course, this does not make sense at all for ξ < 0.

Remark. Denote by E r = [r∂ r , .] the Euler operator. Let ΨD (0) , resp. ΨD (1) be the vector spaces generated by the operators D ∈ ΨD such that E r (D) = nD where n is even, resp. odd. Then ΨD (0) is an (associative) subalgebra of ΨD, and one has [ΨD (0) , ΨD (0) ] = ΨD (0) , [ΨD (0) , ΨD (1) ] = ΨD [START_REF] Guieu | L'Algèbre et le Groupe de Virasoro: aspects géométriques et algébriques, généralisations[END_REF] , [ΨD [START_REF] Guieu | L'Algèbre et le Groupe de Virasoro: aspects géométriques et algébriques, généralisations[END_REF] , ΨD (1) ] = ΨD (0) . Now, the inverse image of D ∈ ΨD r by Θ -1 belongs to ΨD ξ ⊂ DΨD ξ if and only if D ∈ (ΨD r ) (0) . Lemma 2.5 (pull-back of Adler's trace) The pull-back by Θ of Adler's trace on ΨD r yields a trace on DΨD defined by

Tr DΨD ξ (a(ξ)∂ q ξ ) := T r ΨDr Θ(a(ξ)∂ q ξ ) = 2δ q,-1 . 1 2iπ a(ξ)dξ. (2.6)
Proof.

Note first that the Lie bracket of ΨD r , resp. DΨD ξ is graded with respect to the adjoint action of the Euler operator E r := [r∂ r , .], resp. E ξ := [ξ∂ ξ , .], and that Θ

• E ξ = 1 2 E r • Θ. Now Tr ΨDr D = 0 if D ∈ ΨD r is not homogeneous of degree 0 with respect to E r , hence the same is true for Tr DΨD ξ . Consider D := ξ j ∂ j ξ = Θ -1 (( 1 2 r∂ -1 r ) j ∂ 2j r ): then Tr DΨD ξ (D) = 0 if j ≥ 0

because (as one checks easily by an explicit computation) Θ(D) ∈ OD; and Tr

DΨD ξ (D) = 0 if j ≤ -2 because Θ(D) = O(∂ -2 r ).
In order to obtain time-dependent equations, one needs to add an extra dependence on a formal parameter t of all the algebras we introduce. One obtains in this way loop algebras, whose formal definition is as follows: Definition 2.6 (loop algebras) Let g be a Lie algebra. Then the loop algebra over g is the Lie algebra

L t g := g[t, t -1 ]]. (2.7) 
Elements of L t g may also be considered as Laurent series, or simply as functions t → X(t), where X(t) ∈ g.

The transformation Θ yields immediately (by lacing with respect to the time-variable t) an algebra isomorphism

L t Θ : L t (DΨD ξ ) → L t (ΨD r ), D → (t → Θ(D(t))).
(2.8)

3 Time-shift transformation and symmetries of the free Schrödinger equation

In order to define extended symmetries of the Schrödinger equation, one must first introduce the following time-shift transformation. Definition 3.1 (time-shift transformation T t ) Let T t : DΨD ξ → L t (DΨD ξ ) be the linear transformation defined by

T t f (ξ)∂ κ ξ = (T t f (ξ))∂ κ ξ (3.1)
where:

T t P (ξ) = P (t + ξ) (3.2)
for polynomials P , and

T t ξ -k = (t + ξ) -k := t -k ∞ j=0 (-1) j k(k + 1) . . . (k + j -1) j! (ξ/t) j . (3.3)
In other words, for any Laurent series

f ∈ C[ξ, ξ -1 ]], T t f (ξ) = ∞ j=0 f (j) (t) j! ξ j .
Then T t is an injective Lie algebra homomorphism, with left inverse S t given by 

S t (g(t, ξ)) = 1 2iπ g(ξ, t) dt t . ( 3 
(-2iM∂ t -∂ ξ ) ψ(t, ξ) = 0.
(3.5)

In the complex coordinates z = t -2iMξ, z = t + 2iMξ, one simply gets (up to a constant) the ∂-operator, whose algebra of Lie symmetries is span(f (t -2iMξ)∂ ξ , g(t + 2iMξ)∂ t ) for arbitrary functions f, g. An easy but crucial consequence of these considerations is the following:

Definition 3.2 (X (i) f -generators) Let, for f ∈ C[ξ, ξ -1 ]] and j ∈ 1 2 Z, X (j) f = Θ t (-f (-2iMξ)∂ j ξ ) (3.6)
where Θ t is the composition of the non-local transformation Θ and the time-shift T t , 

Θ t := L t (Θ) • T t . ( 3 
f , i ∈ 2 Z . Proof. Straightforward.
The remarkable fact is that (denoting by ḟ , f , d3f dt3 the time-derivatives of f of order 1, 2, 3)

X (1) f = -f (t)∂ r 2 + iM ḟ (t)r∂ r + 1 2 M2 f (t)r2 - 1 2 M2 f (t)r + i 6 d3f dt3 r3 ∂ -1 r + O(∂ -2 r ); (3.8) X ( 1 2 ) g = -g(t)∂ r + iM ġ(t)r + O(∂ -1 r ); (3.9) X (0) h = -h(t) + O(∂ -1 r ). (3.10)
In other words (up to constant multiplicative factors), the projection (X

(k) f ) + of X (k) f , k = 1, 1 2
, 0 onto OD forms a Lie algebra which coincides with the realization dπ 0 (see Definition 1.2), apart from the fact that -2iM∂ t is substituted by ∂ r 2 in the formula for X [START_REF] Guieu | L'Algèbre et le Groupe de Virasoro: aspects géométriques et algébriques, généralisations[END_REF] f . This discrepancy is not too alarming since -2iM∂ t ≡ ∂ r 2 on the kernel of the free Schrödinger operator. As we shall see below, one may alter the X (1) f in order to 'begin with' -f (t)∂ t as expected, but then the X

(1) f appear to have a specific definition.

Central cocycles of (ΨD r ) ≤1 and derivations

The above symmetry generators of the free Schrödinger equation, X (i) f , i ≥ 1 may be seen as elements of L t (ΨD r ). The original idea (following the scheme for Hill operators recalled in the Introduction) was to try and embed the space of Schrödinger operators S af f into the dual of L t (ΨD r ) and realize the action dσ 1/4 of Proposition 1.4 as part of the coadjoint representation of an appropriate central extension of L t (ΨD r ).

Unfortunately this scheme is a little too simple: it allows to retrieve only the action of the Yand M -generators, as could have been expected from the remarks at the end of section 3. It turns out that the X (i)

f , i ≤ 1
2 may be seen as elements of L t ((ΨD r ) ≤1 ), while the realization dπ 0 (L f ) (see Definition 1.2) of the generators in Vect(S1) ⊂ sv involve outer derivations of this looped algebra. Then the above scheme works correctly, provided one chooses the right central extension of L t ((ΨD r ) ≤1 ). As explained below, there are many possible families of central extensions, and the correct one is obtained by 'looping' a cocycle c 3 ∈ H2((ΨD r ) ≤1 , R) which does not extend to the whole Lie algebra ΨD r .

Central cocycles of (ΨD r ) ≤1

We shall (almost) determine H2(ΨD ≤1 ), using its natural semi-direct product structure: ΨD ≤1 = Vect(S1) ⋉ ΨD ≤0 .

One has (either by using the Hochschild-Serre spectral sequence or by ???):

H2(ΨD ≤1 ) = H2(Vect(S1), R) ⊕ H1(Vect(S1), H1(ΨD ≤0 )) ⊕ Inv Vect(S1) H2(ΨD ≤0 ). ( 4.1) 
The one-dimensional space H2(Vect(S1), R) is generated by the Virasoro cocycle, which we shall denote by c 0 .

For the second piece, elementary computations give

[ΨD ≤0 , ΨD ≤0 ] = ΨD ≤-2 . So H 1 (ΨD ≤0 ) is isomorphic to ΨD ≤0 /ΨD ≤-2 , i.e. to the space of symbols of type f 0 + f -1 ∂ -1 . In terms of density modules, one hasH 1 (ΨD ≤0 ) = F 0 ⊕ F 1 . So H1(ΨD ≤0 ) = (F 0 ⊕ F 1 ) * = F -1 ⊕ F 0
by the usual duality, and H1(Vect(S1), H1(ΨD ≤0 ) = H1(Vect(S1), F -1 ⊕ F 0 ) = H1(Vect(S1), F -1 ) ⊕ H1(Vect(S1), F 0 ). From the results of Fuks[], one knows thatH1(Vect(S1), F 1 ) is one-dimensional, generated by f ∂ -→ f ′′ dx, andH1(Vect(S1), F 0 ) is two-dimensional, generated by f ∂ -→ f andf ∂ -→ f ′ . So we have proved that H1(Vect(S1), H1(ΨD ≤0 ) is three-dimensional with generators c 1 , c 2 and c 3 as follows:

c 1 (g∂, k=-∞ 0f k ∂ k ) = S 1 g ′′ f 0 dt (4.2) c 2 (g∂, k=-∞ 0f k ∂ k ) = S 1 gf -1 dt (4.3) 
c 3 (g∂, k=-∞ 0f k ∂ k ) = S 1 g ′ f -1 dt (4.4) 
Let us finally consider the third piece Inv Vect(S1) H2(ΨD ≤0 ).We shall once more make use of a decomposition into a semi-direct product: setting V olt = ΨD ≤-1 , one has ΨD ≤0 = F 0 ⋉ Volt, where F 0 is considered as an abelian Lie algebra, acting non-trivially on V olt. We do not know how to compute the cohomology of V olt, because of its "pronilpotent" structure, but we shall make the following:

Conjecture: Inv F 0 H2(V olt) = 0. ( 4.5) 
We shall now work out the computations modulo this conjecture. first one getsH2(ΨD ≤0 ) = H2(F 0 ) ⊕ H1(F 0 , H1(V olt))

Then Inv Vect(S1) H2(ΨD ≤0 ) = Inv Vect(S1) H2(F 0 ) ⊕ Inv Vect(S1) H1(F 0 , H1(V olt)). Since F 0 is abelian, one has H2(F 0 ) = Λ2(F * 0 ), and Inv Vect(S1) (Λ2(F * 0 )) is one-dimensional, generated by the well-known cocycle

c 4 (f, g) = S 1 (g ′ f -f ′ g) dt. (4.6) 
A direct computation then shows that [V olt, V olt] = ΨD ≤-3 , so H 1 (V olt) = F -1 ⊕ F -2 and H1(V olt) = F 0 ⊕ F 1 as Vect(S1)-module. Then H1(F 0 , H1(V olt)) is easily determined by direct computation, as well as Inv Vect(S1) H1(F 0 , H1(V olt)); the latter is one-dimensional, generated by the following cocycle:

c 5 (g, k=-∞ 0f k ∂ k ) = S 1 gf -1 dt, (4.7) 
Let us summarize our results in the following:

Proposition 4.1 Assuming conjecture (4.5) holds true, the space H2(ΨD ≤1 )is six-dimensional, generated by the cocycles c i , i = 0, . . . , 5, defined above.

Remarks:

1. If conjecture (4.5) turned out to be false, it could only add some supplementary generators; in any case, we have proved that H2(ΨD ≤1 ) is at least six-dimensional. The right cocycle for our purposes turns out to be c 3 : one gets a centrally extended Lie algebra of pseudodifferential symbols ΨD ≤1 as follows Definition.

The natural inclusion

Let ΨD ≤1 be the central extension of ΨD ≤1 associated with the cocycle 2c 3 .

Derivations of the looped centrally extended algebra

Let us introduce now the looped algebra L t ( (ΨD r ) ≤1 ) in order to allow for time-dependence.

An element of L( ΨD ≤1 ) is a pair (D(t), λ(t)) where λ ∈ C[t, t -1 ]] and D(t) ∈ L t ((ΨD r ) ≤1 ). By a slight abuse of notation, we shall write c 3 (D 1 , D 2 ) (D 1 , D 2 ∈ L t ((ΨD r ) ≤1 )) for the function t → c 3 (D 1 (t), D 2 (t)), so now c 3 has to be seen as a function-valued central cocycle of L t ((ΨD r ) ≤1 ). In other words, we consider the looped version of the exact sequence (ii) time-dependent Euler operators f (t)E r defined by: f (t)E r (g(t)r p (r∂ r ) q ), λ(t)) = (f (t)g(t) . pr p (r∂ r ) q , 0) . (4.10)

0 -→ R -→ (ΨD r ) ≤1 -→ (ΨD r ) ≤1 -→ 0, (4.8) namely, 0 -→ R[t, t -1 ]] -→ L t ( (ΨD r ) ≤1 ) -→ L t ((ΨD r ) ≤1 ) -→ 0. ( 4 
Proof.

(i) is not specific of L t ( (ΨD r ) ≤1 ) (such infinitesimal time reparametrizations may be considered for any loop algebra), so let us concentrate on (ii). If one forgets first about the central extension, f (t)E r may be identified with the adjoint action of f (t)r∂ r which is an inner derivation. So one must only check that the action of f (t)E r is compatible with the central extension, namely,

(0, c 3 (f (t)E r (g 1 (t)r p 1 ∂ q 1 r ), g 2 (t)r p 2 ∂ q 2 r ) -c 3 (f (t)E r (g 2 (t)r p 2 ∂ q 2 r ), g 1 (t)r p 1 ∂ q 1 r )) = 0. (4.11)
This identity is trivial except if q 1 = -1, q 2 = 1. Then

c 3 f (t)E r (g 1 (t)r p 1 ∂ -1 r ), g 2 (t)r p 2 ∂ r = (p 1 + 1)f g 1 g 2 . p 1 δ p 1 +p 2 ,0 (4.12) 
and

c 3 f (t)E r (g 2 (t)r p 2 ∂ r ), g 1 (t)r p 1 ∂ -1 r = (p 2 -1)f g 1 g 2 . p 2 δ p 1 +p 2 ,0 (4.13) 
hence the left-hand side of (4.11) is 0.

5 I-embedding of (DΨD ξ ) ≤1 into the looped algebra g

This section, as explained in the introduction to section 4, is devoted to the construction of an explicit embedding (called: I-embedding) of the abstract algebra of extended pseudodifferential symbols (DΨD ξ ) ≤1 into a Lie algebra g which is a semi-direct product, g ≃ Vect(S1) ⋉ L t ( (ΨD r ) ≤1 ). Loosely speaking, the image I((DΨD ξ ) ≤1 ) is made up of the X (j) f , j ≤ 1 2 and the X (1) f with ∂ r 2 substituted by -2iM∂ t (see end of section 3).

Theorem 5.1 (homomorphism I) Let I : (DΨD ξ ) ≤1 ≃ Vect(S1) ξ ⋉(DΨD ξ ) ≤ 1 2 ֒→ Der(L t ( (ΨD r ) ≤1 ))⋉ L t ( (ΨD r ) ≤1
) be the mapping defined by

(- i 2M f (-2iMξ)∂ ξ , D) → (-f (t)∂ t - 1 2 ḟ (t)E r , i 2M (Θ t (-f (-2iMξ)∂ ξ )) ≤0 + Θ t (D)) (5.1)
where by definition

N k=-∞ f (t, r)∂ k r ≤0 := k=-∞ 0f (t, r)∂ k r .
Then I is a Lie algebra homomorphism.

Remark:

Note first that L ′ f := -f (t)(-2iM∂ t -∂ r 2) is an independent copy of Vect(S1), by which we mean that [L ′ f , L ′ g ] = L ′ {f,g} = L ′ f g ′ -f ′ g and [L ′ f , X (i) 
f ] = 0 for all i. This is immediate in the 'coordinates' (t, ξ) since Θ(L 

′ f ) = -f (t)(-2iM∂ t -∂ ξ ) commutes trivially with Θ(X (i) f ) = -f (t -2iMξ)∂ i ξ . If
(i) f , i ∈ 1 2 Z as i 2M X (1) 
f = i 2M Θ t (-f (-2iMξ)∂ ξ ) = -f (t)∂ r 2 - 1 2 ḟ (t)r∂ r + + iM 4 f (t)r2 + . . .

Proof of Theorem 5.1

Forgetting about the central extension, the Theorem is true by the above remark.

Now c 3 (Θ t (D 1 ), Θ t (D 2 ))) = 0 if D 1 , D 2 ∈ (DΨD ξ ) ≤ 1 2 since D j = f j (t) + O(∂ r 0), j = 1, 2, hence I| {0}×(DΨD ξ ) ≤ 1 2 is a homomorphism.
As we shall see in the next two sections, the coadjoint representation of the semi-direct product g is the key to define a symplectic structure on S af f for which the action of SV is Hamiltonian.

Projected coadjoint action of g

Recall first the following easy lemma (see [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study[END_REF], Lemma 3.1) Lemma 6.1 Let g = g 0 ⋉ h be a semi-direct product of two Lie algebras g 0 and h. Then the coadjoint action of g on g * is given by We shall consider below the projected coadjoint action π * 1 • ad * g corresponding to the Lie algebra g 0 ≃ Vect(S1) ⋉ L t ( (ΨD r ) ≤1 ) introduced in Definition 5.2.

The action of sv on Schrödinger operators as a projected coadjoint action

This section is devoted to the proof of the main Theorem announced in the Introduction, which we recall here:

Theorem 7.1 The restriction of the projected coadjoint action π * 1 • ad * g | sv on the submanifold {(V (t, r)∂ -2 r , 1)} ⊂ h * coincides with the infinitesimal action dσ 1/4 of sv on S af f = {-2iM∂ t -∂ r 2 + V (t, r)}.

Proof of the Theorem.

Since an element of h = L t ( (ΨD r ) ≤1 ) writes (W (t), λ(t)) with W (t) ∈ (ΨD r ) ≤1 , it is natural (using Adler's trace) to represent an element of the restricted dual h * as a couple (D(t)dt, h(t)dt) with D ∈ L t ((ΨD r ) ≥-2 ) and h ∈ C ∞ (S1). The coupling between h and its dual h * writes then (D(t)dt, h(t)dt) , (W (t), λ(t)) h * ×h = 1 2iπ (Tr ΨDr (D(t)W (t)) + h(t)λ(t)) dt.

(7.1)

The first important remark is that the projected coadjoint action π * 1 • ad * of (DΨD ξ ) ≤1 on a homogeneous element (V (t, r)∂ -2 r dt, h(t)dt) ∈ h * of degree -2 quotients out onto an action of the Schrödinger-Virasoro group: namely, let κ ≤ - 1 2 and (W, λ) = ( j≤1 W j (t, r)∂ j r , λ(t)) ∈ h, Let us now study successively the projected coadjoint action of the Y , M and L generators of sv on homogeneous elements (V (t, r)∂ -2 r dt, h(t)dt) ∈ h * of degree -2. Recall from the Introduction that the derivative with respect to r, resp. t is denoted by ′ , resp. by a dot, namely, V ′ (t, r) := ∂ r V (t, r) and V (t, r) := ∂ t V (t, r).

π * 1 • ad * f (ξ)∂ -κ ξ (V (t,

Action of the Y -generators

Let W = j≤1 W j (t, r)∂ Generally speaking (by definition of the duality given by Adler's trace), the terms in the above expression that depend on W i , i = 1, 0, . . . give the projection of ad 
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  Finally, Diff(S1) acts naturally on Volt, which yields a Lie group Diff(S1)⋉Volt integrating ΨD ≤1 ≃ Vect(S1)⋉ΨD ≤0 .

(2. 3 )(D 1 , D 2 ∈ 1 2 2 :-

 31212 DΨD ≤0 ); the first Lie bracket is DΨD ≤0 -valued, and the successive iterated brackets belong to DΨD ≤κ 1 , DΨD ≤κ 2 , . . . where (κ n ) n∈N * is a strictly decreasing sequence (with κ 1 = -1 2 ), hence the series converges.Then define the semi-direct product DG ≤1 := Diff(S1) ⋉ DG ≤ by the following natural action ρ of Diff(S1) on DG ≤ 1 let ρ ′ : Diff(S1) → Lin(DΨD ≤ 1 2

. 4 )

 4 Proof. Straightforward. Now comes an essential remark (see Introduction) which we shall first explain in an informal way. The free Schrödinger equation reads in the 'coordinates' (t, ξ)

. 7 )

 7 Lemma 3.3 (invariance of the Schrödinger equation) The free Schrödinger equation ∆ 0 ψ(t, r) = 0 is invariant under the Lie algebra of transformations generated by X (i)

  i : ΨD ≤1 -→ ΨD induces i * : H2ΨD -→ H2(ΨD ≤1 ); one may then determine the image by i * of the two generators of H2(ΨD) determined by Kravchenko andKhesin[]. Set c KK 1 (D 1 , D 2 ) = S 1 κ([Logr, D 1 ], D 2 )dr and c KK 2 (D 1 , D 2 ) = S 1 κ([Log∂, D 1 ], D 2 )dr. Then i * c KK 1 = c 2 and i * c KK 2 = c 0 + c 1 + c 4 .

  ad * g (L, D).(λ, δ) = ad * g 0 (L)λ -D.δ, L * (δ) + ad * h (D).δ where by definition D.δ, L g * 0 ×g 0 = L * (δ), D h * ×h = δ, [L, D] h * ×h . Proof. Straightforward. Let π 1 : h → g be the canonical Lie algebra embedding and π * 1 : g * → h * the dual linear Poisson morphism. The coadjoint action ad * g : g * → g * defines a Poisson morphism for the canonical KKS (Kirillov-Kostant-Souriau) structure on g * . By composing with the Poisson morphism π * 1 : g * → h * and restricting to h * , one obtains the 'projected' coadjoint action π * 1 • ad * g : (L, D) : δ → L * (δ) + ad * h (D).δ (6.1) which is a Poisson morphism for the KKS structure on h * .

  r)∂ -2 r dt, h(t)dt), W = (V (t, r)∂ -2 r dt, h(t)dt),   f (t)∂ -2κ r + O(∂ -2κ-1bracket on the right-hand side produces a pseudodifferential operator of degree ≤ -1 and no central charge.

  .9) Lemma 4.2 (derivations of L t ( (ΨD r ) ≤1 )) The Lie algebra Der(L t ( (ΨD r ) ≤1 )) of Lie derivations of t ( (ΨD r ) ≤1 ) includes the following outer derivations:

	(i) time-reparametrizations f (t)∂ t : (D(t), λ(t)) → (f (t) Ḋ(t), f (t) λ(t));

  j r ∈ L t ((ΨD r ) ≤1 ) as before. A computation givesW 1 (t, r)∂ r + O(∂ r 0)] h = (V (t, r)∂ -2 r dt, h(t)dt), (g(t)W ′ 1 (t, r)∂ r + O(∂ r 0),

	π * 1 • ad * Yg (V (t, r)∂ -2 r dt, h(t)dt), W = (V (t, r)∂ -2 r dt, h(t)dt), g(t)∂ r + 1 2 ġ(t)r +	1 8	g(t)r2∂ -1 r + O(∂ -2 r ),
			1 2	g(t) .	1 2iπ	rW 1 (r)dr)
					(7.3)

  Action of the M -generatorsIt may be deduced from that of the Y -generators since the Lie brackets of the Y -generators generate all M -generators.Action of the Virasoro partLet ρ 0 (L f ) := f (t)∂ t + 12 ḟ (t)E r denote the action of Vect(S1) t on h by derivation as in Theorem 5.1.

	π * 1 • ad * Yg ((V (t, r)∂ -2 r , 1)) = (-g(t)V ′ (t, r) +	1 2	g(t)r)∂ -2 r , 0	(7.4)
	as expected.									
	One computes:								
	π * 1 • ad * L + 1 8 r2 f (t) + -	1 8	f (t)r +	1 48	d3f dt3	r3 ∂ -1
	(f (t) Ẇ1 +	1 2	ḟ (t)(rW ′ 1 -W 1 ))∂ r + O(∂ r 0),	1 2iπ	-	1 4	f (t) W 1 dr +	1 8	d3f dt3	r2W 1 dr
											(7.5)
	Hence:									
	π * 1 • ad * L f (V (t, r)∂ -2 r ) = -f (t) V -	1 2	ḟ (t)(rV ′ + 2V ) -	1 4	f (t) +	1 8	r2	d3f dt3	∂ -2 r	(7.6)
	as expected.									
	component ∂ -i-1 r	.									* Yg (Ddt, h(t)dt) on the
	Hence altogether one has proved:				

f (Ddt, h(t)dt), W = (V (t, r)∂ -2 r dt, h(t)dt), ρ 0 (L f ) (W 1 (t, r)∂ r + O(∂ r 0)) r , W 1 (t, r)∂ r + O(∂ r 0) h = (V (t, r)∂ -2 r dt, h(t)dt ,

Similarly, c 3 (Θ t (D 1 ), D) = 0 if D ∈ L t ((ΨD r )) ≤0 . Note also that (letting ρ 0 (L f ) := -f (t)∂ t -

(see remarks before the proof

, where [ . , . ] ΨDt,r stands for the usual Lie bracket of pseudo-differential symbols in two variables.

Similarly,

Definition 5.1 (ρ-action of V ect(S1) on L t ( (ΨD r ) ≤1 )) Let Vect(S1) t be the image by I in Der(L t ( (ΨD r ) ≤1 )) ⋉ L t ( (ΨD r ) ≤1 ) of the Lie subalgebra (Vect(S1) ξ , 0). We denote by

the adjoint action of Vect(S1) t on Der(L t ( (ΨD r ) ≤1 )) ⋉ L t ( (ΨD r ) ≤1 ). Hence one has an embedding of the semi-direct product Vect(S1) t ⋉ ρ L t ( (ΨD r ) ≤1 ) into Der(L t ( (ΨD r ) ≤1 )) ⋉ L t ( (ΨD r ) ≤1 ).

In other words, the mapping I factorizes through a mapping

We may now finally introduce the Lie algebra g announced in the Introduction (see also introduction to section 4), together with the I-embedding (DΨD ξ ) ≤1 ֒→ g. Definition 5.2 Let g 0 = Vect(S1) t , h = L t ( (ΨD r ) ≤1 ) and g := g 0 ⋉ ρ h, so I ′ maps (DΨD ξ ) ≤1 into g.