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Given a smooth domain Ω ⊂ R N such that 0 ∈ ∂Ω and given a nonnegative smooth function ζ on ∂Ω, we study the behavior near 0 of positive solutions of -∆u = u q in Ω such that u = ζ on ∂Ω \ {0}. We prove

q-1 and we compute the limit of |x| 2 q-1 u(x) as x → 0. We also investigate the case q = N+1 N-1 . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.
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Introduction and main results

Let Ω be a smooth open subset of R N , with N ≥ 2, such that 0 ∈ ∂Ω. Given q > 1 and ζ ∈ C ∞ (∂Ω) with ζ ≥ 0 on ∂Ω, consider the problem (1.1)

     -∆u = u q in Ω, u ≥ 0 in Ω, u = ζ on ∂Ω \ {0}.
By a solution of (1.1) we mean a function u ∈ C 2 (Ω) ∩ C(Ω \ {0}) which satisfies (1.1) in the classical sense. A solution may develop an isolated singularity at 0. Our main goal in this paper is to describe the behavior of u in a neighborhood of this point.
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In the study of boundary singularities of (1.1), one finds three critical exponents; namely,

q 1 = N +1 N -1 , q 2 = N +2 N -2
and q 3 = N +1 N -3 , with the usual convention if N = 2 or N = 3. When 1 < q < q 1 , it is proved by Bidaut-Véron-Vivier [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] that for every solution u of (1.1) there exists α ≥ 0 (depending on u) such that u(x) = α |x| -N dist(x, ∂Ω) 1 + o(1) as x → 0.

In this paper we mainly investigate the case q 1 ≤ q < q 3 .

The counterpart of (1.1) for an interior singularity,

-∆u = u q in Ω \ {x 0 },
where x 0 ∈ Ω, was studied by P.-L. Lions [START_REF] Lions | Isolated singularities in semilinear problems[END_REF] in the subcritical case 1 < q < N N -2 , by Aviles [START_REF] Aviles | Local behavior of solutions of some elliptic equations[END_REF] when q = N N -2 and by Gidas-Spruck [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] in the range N N -2 < q < N +2

N -2 . We prove some counterparts of the works of Gidas-Spruck and Aviles in the framework of boundary singularities. When (1.1) is replaced by an equation with an absortion term,

(1.2) -∆u + u q = 0 in Ω, the problem has been first adressed by Gmira-Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] (and later to nonsmooth domains in [START_REF] Fabbri | Singular boundary value problems for nonlinear elliptic equations in nonsmooth domains[END_REF]). These results are important in the theory of boundary trace of positive solutions of (1.2) which was developed by Marcus-Véron [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF][START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case[END_REF][START_REF] Marcus | Removable singularities and boundary traces[END_REF] using analytic tools and by Le Gall [START_REF] Gall | The Brownian snake and solutions of ∆u = u 2 in a domain[END_REF] and Dynkin-Kuznetsov [START_REF] Dynkin | Superdiffusions and removable singularities for quasilinear partial differential equations[END_REF][START_REF] Dynkin | Solutions of nonlinear differential equations on a Riemannian manifold and their trace on the Martin boundary[END_REF] with a probabilistic approach. We refer the reader to Véron [START_REF] Véron | Singularités éliminables d'équations elliptiques non linéaires[END_REF] for the case of interior singularities of (1.2).

Let us first consider the case where Ω is the upper-half space R N + , and we look for solutions of (1.1) of the form u(x) = |x| -2 q-1 ω x |x| . By an easy computation, ω must satisfy

(1.3)        -∆ ′ ω = ℓ N,q ω + ω q in S N -1 + , ω ≥ 0 in S N -1 + , ω = 0 on ∂S N -1 + ,
where ∆ ′ denotes the Laplace-Beltrami operator in the unit sphere S N -1 , ℓ N,q = 2(N -q(N -2))

(q-1) 2

and S N -1

+ = S N -1 ∩ R N + . Concerning equation (1.
3), we prove Theorem 1.1.

(i) If 1 < q ≤ q 1 , then (1.3) admits no positive solution.

(ii) If q 1 < q < q 3 , then (1.3) admits a unique positive solution.

(iii) If q ≥ q 3 , then (1.3) admits no positive solution.

In Section 3 we study uniqueness of solutions of (1.3) with ℓ N,q replaced by any ℓ ∈ R. The proofs are inspired from some interesting ideas taken from Kwong [START_REF] Kwong | Uniqueness results for Emden-Fowler boundary value problems[END_REF] and Kwong-Li [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF]. The nonexistence of solutions of (1.3) when q ≥ q 3 is based on a Pohožaev identity for spherical domains; see Theorem 2.1 below.

We now consider the case where Ω ⊂ R N is a smooth domain such that 0 ∈ ∂Ω. Without loss of generality, we may assume that -e N is the outward unit normal vector of ∂Ω at 0. We prove the following classification of isolated singularities of solutions of (1.1): Theorem 1.2. Assume that q 1 < q < q 2 . If u satisfies (1.1), then either u can be continuously extended at 0 or for every ε > 0 there exists δ > 0 such that if x ∈ Ω \ {0}, x |x| ∈ S N -1 + and |x| < δ,

(1.4) |x| 2 q-1 u(x) -ω x |x| < ε,
where ω is the unique positive solution of (1.3).

When q 2 < q < q 3 , we have a similar conclusion provided u satisfies the estimate

u(x) ≤ C|x| -2 q-1 ∀x ∈ Ω,
for some constant C > 0; see Proposition 8.1 below. In the critical case q = q 1 there is a superposition of the linear and nonlinear effects since their characteristic exponents 2 q-1 and N -1 coincide. The counterpart of Theorem 1.2 in this case is the following: Theorem 1.3. Assume that q = q 1 . If u satisfies (1.1), then either u can be continuously extended at 0 or for every ε > 0 there exists δ > 0 such that if x ∈ Ω \ {0} and |x| < δ,

(1.5) |x| N -1 log 1 |x| N -1 2 u(x) -κ xN |x| < ε
, where κ is a positive constant depending only on the dimension N .

Our characterization of boundary isolated singularities is complemented by the existence of singular solutions which has been recently obtained by del Pino-Musso-Pacard [START_REF] Del Pino | Boundary singularities for weak solutions of semilinear elliptic problems[END_REF]. We recall their result: Theorem 1.4. Assume that Ω ⊂ R N is a smooth bounded domain. There exists p ∈ (q 1 , q 2 ) such that for every q 1 ≤ q < p and for every ξ 1 , ξ 2 , . . . , ξ k ∈ ∂Ω, there exists a positive function u ∈ C( Ω \ {ξ j } k j=1 ), vanishing on ∂Ω \ {ξ j } k j=1 , solution of -∆u = u q in Ω, such that u(x) → +∞ as x → ξ j nontangentially for every i = 1, 2, . . . , k.

In view of Theorems 1.2 and 1.3 any such solution must have the singular behavior we have obtained therein. In [START_REF] Del Pino | Boundary singularities for weak solutions of semilinear elliptic problems[END_REF], the authors conjecture that such solutions exist for every q 1 ≤ q < q 2 . Some of the main ingredients in the proofs of Theorems 1.2 and 1.3 are Theorem 1.1 above concerning existence and uniqueness of positive solutions of (1.3), a removable singularity result (see Theorems 7.1 and 7.2 below) and the following a priori bound of solutions of (1.1): Theorem 1.5. Assume that 1 < q < q 2 . Then, every solution of (1.1) satisfies

(1.6) u(x) ≤ C|x| -2 q-1 ∀x ∈ Ω,
for some constant C > 0 independent of the solution.

We establish this estimate using a topological argument, called the Doubling lemma (see Lemma 5.1 below), introduced by Poláčik-Quittner-Souplet [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF]. Theorems 1.2, 1.3 and 1.5 have been announced in [START_REF] Bidaut-Véron | Boundary singularities of positive solutions of some nonlinear elliptic equations[END_REF].

Pohožaev identity in spherical domains

We first prove the following Pohožaev identity in spherical domains.

Theorem 2.1. Let q > 1, ℓ ∈ R and S be a smooth domain in S N -1

+ . If v ∈ C 2 (S) ∩ C(S) satisfies (2.1) -∆ ′ v = ℓv + |v| q-1 v in S, v = 0 on ∂S, then (2.2) N -3 2 -N -1 q+1 S |∇ ′ v| 2 φ dσ-N -1 2 ℓ(q-1)+N -1 q+1 S v 2 φ dσ = 1 2 ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ,
where ν is the outward unit normal vector on ∂S, ∇ ′ the tangential gradient to S N -1 , and φ is a first eigenfunction of the Laplace-Beltrami operator -∆ ′ in W 1,2 0 (S N -1

+

).

We recall that the first eigenvalue of -∆ ′ in W 1,2 0 (S N -1

+

) is N -1 and the eigenspace associated to this eigenvalue is spanned by the function φ(x) = xN |x| .

Proof. Let

P = ∇ ′ φ, ∇ ′ v ∇ ′ v.
By the Divergence theorem, (

S div P dσ = ∂S P, ν dτ.

Note that div

P = ∇ ′ v, ∇ ′ φ ∆ ′ v + D 2 v(∇ ′ v, ∇ ′ φ) + D 2 φ(∇ ′ v, ∇ ′ v).
where D 2 v is the Hessian operator. Now,

D 2 v(∇ ′ v, ∇ ′ φ) = 1 2 ∇ ′ |∇ ′ v| 2 , ∇ ′ φ .
Using the classical identity

D 2 φ + φ g = 0 where g = (g i,j
) is the metric tensor on S N -1 , we get

D 2 φ(∇ ′ v, ∇ ′ v) = -g(∇ ′ v, ∇ ′ v)φ = -|∇ ′ v| 2 φ.
We replace these identities in the expression of div P ,

div P = -∇ ′ v, ∇ ′ φ ℓv + |v| q-1 v + 1 2 ∇ ′ |∇ ′ v| 2 , ∇ ′ φ -|∇ ′ v| 2 φ.
Integrating over S, we obtain

S div P dσ = - S ∇ ′ v, ∇ ′ φ ℓv+|v| q-1 v dσ+ 1 2 S ∇ ′ |∇ ′ v| 2 , ∇ ′ φ dσ- S |∇ ′ v| 2 φ dσ. Note that S ∇ ′ v, ∇ ′ φ ℓv + |v| q-1 v dσ = S ∇ ′ ℓ 2 v 2 + 1 q+1 |v| q+1 , ∇ ′ φ dσ = - S ℓ 2 v 2 + 1 q+1 |v| q+1 ∆ ′ φ dσ = (N -1) S ℓ 2 v 2 + 1 q+1 |v| q+1 φ dσ,
and

S ∇ ′ |∇ ′ v| 2 , ∇ ′ φ dσ = - S |∇ ′ v| 2 ∆ ′ φ dσ + ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ = (N -1) S |∇ ′ v| 2 φ dσ + ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ.
These identities imply (2.4)

S div P dσ = -ℓ(N -1) 2 S v 2 φ dσ -N -1 q+1 S |v| q+1 φ dσ + N -3 2 S |∇ ′ v| 2 φ dσ+ + 1 2 ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ.
On the other hand, since v satisfies (2.1),

S ℓv 2 + |v| q+1 φ dσ = - S (∆ ′ v)vφ dσ = S ∇ ′ v, ∇ ′ (vφ) dσ = S |∇ ′ v| 2 φ dσ + S ∇ ′ v, ∇ ′ φ v dσ. Since v∇ ′ v = 1 2 ∇ ′ (v 2 ) and ∆ ′ φ = -(N -1)φ, S ∇ ′ v, ∇ ′ φ v dσ = 1 2 S ∇ ′ (v 2 ), ∇ ′ φ dσ = N -1 2 S v 2 φ dσ.
Thus,

S ℓv 2 + |v| q+1 φ dσ = S |∇ ′ v| 2 φ dσ + N -1 2 S v 2 φ dσ.
This implies

S |v| q+1 φ dσ = S |∇ ′ v| 2 φ dσ + N -1 2 -ℓ S v 2 φ dσ.
Inserting this identity in (2.4), we obtain (2.5)

S div P dσ = N -3 2 -N -1 q+1 S |∇ ′ v| 2 φ dσ -ℓ(N -1) 2 + N -1 q+1 N -1 2 -ℓ S v 2 φ dσ+ + 1 2 ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ. Since v vanishes on ∂S, ∇ ′ v = ∇ ′ v, ν ν and, in particular, |∇ ′ v| = | ∇ ′ v, ν |. Thus, ∂S P, ν dτ = ∂S ∇ ′ φ, ∇ ′ v ∇ ′ v, ν dτ = ∂S ∇ ′ v, ν 2 ∇ ′ φ, ν dτ = ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ. (2.6)
Combining (2.3), (2.5) and (2.6), we get the Pohožaev identity.

Using the Pohožaev identity on S N -1 + we can prove that the Dirichlet problem (2.1) can only have trivial solutions for suitable values of q and ℓ.

Corollary 2.1. Let N ≥ 4. If q ≥ q 3 and ℓ ≤ -N -1 q-1 , then the function identically zero is the only solution in C 2 (S N -1 ) ∩ C 2 (S N -1 ) of the Dirichlet problem

-∆ ′ v = ℓv + |v| q-1 v in S N -1 + , v = 0 on ∂S N -1 + .
Proof. Let v be a solution of the Dirichlet problem. Applying the Pohožaev identity with φ(x) = xN |x| , then the left-hand side of the Pohožaev identity is nonnegative, while its right-hand side is nonpositive. Thus, both sides are zero. If at least one of the inequalitites q ≥ q 3 or ℓ ≤ -N -1 q-1 is strict, then we immediately deduce that v = 0 in S N -1 + . If q = q 3 and ℓ = -N -1 q-1 , then

∂S N -1 + |∇ ′ v| 2 ∇ ′ φ, ν dτ = 0.
Since ∇ ′ φ, ν < 0 on ∂S N -1

+

, we conclude that ∇ ′ v = 0 on ∂S N -1

+

. Define the function ṽ :

S N -1 → R by ṽ(x) = v(x) if x ∈ S N -1 + , 0 otherwise.
Then, ṽ satisfies (in the sense of distributions)

-∆ ′ ṽ = ℓṽ + |ṽ| q-1 ṽ in S N -1 .

Since ṽ vanishes in an open subset of S N -1 , by the unique continuation principle we have ṽ = 0 in S N -1 and the conclusion follows.

Remark. When S S N -1 + and q > q 3 the previous non-existence result can be improved if we define (2.7) λ(S, φ) = sup µ ≥ 0 :

S |∇ ′ ζ| 2 φdσ ≥ µ S ζ 2 φdσ, ∀ζ ∈ C ∞ 0 (S) .
This constant λ(S, φ) is actually zero if S = S N -1

+

. With this inequality (2.2) turns into (2.8)

N -3 2 -N -1 q+1 λ(S, φ) -N -1 2 ℓ(q-1)+N -1 q+1 S v 2 φ dσ ≤ 1 2 ∂S |∇ ′ v| 2 ∇ ′ φ, ν dτ.
Therefore, the statement of Corollary 2.1still holds if q > q 3 and (2.9)

ℓ(q -1) ≥ 1 -N + q(N -3) -N -1 N -1 λ(S, φ).
Note that λ(S, φ) tends to infinity if S shrinks to a point.

3.

Uniqueness of solutions of a pde in S N -1

+

In this section we address the question of uniqueness of positive solutions of the Dirichlet problem

(3.1)        -∆ ′ v = ℓv + v q in S N -1 + , v ≥ 0 in S N -1 + , v = 0 on ∂S N -1 + ,
where ℓ ∈ R. A solution of (3.1) is understood in the classical sense.

We shall prove the following results:

Theorem 3.1. Assume that N = 2. If q > 1, then for every ℓ ∈ R the Dirichlet problem (3.1) has at most one positive solution.

Theorem 3.2. Assume that N ≥ 4. If 1 < q < q 3 , then for every ℓ ∈ R the Dirichlet problem (3.1) has at most one positive solution.

Theorem 3.3. Assume that N = 3. Then, the Dirichlet problem (3.1) has at most one positive solution under one of the following assumptions:

• for every 1 < q ≤ 5 and ℓ ∈ R,

• for every q > 5 and ℓ ≤ 2(3-q) (q+3)(q-1) . Remark 3.1. In dimension N = 3 we do not know whether the Dirichlet problem (3.1) has a unique positive solution if q > 5 and ℓ > 2 (3-q) (q+3)(q-1) . We first show that the graphs of two positive solutions of (3.1) must cross. Lemma 3.1. Assume that v 1 and v 2 are positive solutions of (3.1).

If v 1 ≤ v 2 in S N -1 + , then v 1 = v 2 .
Proof. Multiplying by v 2 the equation satisfied by v 1 and integrating by parts, we get

S N -1 + ∇v 1 , ∇v 2 dσ = S N -1 + ℓv 1 + (v 1 ) q v 2 dσ.
Reversing the roles of v 1 and v 2 , we also have

S N -1 + ∇v 2 , ∇v 1 dσ = S N -1 + ℓv 2 + (v 2 ) q v 1 dσ.
Subtracting these identities, we have

S N -1 + v 1 q-1 -v 2 q-1 v 1 v 2 dσ = 0.
Since the integrand is nonnegative we must have v 1 q-1v 2 q-1 = 0 and the conclusion follows.

We consider first the case N = 2. The precise structure of of the set of all signed solutions defined on R is already established in [START_REF] Bidaut-Véron | On characterization of solutions of some nonlinear differential equations and applications[END_REF]Lemma 1.1], see also Theorem 1.1 therein for the main result. In this paper the proof is based upon the fact that the equation is autonomous. Here we use another argument which is in the line of the one developed in the cases N ≥ 3 studied below.

Proof of Theorem 3.1. Denoting by

θ = arccos x2
|x| , then a solution of (3.1) satisfies

v θθ + ℓv + v q = 0 in 0, π 2 , v θ (0) = 0, v( π 2 ) = 0. Moreover, for every θ ∈ (0, π 2 ], v θ (θ) < 0; indeed v θ ( π 2 ) < 0, and if ρ = inf{θ > 0 : v θ (θ) < 0} > 0, then from uniqueness ρ = π 4 , v(θ) = v( π 2 -θ), hence v θ (0) > 0, contradiction (notice that this argument is the 1-dim moving plane method). Thus, v is decreasing. Let V : [0, v(0)] → R be the function defined by (3.2) V (ξ) = v θ (v -1 (ξ)). Then, V is of class C 1 in [0, v(0)). Since for every ξ ∈ [0, v(0)), (v -1 ) ξ (ξ) = 1 v θ (v -1 (ξ)) = 1 V (ξ) ,
we deduce that

(3.3) (V 2 ) ξ = 2V V ξ = 2V (v θθ • v -1 )(v -1 ) ξ = 2(v θθ • v -1 ) = -2(ℓξ + ξ q ).
Assume by contradiction that (3.1) has two distinct positive solutions, say v 1 and v 2 . We may assume they are both defined in terms of the variable θ. Then, there exists

c 1 ∈ (0, π 2 ) such that v 1 (c 1 ) = v 2 (c 1 ). Let c 2 ∈ (c 1 , π 2 ] be the smallest number such that v 1 (c 2 ) = v 2 (c 2 ) (this point c 2 exists since v 1θ (c 1 ) = v 2θ (c 1 )
). Without loss of generality, we may assume that, for every θ ∈ (c 1 , c 2 ),

v 1 (ξ) < v 2 (ξ).
Let V 1 and V 2 be the functions given by (3.2) corresponding to v 1 and v 2 , respectively. For i ∈ {1, 2}, let

α i = v 1 (c i ) = v 2 (c i ). By (3.3), for every ξ ∈ (α 2 , α 1 ), (V 1 2 ) ξ (ξ) = -2(ℓξ + ξ q ) = (V 2 2 ) ξ (ξ). Hence, the function V 1 2 -V 2 2
is constant. On the other hand, since v 1 < v 2 and v 1 , v 2 are both decreasing, by uniqueness of the Cauchy problem,

v 1θ (c 1 ) < v 2θ (c 1 ) < 0 and v 2θ (c 2 ) < v 1θ (c 2 ) < 0. Thus, V 1 2 (α 1 ) -V 2 2 (α 1 ) > 0 and V 1 2 (α 2 ) -V 2 2 (α 2 ) < 0.
This is a contradiction. We conclude that problem (3.1) cannot have more than one positive solution.

Remark. The proofs in [START_REF] Bidaut-Véron | On characterization of solutions of some nonlinear differential equations and applications[END_REF] as well as the one here are valid for equation

(3.4) v θθ + ℓv + g(v) = 0 where g ∈ C 1 (R), g(0) = 0 and r → g(r)
r is increasing on (0, ∞). In [5, Prop 4.4] a more general, result is obtained.

In order to study (3.1) in the case of higher dimensions, the first step is to rewrite the Dirichlet problem in terms of an ode. By an adaptation of the moving planes method to S N -1 (see [START_REF] Padilla | Symmetry properties of positive solutions of elliptic equations on symmetric domains[END_REF]), any positive solution v of (3.1) depends only on the geodesic distance to the North pole: θ = arccos xN |x| and v decreasing with respect to θ. Since in this case

∆ ′ v = 1 (sin θ) N -2 d dθ (sin θ) N -2 v θ ,
every solution of (3.1) satisfies the following ode in terms of the variable θ:

(3.5) v θθ + (N -2) cot θ v θ + ℓv + v q = 0 in 0, π 2 , v θ (0) = 0, v( π
2 ) = 0. The heart of the matter is then to apply some ideas from Kwong [START_REF] Kwong | Uniqueness results for Emden-Fowler boundary value problems[END_REF] and Kwong-Li [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF], originally dealing with positive solutions of

(3.6)    u rr + (N -2) 1 r u r + ℓu + u q = 0 in (0, a), u r (0) = 0, u(a) = 0.
By Lemma 3.1 and the discussion above, the graphs of two positive solutions of (3.5) must intersect in (0, π 2 ). Of course, the number of intersection points could be arbitrarily large (but always finite in view of the uniqueness of the Cauchy problem). The next lemma allows us to reduce the problem to the case where there could be only one intersection point. The argument relies on the shooting method and continuous dependence arguments; we only give a sketch of the proof. Lemma 3.2. Assume that (3.5) has two distinct positive solutions. Then, there exists two positive solutions of (3.5) the graph of which intersect only once in the interval (0, π 2 ). Sketch of the proof. For each α > 0 let v α be the (unique) maximal solution of

v θθ + (N -2) cot θ v θ + ℓv + |v| q-1 v = 0 in I α = (0, m α ) ⊂ 0, π , v θ (0) = 0, v(0) = α.
Then v = v α is obtained by the contraction mapping principle on some interval [0, τ α ], by the formula

(3.7) v(θ) = α - θ 0 (sin σ) 2-N σ 0 (sin τ ) N -2 (ℓv + |v| q-1 v)(τ )dτ dσ.
It is extended to its maximal interval I α , and by a standard concavity argument, m α = sup I α = π. Notice that only a solution which vanishes at θ = π 2 can be extended by continuity at θ = π. By a standard argument v α (θ) depends continuously on α, uniformly when θ ∈ [0, πǫ 0 ] for any ǫ 0 > 0 small enough, and ǫ 0 = π 4 will be good enough. Since

v θ = v α θ satisfies v θ (θ) = -(sin θ) 2-N θ 0 (sin τ ) N -2 (ℓv + |v| q-1 v)(τ )dτ, it follows that v α depends continuously of α in the C 1 ([0, 3π 4 
])-topology. If v 1 and v 2 are two distinct solutions of (3.5) we can suppose that v 2 (0) > v 1 (0). We assume now that their graph have more than one intersection and denote by σ 1 and σ 2 respectively their first and second intersections in (0, π 2 ). If α ∈ (0, v 2 (0)), we denote by σ j (α), j = 1, 2, ..., the finite and increasing sequence of intersections, if any, of the graphs of v 2 and v α in (0, π 2 ). Then

σ 1 (v 1 (0)) = σ 1 and σ 2 (v 1 (0)) = σ 2 .
Since the derivatives of v 2 and v α at σ j (α) differ, it follows from implicit function theorem that the mapping

α → σ j (α) is continuous. Then, if σ 2 (α) < π 2 for any α ∈ (0, v 1 (0)), σ 1 (α) satisfies the same upper bound,. Since v α → 0 uniformly on [0, π 2 ] and v 2 θ ( π 2 ) < 0, this implies lim α→0 σ 1 (α) = σ 2 (α) = π 2 .
By the mean value theorem there exists τ (α)

∈ (σ 2 (α), σ 1 (α)) where v 2 θ (τ (α)) = v α θ (τ (α)
). This is impossible as τ (α) → 0 and

lim α→0 v 2 θ (τ (α)) = v 2,θ ( π 2 ) = lim α→0 v α θ (τ (α)) = 0.
Thus there exists α

∈ (0, v 1 (0)) such that σ 2 (α) = π 2 . Moreover σ 1 (α) < π 2 otherwhile we would have v 2 θ ( π 2 ) = v α θ π
2 as above, and v 2 = v α. Therefore v α is a solution of ((3.5)) which intersects only once v 2 in (0, π 2 ).

The next result is standard but we present a proof for the convenience of the reader.

Lemma 3.3. Assume that v 1 and v 2 are positive solutions of (3.5) whose graphs coincide at a single point of (0, π 2 ). If v 1 (0) > v 2 (0), then the function

θ ∈ (0, π 2 ) -→ v 2 (θ) v 1 (θ) is increasing. Proof. Let J : [0, π 2 ] → R be the function defined as J = v 1 v 2θ -v 2 v 1θ .
To prove the lemma, it suffices to show that J > 0 in (0, π 2 ). Using the equations satisfied by v 1 and v 2 , one finds

J θ = -(N -2) cot θJ + v 1 q-1 -v 2 q-1 v 1 v 2 .
Thus,

1 (sin θ) N -2 (sin θ) N -2 J θ = v 1 q-1 -v 2 q-1 v 1 v 2 . Let σ ∈ (0, π 2 ) be such that v 1 (σ) = v 2 (σ). Since v 1θ (σ) = v 2θ (σ), we have v 1 > v 2 in (0, σ) and v 1 < v 2 in (σ, π 2 ), we conclude that the function θ ∈ [0, π 2 ] -→ (sin θ) N -2 J(θ)
is increasing in (0, σ) and decreasing in (σ, π 2 ). Since it vanishes at 0 and π 2 , we have (sin θ) N -2 J > 0 in (0, π 2 ). Thus J > 0 in (0, π 2 ) and the conclusion follows. The following identity will be needed in the proofs of Theorems 3.2 and 3.3.

Lemma 3.4. Let v be a solution of (3.5), α = 2(N -2) q+3 and β = 2(N -2)(q-1) q+3 . Set (3.8) w(θ) = (sin θ) α v(θ)
Let E : (0, π 2 ) → R and G : (0, π 2 ) → R be the functions defined by

(3.9) E(θ) = (sin θ) β w 2 θ 2 + G(θ) w 2 2 + w q+1 q + 1 , (3.10) G(θ) = α(N -2 -α) + ℓ (sin θ) 2 + α(α + 3 -N ) (sin θ) β-2 .
Then,

(3.11) E θ = G θ w 2 2 .
Proof. Let w : (0, π 2 ) → R be the function defined by (3.8). Then,

w θθ +(N -2-2α) cot θ w θ + α(N -2 -α) + ℓ + α(α + 3 -N ) (sin θ) 2 w+ w q (sin θ) α(q-1) = 0.
Multiplying this identity by (sin θ) β , we get (sin θ) β w θθ + (N -2 -2α)(sin θ) β-1 cos θ w θ + G(θ) w + (sin θ) β-α(q-1) w q = 0 where G is defined by (3.10). We now observe that α and β satisfy

N -2 -2α = β 2 and β -α(q -1) = 0.
The identity satisfied by w becomes

(sin θ) β w θθ + β 2 (sin θ) β-1 cos θ w θ + G(θ) w + w q = 0. Since d dθ (sin θ) β (w θ ) 2 2 = (sin θ) β w θθ + β 2 (sin θ) β-1 cos θ w θ w θ and d dθ G(θ) w 2 2 = G(θ)ww θ + G θ (θ) w 2 2 identity (3.11) follows.
The following proof is inspired from Kwong-Li [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF].

Proof of Theorem 3.2. We use the notation of Lemma 3.4. We observe that E can be continuously extended at 0 and π 2 . This is clear at π 2 , where we take

(3.12) E( π 2 ) = (w θ ( π 2 )) 2 2 = (v θ ( π 2 )) 2 2 .
To reach the conclusion at 0, it suffices to observe that for every θ ∈ (0, π 2 ),

(sin θ) β (w θ (θ)) 2 = (sin θ) β α(sin θ) α-1 cos θ v(θ) + (sin θ) α v θ (θ) 2 = (sin θ) 2α+β-2 α cos θ v(θ) + sin θ v θ (θ) 2 . Since N ≥ 4, 2α + β -2 = 2(N -3) q+3 q + N -5
N -3 > 0, the right-hand side of the previous expression converges to 0 as θ → 0. We can then set E(0) = 0. Notice that

G θ (θ) = α(N -2 -α) + ℓ β(sin θ) 2 + α(α + 3 -N )(β -2) (sin θ) β-3 cos θ.
By the choices of α and β,

α(α + 3 -N )(β -2) = 4(N -2)(N -3) 2 (q+3) 3 q + N -5 N -3 N +1 N -3 -q .
Since N ≥ 4 and 1 < q < N +1 N -3 , this quantity is positive. Hence, there exists ε > 0 such that G θ (θ) > 0 ∀θ ∈ (0, ε).

In view of the expression of G θ , we have the following possibilities: either

(i) G θ > 0 in (0, π 2 ), or (ii) there exists c ∈ (0, π 2 ) such that G θ > 0 in (0, c) and G θ < 0 in (c, π 2 
). Assume by contradiction that (3.1) has more than one solution, hence by Lemma 3.2 problem (3.5) has two positive solutions v 1 and v 2 whose graphs intersect exactly once in the interval (0, π 2 ). Without loss of generality, we may assume that v 1 (0) > v 2 (0). For i ∈ {1, 2}, define w i and E i accordingly.

First, assume that G satisfies property (i) above. Let

γ = v 2θ ( π 2 ) v 1θ ( π 2 )
.

We have from (3.12)

(3.13) (E 2 -γ 2 E 1 )(0) = 0 = (E 2 -γ 2 E 1 )( π 2 
).

On the other hand, by Lemma 3.3 the function

θ ∈ (0, π 2 ) -→ v 2 (θ) v 1 (θ) is increasing. In particular, for every θ ∈ [0, π 2 ), v 2 (θ) v 1 (θ) < lim θ→ π 2 - v 2 (θ) v 1 (θ) = v 2θ ( π 2 ) v 1θ ( π 2 ) = γ.
Hence,

(w 2 ) 2 -γ 2 (w 1 ) 2 = (sin θ) 2α (v 2 ) 2 -γ 2 (v 1 ) 2 < 0 in 0, π 2 
. Thus, by Lemma 3.4 and by assumption (i), we have for every θ ∈ (0

, π 2 ), (E 2 -γ 2 E 1 ) θ (θ) = G θ (θ) (w 2 ) 2 -γ 2 (w 1 ) 2 < 0.
This contradicts (3.13). Therefore, problem (3.1) cannot have two distinct positive solutions if G satisfies (i).

Next, we assume that G satisfies property (ii) for some point c.

Let γ = v 2 (c) v 1 (c) .
As in the previous case, (E 2 -γ2 E 1 )(0) = 0. By Lemma 3.3, we have

v 2 v 1 < γ in (0, c) and v 2 v 1 > γ in (c, π 2 ).
Hence (E 2 -γ2 E 1 )( π 2 ) > 0. By Lemma 3.4 and by assumption (ii), we have for

every θ ∈ (0, π 2 ), (E 2 -γ2 E 1 ) θ (θ) = G θ (θ) (w 2 ) 2 -γ2 (w 1 ) 2 ≤ 0.
This is still a contradiction. Therefore, if G satisfies (ii), then problem (3.1) has a unique positive solution. The proof of Theorem 3.2 is complete.

When N = 3, the proof of uniqueness of positive solutions of (3.1) is inspired from Kwong-Li [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF] (Case 1 below) and Kwong [START_REF] Kwong | Uniqueness results for Emden-Fowler boundary value problems[END_REF] (Case 2 below).

Proof of Theorem 3.3. We split the proof in two cases:

Case 1. q > 1 and ℓ ≤ 2(3-q) (q+3)(q-1) . Let G : (0, π
2 ) → R be the function defined by (3.10). Since N = 3, we have α = 2 q+3 and β = 2(q-1) q+3 . Thus,

α(α + 3 -N )(β -2) = α 2 (β -2) = -32 (q+3) 3 < 0.
Moreover, since by assumption ℓ ≤ 2(3-q) (q+3)(q-1) , we have

α(N -2 -α) + ℓ β + α(α + 3 -N )(β -2) = 2(q-1) q+3 2(q-3) (q+3)(q-1) + ℓ ≤ 0. Therefore, G satisfies (iii) G θ < 0 in (0, π 2 
). We still consider the function E defined by (3.9), and astisfying (3.11). We observe that E can still be continuously extended at π 2 by (3.12), but not at 0 since E(θ) diverges to +∞ as θ → 0.

Assume by contradiction that (3.1) has more than one solution, hence as above problem (3.5) has two positive solutions v 1 and v 2 whose graphs intersect exactly once in the interval (0, π 2 ), and v 1 (0) > v 2 (0). For i ∈ {1, 2}, define w i and E i accordingly.

Let

γ = v 2 (0) v 1 (0) . By Lemma 3.3 we find (w 2 ) 2 -γ2 (w 1 ) 2 = (sin θ) 2α (v 2 ) 2 -γ2 (v 1 ) 2 > 0 in (0, π 2 
). By Lemma 3.4 and by assumption (iii), we have for every θ ∈ (0, π 2 ),

(3.14) (E 2 -γ2 E 1 ) θ (θ) = G θ (θ) (w 2 ) 2 -γ2 (w 1 ) 2 < 0. By Lemma 3.3, (E 2 -γ2 E 1 )( π 2 ) = (v 2θ ( π 2 )) 2 -γ2 (v 1θ ( π 2 )) 2 2 > 0.
Although E 1 and E 2 cannot be continuously extended at 0, one checks that

lim θ→0 E 2 (θ) -γ2 E 1 (θ) = 0,
by expanding the v i up to the order 2 at θ = 0. This contradicts (3.14). Therefore, equation (3.1) has at most one positive solution.

Case 2. 1 < q ≤ 5 and ℓ > 2(3-q) (q+3)(q-1) . Since 1 < q ≤ 5, we have ℓ > - 1 8 , in particular ℓ ≥ -1 4 . The remaining of the argument only requires 1 < q ≤ 5 and ℓ ≥ - 1 4 . Let z : (0, π

2 ) → R be the function defined as z(θ) = (sin θ)

1 2 v(θ). Then, z satisfies (3.15) z θθ + ℓ + 1 4 + 1 4(sin θ) 2 z + z q (sin θ) q-1 2 = 0.
Assume by contradiction that equation (3.5) has two positive distinct solutions v 1 and v 2 intersecting at some point σ 0 ∈ (0, π 2 ), with v 1 (0) > v 2 (0). Define z 1 and z 2 accordingly. Then

z 1 > z 2 on (0, σ 0 ), z 1 < z 2 on (σ 0 , π 2 ) and z 1 (0) = z 2 (0) = z 1 ( π 2 ) = z 2 ( π 2 ) = 0. let ξ 0 = z 1 (σ 0 ) = z 2 (σ 0
). As a first claim, we show that z 1 and z 2 cannot be both decreasing in [σ 0 , π 2 ]. Indeed, if it holds, we may consider their inverses z

-1 i : [0, ξ 0 ] → [σ 0 , π 2 ]
. For i ∈ {1, 2}, let Z i : [0, ξ 0 ] → R be the function given by

Z i (ξ) = z iθ (z -1 i (ξ)) (Z i is well-defined since σ 1 > 0). Since z 1θ (σ 0 ) < z 2θ (σ 0 ) < 0 and z 2θ ( π 2 ) < z 1θ ( π 2 ) < 0, we have (Z 1 (ξ 0 )) 2 > (Z 2 (ξ 0 )) 2 and (Z 1 (0)) 2 < (Z 2 (0)) 2 .
From the Mean value theorem, there exists η ∈ (0, ξ 0 ) such that

(3.16) (Z 1 2 ) ξ (η) > (Z 2 2 ) ξ (η).
On the other hand, for i ∈ {1, 2} and for every ξ ∈ (0, ξ 0 ), (3.17)

Z i Z iξ = z iθθ (z -1 i (ξ)) = -ℓ + 1 4 + 1 4(sin z -1 i (ξ)) 2 ξ - ξ q (sin z -1 i (ξ)) q-1 2 . Since z -1 1 (ξ) < z -1 2 (ξ) in (0, ξ 0 ), we deduce that (Z 1 2 ) ξ = 2Z 1 Z 1ξ < 2Z 2 Z 2ξ = (Z 2 2 ) ξ .
This contradicts (3.16) and prove the claim. As a second claim, we now show that z 1 and z 2 cannot be both increasing in (0, σ 0 ). Assuming that it holds, we may consider their inverses z -1

i : [0, ξ 0 ] → [0, σ 0 ]. For i ∈ {1, 2}, let Y i : [0, ξ 0 ] → R be the function defined as Y i (ξ) = z iθ (z -1 i (ξ))(sin z -1 i (ξ)).
Observe that Y i can be continuously extended to 0 by taking Y i (0) = 0. Since z 2 < z 1 in (0, σ 0 ), we have

(3.18) (Y 1 (0)) 2 = (Y 2 (0)) 2 = 0 and (Y 2 (ξ 0 )) 2 > (Y 1 (ξ 0 )) 2 .
On the other hand, for i ∈ {1, 2},

Y iξ = z iθθ (z -1 i (ξ))(sin z -1 i (ξ)) + z iθ (z -1 i (ξ))(cos z -1 i (ξ)) 1 z iθ (z -1 i (ξ)) = z iθθ (z -1 i (ξ))(sin z -1 i (ξ)) 2 1 Y i + cos z -1 i (ξ).
Thus,

Y i Y iξ -Y i cos z -1 i (ξ) = -(ℓ + 1 4 )(sin z -1 i (ξ)) 2 + 1 4 ξ -(sin z -1 i (ξ)) 5-q 2 ξ q . Since z -1 2 (ξ) > z -1 1 (ξ) in (0, ξ 0 ) and ℓ ≥ -1 4 , (ℓ + 1 4 )(sin z -1 2 (ξ)) 2 ≥ (ℓ + 1 4 )(sin z -1 1 (ξ)) 2 . Since q ≤ 5, (sin z -1 2 (ξ)) 5-q 2 ≥ (sin z -1 1 (ξ)) 5-q 2 . We deduce that Y 2 Y 2ξ -Y 2 cos z -1 2 (ξ) ≤ Y 1 Y 1ξ -Y 1 cos z -1 1 (ξ). Hence, (Y 2 ) 2 -(Y 2 ) 2 ξ ≤ 2(Y 2 cos z -1 2 (ξ) -Y 1 cos z -1 1 (ξ)) ≤ 2 cos z -1 1 (ξ)(Y 1 -Y 2 ) ≤ 2 cos z -1 1 (ξ) Y 1 + Y 2 (Y 1 ) 2 -(Y 2 ) 2 .
Let f : (0, ξ 0 ) → R be the function defined by

f (ξ) = 2 cos z -1 1 (ξ) Y 1 (ξ) + Y 2 (ξ)
.

Using this notation,

(Y 2 ) 2 -(Y 1 ) 2 ξ ≤ f (ξ) (Y 2 ) 2 -(Y 1 ) 2 . Thus, for every ξ ∈ [0, ξ 0 ], (Y 2 ) 2 -(Y 1 ) 2 (ξ) ≥ (Y 2 ) 2 -(Y 1 ) 2 (ξ 0 ) e R ξ 0 ξ f (τ ) dτ .
This clearly contradicts (3.18) and the second claim is proved.

We can now conclude the proof. It follows from equation (3.15) that both z 1 and z 2 are concave. Since z 1 and z 2 cannot be simultaneously increasing on (0, σ 0 ) or decreasing on (σ 0 , π

2 ), at their intersection point there holds

z 1θ (σ 0 ) < 0 < z 2θ (σ 0 ).
Therefore, the maximum of z 1 is achieved in (0, σ 0 ) while the maximum of z 2 is achieved in (σ 0 , π 2 ). Denote the maximum of z i by m i . We first show that m 2 > m 1 . Indeed, assume by contradiction that m 2 ≤ m 1 . Let σ2 ∈ (σ 0 , π

2 ) be such that

z 2 (σ 2 ) = m 2 .
Let σ1 be the largest number in (0, π 2 ) such that z 1 (σ 1 ) = m 2 .

The restrictions z i : [σ i , π 2 ] → [0, m 2 ] are both decreasing. Let Zi : [0, m 2 ] → R be the function defined as Zi (ξ) = z iθ (z -1 i (ξ)). In the interval [0, m 2 ] we have z -1 1 (ξ) < z -1 2 (ξ) and (3.17), thus, as in the first claim, (

1 ) ξ < ( Z2 2 ) ξ . Since ( Z1 (0)) 2 < ( Z2 (0)) 2 and ( Z1 (m 2 )) 2 ≥ 0 = ( Z2 (m 2 )) 2 , Z2 
we have a contradiction.

We now show that m 1 ≥ m 2 . Assume by contradiction that m 1 < m 2 . Let σ1 ∈ (0, σ) be such that z 1 (σ 1 ) = m 1 .

Let σ2 be the smallest number in (0, π 2 ) such that z 2 (σ 1 ) = m 1 .

The restrictions z

i : [0, σi ] → [0, m 1 ] are both increasing. Let Ŷi : [0, m 1 ] → R be the function defined as Ŷi (ξ) = z iθ (z -1 i (ξ))(sin z -1 i (ξ)
) if ξ = 0 and Ŷi (0) = 0. Then, Ŷi is continuous. In the interval [0, σi ] we have z -1 1 (ξ) < z -1 2 (ξ), thus, as in the second claim,

( Ŷ2 ) 2 -( Ŷ1 ) 2 ξ ≤ 2 cos z -1 1 (ξ) Ŷ2 + Ŷ1 ( Ŷ2 ) 2 -( Ŷ1 ) 2 .
This contradicts

( Ŷ2 ) 2 -( Ŷ1 ) 2 (0) = 0 and ( Ŷ2 ) 2 -( Ŷ1 ) 2 (m 1 ) > 0.
Finally m 2 > m 1 ≥ m 1 > 0, which is a contradiction. Therefore, problem (3.1) can have at most one positive solution.

Proof of Theorem 1.1

Proof of (i). Assume that 1 < q ≤ q 1 . Let φ be a positive eigenfunction of -∆ ′ in W 1,2 0 (S N -1

+

) associated to the first eigenvalue N -1, and let ω be a solution of (1.3). Using φ as test function, we get

S N -1 + ∇ ′ ω, ∇ ′ φ dσ = S N -1 + (ℓ N,q ω + ω q )φ dσ.
On the other hand, since φ is an eigenfunction of -∆ ′ ,

S N -1 + ∇ ′ ω, ∇ ′ φ dσ = (N -1) S N -1 + ωφ dσ. Thus, (4.1) (N -1 -ℓ N,q ) S N -1 + ωφ dσ = S N -1
+ ω q φ dσ.

Since q ≤ q 1 , we have

N -1 -ℓ N,q = (N -1)(q+1) (q-1) 2 q -N +1 N -1 ≤ 0.
Hence, the left-hand side of (4.1) is nonpositive while the right-hand side is nonnegative. Thus,

S N -1 + ω q φ dσ = 0
We conclude that ω = 0 in S N -1

+

. Hence, problem (1.3) has no positive solution.

Proof of (ii). Since q > q 1 ,

N -1 -ℓ N,q = (N -1)(q+1) (q-1) 2 q -N +1 N -1 > 0.
Thus, the functional J : W 1,2 0 (S N -1

+

) → R defined by

J (w) = S N -1 + |∇ ′ w| 2 -ℓ N,q w 2 dσ
is bounded from below by 0. On the other hand, since q < q 3 we can minimize J over the set w ∈ W 1,2 0 (S N -1

+

) ;

S N -1 + (w + ) q+1 dσ = 1 .
Let w be a minimizer. Then, w + is also a minimizer, whence w = w + and this function satisfies

-∆ ′ w -ℓ N,q w = λw q in S N -1 +
for some λ > 0. By standard elliptic regularity theory, w is smooth and vanishes on ∂S N -1

+
in the classical sense. The function λ 1 q-1 w is therefore a solution of (1.3). For uniqueness, one applies Theorem 3.1 and Theorem 3.2 in the case N = 3.

If N = 3 we can applies Theorem 3.3 since ℓ q,3 = 2(3-q) (q-1) 2 always satisfies the assumption therein.

Proof of (iii). We may assume that N ≥ 4, for otherwise there is nothing to prove. Note that if q ≥ q 3 ,

N -1 q-1 -ℓ N,q = -N -3 (q-1) 2 q -N +1 N -3 ≤ 0.
Applying Corollary 2.1, we deduce that (1.3) has no positive solution.

In particular,

u k (x k ) → +∞ as k → +∞.
For every k ≥ 1, let

t k = [u k (x k )] -q-1 2 , D k = ξ ∈ R N ; |ξ| ≤ k and x k + t k ξ ∈ Ω and v k (ξ) = 1 u k (x k ) u k x k + t k ξ ∀ξ ∈ D k .
Then, v k satisfies

-∆v k = v q k , 0 ≤ v k ≤ 2 2 q-1 and v k (0) = 1.
Passing to a subsequence if necessary, we may assume that either (A) for every a > 0 there exists

k 0 ≥ 1 such that if k ≥ k 0 , then B at k (x k )∩∂Ω = ∅, or (B) there exists a 0 > 0 such that for every k ≥ 1, B a0t k (x k ) ∩ ∂Ω = ∅.
Since the sequence (v k ) is uniformly bounded, it follows that (∆v k ) is also uniformly bounded. In both cases, by elliptic (interior and boundary) estimates, we have for every 1 < p < +∞ and every s > 0,

v k W 2,p (D k ∩Bs) ≤ C s,p .
If (A) holds, then up to a subsequence (v k ) converges locally uniformly in R N to some smooth function v such that

-∆v = v q , 0 ≤ v ≤ 2 2 q-1 and v(0) = 1.
On the other hand, if (B) holds, then up to a subsequence and a rotation of the domain there exists some smooth function v defined in R N + such that (v k ) converges locally uniformly to v. Since the sequence (v k ) is equicontinuous and for every k ≥ 1, v k (0) = 0, we have v(0) = 1.

In both cases, we deduce that v is a nontrivial bounded solution of

-∆v = v q in R N or in R N + ,
which is impossible (see [START_REF] Dancer | Some notes on the method of moving planes[END_REF]). Therefore, estimate (5.2) must hold.

Proof of Theorem 1.5. It suffices to establish (1.6) if x ∈ Ω and |x| < 3 4 diam Ω. For this purpose, we apply Proposition 5.1 with r = 2 3 |x|. Since dist(x, Γ r ) = 1 3 r, we deduce that

u(x) ≤ C dist(x, Γ r ) -2 q-1 = C r 3 -2 q-1 = C |x| -2 q-1 .
This establishes the result.

The geometric and analytic framework

We recall some of the preliminaries and the geometric framework in [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] which will be used in the remaining of the paper.

We denote by (x 1 , . . . , x N ) the coordinates of x ∈ R N and by B = {e 1 , . . . , e N } the canonical orthonormal basis in R N . Since we are assuming that the outward unit normal vector is -e N , ∂Ω is the graph of a smooth function in a neighborhood of 0. In other words, there exist a neighborhood G of 0 and a smooth function

φ : G ∩ T 0 Ω → R such that G ∩ ∂Ω = (x ′ , x N ) ∈ R N -1 × R ; x ′ ∈ G ∩ T 0 Ω and x N = φ(x ′ ) .
Furthermore, φ(0) = 0 and ∇φ(0) = 0.

Setting Φ(x) = y, with

y i = x i if i = 1, . . . , N -1 and y N = x N -φ(x ′ ), we can assume that Φ is a C ∞ diffeomorphism from G to G = Φ(G), and Φ(Ω ∩ G) = G ∩ R N + .
To avoid introducing some additional notation, we will assume that G = B 1 .

Given ζ ∈ C ∞ (∂Ω), let z be the harmonic extension of ζ in Ω. For every solution u of (1.1), we denote

u(x) -z(x) = ũ(y), z(x) = z(y) and ζ(x) = ζ(y), for every x = Φ -1 (y) with y ∈ G ∩ R N + .
Since u is superharmonic and u = z on ∂Ω, we have ũ ≥ 0. On the other hand, a straightforward computation yields ∆u = ∆ũ + |∇φ| 2 ũyN ,yN -2 ∇φ, ∇ũ yN -ũyN ∆φ Thus, ũ satisfies the equation -∆ũ -|∇φ| 2 ũyN,yN + 2 ∇φ, ∇ũ yN + ũyN ∆φ = (ũ + z) q .

Rewriting this equation in terms of spherical coordinates, one obtains

(1 + η 1 ) ũrr + 1 r 2 ∆ ′ ũ + N -1 + η 2 r ũr + (ũ + z) q = = 1 r 2 ∇ ′ ũ, -→ η 3 + 1 r ∇ ′ ũr , - → η 4 + 1 r 2 ∇ ′ ∇ ′ ũ, e N , -→ η 5 . where η 1 = -2φ r n, e N + |∇φ| 2 n, e N 2 , η 2 = -r n, e N ∆φ -2 ∇ ′ n, e N , ∇ ′ φ + r |∇φ| 2 ∇ ′ n, e N , e N , -→ η 3 = -2φ r -|∇φ| 2 n, e N -r∆φ e N , -→ η 4 = -|∇φ| 2 n, e N -2φ r e N + 2 r n, e N ∇ ′ φ, -→ η 5 = -|∇φ| 2 e N + 2 r ∇ ′ φ.
Taking into account the fact that φ(0) = 0 and ∇φ(0) = 0,

|φ(x)| ≤ Cr 2 , |Dφ(x)| ≤ Cr and D 2 φ ≤ C.
Thus, for every j = 1, . . . , 5,

η j (r, •) L ∞ ≤ Cr ∀r ∈ (0, 1). Lemma 6.1. Let (6.1) t = log 1 r , v(t, σ) = r 2 q-1 ũ(r, σ) and α(t, σ) = r 2 q-1 z(r, σ).
Then, v satisfies

(6.2) (1 + ǫ 1 ) v tt + ∆ ′ v -N -2(q+1) q-1 + ǫ 2 v t + (ℓ N,q + ǫ 3 ) v + (v + α) q = = ∇ ′ v, -→ ǫ 4 + ∇ ′ v t , -→ ǫ 5 + ∇ ′ ∇ ′ v, e N , -→ ǫ 6 ,
where ǫ j are functions defined in (0, +∞) × S N -1 + satisfying the estimates

(6.3) ǫ j (t, •) L ∞ ≤ Ce -t ∀t ≥ 0,
for every j = 1, . . . , 6.

We refer the reader to [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] for the proof of Lemma 6.1 and for the explicit expressions of the functions ǫ j .

For every T ≥ 0 and δ > 0, let

Q T = (T, +∞) × S N -1 + and Q T,δ = (T -δ, T + δ) × S N -1 + .
We have the following W 2,p -estimates satisfied by v: Proposition 6.1. Let v be defined as in Lemma 6.1. If v is uniformly bounded in Q 0 , then for every 1 < p < +∞,

(6.4) v W 2,p (QT,1) ≤ C v L 2 (QT,2) + e -2T q-1 ∀T ≥ 2,
for some positive constant depending on v L ∞ and on p.

Proof. Since ∆ ′ is uniformly elliptic and Φ is a diffeomorphism, the operator L given by

L(v) = (1 + ǫ 1 ) v tt + ∆ ′ v -N -2(q+1) q-1 + ǫ 2 v t + -∇ ′ v, -→ ǫ 4 -∇ ′ v t , -→ ǫ 5 -∇ ′ ∇ ′ v, e N , -→ ǫ 6
is uniformly elliptic. Let δ > 0. By the Agmon-Douglis-Nirenberg estimates (see [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]) applied to the restriction of v on the set Q T,1+δ ,

v W 2,p (Q T ,1+δ ) ≤ C v L p (Q T ,1+2δ ) + (α + v) q L p (Q T ,1+2δ ) .
Since α and v are uniformly bounded in Q 0 , for every s ∈ (1, 2) we have

(α + v) q L p (QT,s) ≤ α + v q-1 L ∞ (QT,s) α + v L p (QT,s) ≤ C α L p (QT,s) + v L p (QT,s) .
Since z is uniformly bounded in Ω,

α L p (QT,s) ≤ Ce -2T q-1 z L ∞ (Ω) ≤ Ce -2T q-1 .
Thus,

(6.5) v W 2,p (Q T ,1+δ ) ≤ C v L p (Q T ,1+2δ ) + e -2T q-1 .
In particular,

v W 2,p (QT,1) ≤ C v L p (Q T , 3 2 
) ) + e -2T q-1
.

By a bootstrap argument based on the estimate (6.5) above and the Sobolev imbedding, we also have

v L p (Q T , 3 
2

) ≤ C v L 2 (QT,2) + e -2T q-1
.

Combining these inequalities, the estimate follows.

Removable singularities at 0

The goal of this section is to show that solutions of (1.1) which are not too large in a neighborhood of 0 must be continuous at 0. Theorem 7.1. Let q > q 1 and let u be a solution of (1.1). If

(7.1) lim x→0 |x| 2 q-1 u(x) = 0,
then u can be continuously extended at 0.

Proof. Let v be the function given by (6.1). By assumption (7.1), we have

(7.2) lim t→+∞ v(t, •) = 0 uniformly in S N -1 + .
We now rewrite (6.2) under the form

(7.3) v tt -N -2(q+1) q-1 v t + ℓ N,q v + ∆ ′ v + (v + α) q = H,
where H is given by (7.4)

H = -ǫ 1 v tt + ǫ 2 v t -ǫ 3 v + ∇ ′ v, -→ ǫ 4 + ∇ ′ v t , -→ ǫ 5 + ∇ ′ ∇ ′ v, e N , -→ ǫ 6 .
Thus, (

S N -1 + vv tt dσ -N -2(q+1) q-1 S N -1 + vv t dσ + ℓ N,q S N -1 + v 2 dσ + S N -1 + v∆ ′ v dσ+ + S N -1 + v(v + α) q dσ = S N -1 + vHdσ. Let X(t) = v(t, •) L 2 (S N -1 + 7.5) 
) ∀t ≥ 0. Note that for every t > 0, (7.6)

XX t = S N -1 + vv t dσ.
Using Hölder's inequality we have

|XX t | ≤ v(t, •) L 2 (S N -1 + ) v t (t, •) L 2 (S N -1 +
) . Thus, (7.7)

|X t | ≤ v t (t, •) L 2 (S N -1 + ) .
Computing the derivative with respect to t on both sides of identity (7.6), we get

(X t ) 2 + XX tt = S N -1 + (v t ) 2 dσ + S N -1 + vv tt dσ = v t (t, •) 2 L 2 (S N -1 + ) + S N -1 + vv tt dσ.
From this identity and estimate (7.7), we deduce that (7.8)

XX tt ≥ S N -1 + vv tt dσ.
On the other hand, since the first eigenvalue of the Laplace-Beltrami operator

-∆ ′ in W 1,2 0 (S N -1 + ) is N -1, (N -1)X 2 ≤ S N -1 + |∇ ′ v| 2 dσ = - S N -1 + v ∆ ′ v dσ.
By Hölder's inequality,

S N -1 + vH dσ ≤ X H(t, •) L 2 (S N -1 + ) .
From the elementary inequality (v + α) q ≤ 2 q (v q + α q ), we get

S N -1 + v(v + α) q dσ ≤ 2 q S N -1 + v q+1 + vα q dσ
It follows from Hölder's inequality that (7.9)

S N -1 + v(v + α) q dσ ≤ 2 q X 2 v(t, •) q-1 L ∞ (S N -1 + ) + X α(t, •) q L 2q (S N -1 + ) .
We may assume that u is a nontrivial solution of (1.1). By the strong maximum principle, we have u > 0 in Ω, thus X > 0. Combining (7.5), (7.6) and (7.8)-(7.9), one gets

X tt -N -2(q+1) q-1 X t + ℓ N,q -N + 1 + 2 q v(t, •) q-1 L ∞ X ≥ ≥ -H(t, •) L 2 + 2 q α(t, •) q L 2q
(to simplify the notation we drop the explicit dependence of the set S N -1

+

). From the definition of the function α, there exists C > 0 such that

2 q α(t, •) q L 2q ≤ Ce -2qt q-1 .
In view of (7.2), given ε > 0 there exists t 0 > 0 such that 2 q v(t, •) q-1 L ∞ ≤ ε on [t 0 , ∞). We deduce that for every t ≥ t 0 we have

X tt -N -2(q+1) q-1 X t + (ℓ N,q -N + 1 + ε) X ≥ -H(t, •) L 2 -Ce -2qt q-1 . If r 1,ε ≥ -2, then X(t) ≤ 2 C2 Z 1,ε (t) and u is bounded. Otherwise r 1,ε < -2, in which case, X(t) ≤ 2 C2 e -2t .
We can continue this argument and deduce in finitely many steps that

X(t) ≤ 2 Ck Z 1,ε (t).
Applying Proposition 6.1 with p > N 2 , we deduce that for every T ≥ 2,

v W 2,p (QT,1) ≤ C Z 1,ε (T ) + e -2T q-1 ≤ C e -2T q-1 .
Thus, by Morrey's embedding,

v L ∞ (QT,1) ≤ C e -2T q-1 .
This implies that u is bounded and hence continuous in Ω.

The conclusion of Theorem 7.1 is false with the critical exponent q = q 1 . In fact, combining Theorem 1.3 and the result of del Pino-Musso-Pacard mentioned in the Introduction (Theorem 1.4), when q = q 1 there exist solutions of (1.1) such that

u(x) ∼ x N |x| -N log 1 |x| -N -1 2
in a neighborhood of 0. These solutions are necessarily discontinuous at 0 but, since

2 q1-1 = N -1, lim x→0 |x| 2 q 1 -1 u(x) = 0.
The right statement in this case is the following:

Theorem 7.2. Let q = q 1 and let u be a nonnegative solution of (1.1). If

lim x→0 |x| N -1 log 1 |x| N -1 2 u(x) = 0,
then u can be continuously extended at 0.

Proof. Let W (t) = t N -1 2 v(t, •) L 2 (S N -1 +
) ∀t ≥ 0, where v is the function given by (6.1). By assumption, W (t) → 0 as t → +∞. As in the proof of Theorem 7.1, for any ε > 0 there exists t 0 > 0 such that for every t ≥ t 0 ,

W tt + N -N -1 t W t + 1 t -N (N -1) 2 + ε + N 2 -1 4t W ≥ ≥ -t N -1 2 
H(t, •) L 2 -C t N -1 2 e -(N +1)t .
The linear equation

W tt + N -N -1 t W t + 1 t -N (N -1) 2 + N 2 -1 4t W = 0
has two linearly independent solutions W 1 and W 2 such that for t sufficiently large (see Lemma A.2 below)

W 1 (t) = t N -1 2 e -N t (1 + o(1)) and W 2 (t) = t N -1 2 (1 + o(1)).
We can then take ε > 0 small enough so that the linear equation

W tt + N -N -1 t W t + 1 t -N (N -1) 2 + ε + N 2 -1 4t W = 0
has two linearly independent solutions W 1,ε and W 2,ε such that

W 1,ε (t) ≤ Ct N -1
2 e -(N -1)t and W 2,ε (t) → +∞ as t → +∞.

In view of (6.3) and Proposition 6.1 with p = 2, there exists C 1 > 0 such that

H(t, •) L 2 ≤ C 1 t -N -1 2 e -t ∀t > 0.
Thus,

W tt + N -N -1 t W t + 1 t -N (N -1) 2 + ε + N 2 -1 4t W ≥ -Ce -t .
Since W (t) → 0 as t → +∞, from the maximum principle there exists a constant C1 > 0 such that

W (t) ≤ C1 (W 1,ε (t) + e -t ).
Thus,

W (t) ≤ Ĉ1 e -t .
Thus, by Proposition 6.1 with p = 2, for every T ≥ 2,

v W 2,2 (QT,2) ≤ C 1 t -N -1 2 e -T .
In view of (6.3), there exists Ĉ2 > 0 such that

H(t, •) L 2 ≤ Ĉ2 t -N -1 2 e -2t ∀t ≥ 0.
We can continue this argument as in the previous theorem and deduce after finitely many steps that

W (t) ≤ Ĉk W 1,ε (t) ≤ C t N -1 2 
e -(N -1)t , which implies that u is bounded and hence continuous in Ω.

Proof of Theorem 1.2

We first establish the following Proposition 8.1. Let q 1 ≤ q < q 3 , with q = q 2 . If u is a solution of (1.1) such that |x|

2 q-1 u(x) is bounded in Ω, then for every ε > 0 there exists δ > 0 such that if x ∈ Ω \ {0}, x |x| ∈ S N -1 + and |x| < δ, then (8.1) |x| 2 q-1 u(x) -w x |x| < ε
where w is a solution of (1.3).

Proof. Let v be the function given by (6.1). We first rewrite equation (6.2) under the form

(8.2) v tt + ℓ N,q v + ∆ ′ v + (v + α) q -N -2(q+1) q-1 v t = H,
where H is given by (7.4). Multiplying (8.2) by v t and integrating over S N -1

+ yields S N -1 + v t v tt dσ + ℓ N,q S N -1 + v t v dσ + S N -1 + v t ∆ ′ v dσ + S N -1 + v t (v + α) q dσ+ -N -2(q+1) q-1 S N -1 + (v t ) 2 dσ = S N -1 + v t H dσ.
Thus,

(8.3) d dt S N -1 + (v t ) 2 2 + ℓ N,q v 2 2 - |∇ ′ v| 2 2 + (v + α) q+1 q + 1 dσ-N -2(q+1) q-1 S N -1 + (v t ) 2 dσ = = S N -1 + v t H + α t (v + α) q dσ.
From our assumption on u, v is bounded. It follows from (6.4) and the Sobolev imbedding that v, v t and ∇ ′ v are uniformly bounded in S N -1 + × R + . Integrating (8.3) from 0 to T , for any T > 0, one deduces that

S N -1 + (v t ) 2 2 + ℓ N,q v 2 2 - |∇ ′ v| 2 2 + (v + α) q+1 q + 1 dσ ≤ C in R +
for some constant C > 0. On the other hand,

S N -1 + |v t H| dσ ≤ Ce -t .
Moreover, since v is bounded and α satisfies (6.5), we have

S N -1 + |α t |(v + α) q dσ ≤ Ce -2t q-1 .
Thus, integrating (8.3) on (0, +∞), we obtain

N -2(q+1) q-1 +∞ 0 S N -1 + v 2 t dσ < +∞. Since q = q 2 , N -2(q+1) q-1 = 0. Hence, +∞ 0 S N -1 + v 2 t dσ < +∞.
By (6.4) and Morrey's estimates, v t is uniformly continuous on Q 0 . We deduce that v t (t, •) → 0 uniformly in S N -1 + as t → +∞.

We now prove that

v(t, •) → w uniformly in S N -1 + as t → +∞,
where w is a nonnegative solution of (1.3). For this purpose, we study the limit set of the trajectories of v, namely the set

Γ = τ >0 t≥τ {v(t, .)},
where the closure is computed with respect to the usual norm in C 0 (S N -1

+

). Since Γ is the intersection of a decreasing family of closed connected subsets of C 0 (S N -1 + ), Γ is closed and connected. In addition, since v is uniformly continuous in Q 0 , it follows from the Arzelà-Ascoli theorem that Γ is also compact and nonnempty.

We claim that every w ∈ Γ satisfies problem (1.3). Indeed, let (t k ) be a sequence of nonnegative real numbers such that t k → +∞ and

v(t k , •) → w uniformly in S N -1 + .
Clearly, w is nonnegative and w = 0 on ∂S N -1

+ . For each k ≥ 1, let V k : (s, σ) ∈ [0, 1] × S N -1 + -→ v(t k + s, σ). For every ϕ ∈ C ∞ 0 (S N -1 +
) and for every ε ∈ (0, 1), from the equation satisfied by v we have

ε 0 S N -1 + (V k ) tt ϕ+ ℓ N,q V k ϕ+ V k ∆ ′ ϕ+ (V k + α) q ϕ-N -2(q+1) q-1 (V k ) t ϕ dσ dt = = t k +ε t k S N -1 + Hϕ dσ dt. As k → +∞, t k +ε t k S N -1 + Hϕ dσ dt → 0.
Since v t → 0 uniformly as t → +∞, we also have

ε 0 S N -1 + (V k ) t ϕ dσ dt → 0. Note that ε 0 S N -1 + (V k ) tt ϕ dσ dτ = S N -1 + v t (t k + ε, σ) -v t (t k , σ) ϕ dσ → 0.
Since the sequence (V k ) is bounded in C 1 , passing to a subsequence if necessary, we may assume that for some continuous function W ,

V k → W uniformly in [0, 1] × S N -1 + .
We conclude that for every ε ∈ (0, 1),

ε 0 S N -1 + ℓ N,q W ϕ -W ∆ ′ ϕ + W q ϕ dσ dt = 0.
Dividing both sides by ε and letting ε → 0, we get

S N -1 + ℓ N,q W (0, σ)ϕ -W (0, σ)∆ ′ ϕ + (W (0, σ)) q ϕ dσ = 0.
Since w = W (0, •), we conclude that w satisfies (1.3). Hence, every element of Γ is a nonnegative solution of (1.3). Since these solutions form a discrete subset of C 0 (S N -1

+

) and Γ is connected (in our case, the set of nonnegative solutions is {0, ω}, where ω is the unique positive solution of (1.3)), Γ contains a single element. In particular, v(t, •) → w uniformly in S N -1

+
as t → +∞.

The proposition follows from this convergence.

Proof of Theorem 1.2. Let u be a solution of (1.1). Since q < q 2 , by Theorem 1.5 there exists C > 0 such that for every x ∈ Ω, 0 ≤ |x| We first prove an estimate which improves Theorem 1.5 when q = q 1 , except that we do not know whether the constant C below can be chosen independently of the solution.

Theorem 9.1. Assume that q = q 1 . Then, every solution of (1.1) satisfies u(x) ≤ C|x| -(N -1) log 1 |x| -N -1 2 ∀x ∈ Ω, for some constant C > 0 possibly depending on the solution.

In the proof of this result we need the following lemma: Lemma 9.1. Let a = q 1 and E = ker [∆ ′ + (N -1)I]. Given a solution of (1.1), denote by v the function given by (6.1).

If v = v 1 + v 2
is the decomposition of v as the orthogonal projections in L 2 (S N -1

+

) onto E and E ⊥ , respectively, then Proof. Denoting by φ 1 the first eigenfunction of ∆ ′ with φ 1 L 1 = 1, we have v 1 (t, σ) = y(t)φ 1 (σ) where y(t) = S N -1 + v(t, σ)φ 1 (σ) dσ.

Since q = q 1 , equation (7.3) becomes (9.2) v tt + N v t + (N -1)v + ∆ ′ v + (v + α) q1 = H, with H defined in (7.4). Since α ≥ 0, we have (v + α) q1 ≥ v q1 . Thus, . In particular, by (6.3) and Proposition 6.1 with p = 2, we have for every t ≥ 0, This concludes the proof of the first estimate in (9.1).

v tt + N v t + (N -1)v + ∆ ′ v + v q1 ≤ H.
In order to prove the estimate for v 2 , let

Y (t) = v 2 (t, •) L 2 (S N -1 + ) ∀t ≥ 0.
Since v(t, σ) = y(t)φ 1 (σ) + v 2 (t, σ), we have v t = y t φ 1 + (v 2 ) t and v tt = y tt φ 1 + (v 2 ) tt .

Using the orthogonality between φ 1 and v 2 ,

Y Y t = S N -1 + v 2 (v 2 ) t dσ = S N -1 + v 2 y t φ 1 + (v 2 ) t dσ = S N -1 + v 2 v t dσ.
From the first equality, we have

|Y t | ≤ v 2 (t, •) L 2 .
One also shows that

Y Y tt ≥ S N -1 + v 2 v tt dσ.
On the other hand, since the second eigenvalue of the Laplace-Beltrami operator -∆ ′ in W 1,2 0 (S N -1

+ ) is 2N , 2N Y 2 ≤ S N -1 + |∇ ′ v 2 | 2 dσ = - S N -1 + v 2 ∆ ′ v 2 dσ = - S N -1 + v 2 ∆ ′ v dσ.
Multiply (9.2) by v 2 and integrate over S N -1

+

. As in the proof of Theorem 7.1, for every ε > 0 there exists t 1 > 0 such that for every t ≥ t 1 ,

Y tt + N Y t -(N + 1 -ε)Y ≥ -C e -t .
Note that for ε > 0 small the linear equation

Z tt + N Z t -(N + 1 -ε)Z = 0
has two linearly independent solutions Z 1,ε and Z 2,ε such that Z 1,ε (t) = e r1,εt and Z 2,ε (t) = e r2,εt with r 1,ε ≤ -1 2 and r 2,ε > 0.

Since Y (t) → 0 as t → +∞, applying the maximum principle one deduces that Y (t) ≤ C(Z 1,ε (t) + e -t ).

In particular,

Y (t) ≤ Ce -t 2 .
This gives the estimate for v 2 .

Proof of Theorem 9.1. By Lemma 9.1 above, we have

v(t, •) L 2 ≤ C t -N -1 2 ∀t > 0.
Inserting this estimate into estimate (6.4) for some p > N 2 the result follows. 
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 91112212 (t, •) L 2 (S N -(t, •) L 2 (S N -> 0.

By Jensen's inequality, y q1 ≤ S N - 1 + v q1 φ 1 1 +S N - 1 +

 1111 dσ.Multiplying (9.2) by φ 1 and integrating over S N -, we gety ′′ + N y ′ + y q1 ≤ Hφ 1 dσ. By Theorem 1.5, v is uniformly bounded in R + × S N -1 +

S N - 1 +

 1 Hφ 1 dσ ≤ C e -t .Thus, y ′′ + N y ′ + y q1 ≤ C e -t . Applying Lemma A.1 we deduce thaty(t) ≤ Ct -N -1 2 ∀t > 0.
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 13111211 By Theorem 9.1, the function w : [0, +∞) → R given byw(t, σ) = t Nv(t, σ)is bounded. By a straightforward computation, w satisfies(9.3) w tt + N -N -where H is given by (7.4). Let φ : S N -R be the function defined by φ(σ) = σN |σ| ; we recall that φ is an eigenfunction of -∆ ′ in W 1,2 0 (S N -) associated to the first eigenvalue N -1. Let z(t) = S N -1 + w(t, σ)φ(σ) dσ ∀t ≥ 0.

The a priori estimate

In this section we establish Theorem 1.5 whose proof is based on the following result.

Proposition 5.1. Assume that 1 < q < q 2 . Let 0 < r < 1 2 diam Ω and ζ ∈ C ∞ (∂Ω) with ζ ≥ 0 on ∂Ω. Then, every solution of (5.1)

where Γ r = Ω ∩ (∂B 2r ∪ ∂B r ) and C > 0 is a constant independent of u.

We denote by B r the ball of radius r centered at 0. The proof of this estimate is based on two results: a Liouville theorem for the equation -∆u = u q in R N or in R N + (see [START_REF] Dancer | Some notes on the method of moving planes[END_REF]) and the Doubling lemma of Poláčik-Quittner-Souplet [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF] which we recall:

Proof of Proposition 5.1. To simplify the notation we may assume that ζ ≡ 0. Assume by contradiction that (5.2) is false. Then, for every integer k ≥ 1 there exist 0 < r k < 1 2 diam Ω, a solution u k of (5.1) with r = r k , and

Applying the previous lemma with

diam Ω, we also deduce from (i) that

and the conclusion will now follow from a bootstrap argument. Note that the linear equation

has two linearly independent solutions:

We can then take ε > 0 small enough so that the linear equation

has two linearly independent solutions:

In particular, Z 2,ε (t) → +∞ as t → +∞. From assumption (7.1), v is bounded. In view of (6.3) and Proposition 6.1 with p = 2, there exists C 1 > 0 such that

Since

X(t) → 0 as t → +∞, from the maximum principle there exists a constant C1 > 0 such that

Since r 1,ε < -2 q-1 , the estimate above implies that u is bounded and thus by standard elliptic estimates u is continuous. Otherwise r 1,ε < -1, in which case,

Thus, by Proposition 7.1 for every T ≥ 2,

In view of (6.3), there exists C 2 > 0 such that

This implies as before that

Multiplying (9.3) by φ and integrating over S N -1 + , we obtain the following equation satisfied by z:

Thus,

By Lemma 9.1, we have

By Proposition 9.1, (6.3) and Proposition 6.1 with p = 2,

By a straightforward modification of the end of the proof of [7, Corollary 4.2], z admits a limit κ ≥ 0 when t → +∞, where κ satisfies

Therefore, either κ = 0 or κ = N (N -1)

By (9.4) we deduce that, as t → +∞,

By Proposition 6.1 with p > N 2 and Morrey's estimates, we conclude that t

Rewriting the convergence in terms of u, we conclude that either (1.5) holds or

If (9.5) holds, then u must be continuous in view of Theorem 7.2.

Appendix A. Some ode lemmas

We gather in this section a couple of ode results which are used in this paper. These results are presumably well-known to specialists: Lemma A.1. Given T > 0, let y ∈ C 2 ([T, +∞)) be a nonnegative function such that y tt + ay t + by q ≤ c e -t in (T, +∞),

where q, a > 1 and b, c > 0. Then, there exists C > 0 such that

Proof. Given A > 0, let

Then, z satisfies

By convexity of the function t ∈ R + → t q , y q ≥ z qqz q-1 Ae -t .

Thus, (A.2)

Since a > 1 and z(t) → 0 as t → ∞, we can choose T 1 > T and A > 0 sufficiently large so that the right-hand side of (A.2) is negative on [T 1 , ∞). Thus,

Let w = z 1-q . By a straightforward computation, we have (A.4) w tt + aw t ≥ -(q -1) z tt + az t z q .

Combining (A.3)-(A.4), we deduce that

The function x = w t satisfies

Thus, taking T 2 > T 1 sufficiently large,

Since w t = x, choosing T 3 > T 2 large enough, we then get

Therefore,

We can now enlarge the constant in the right-hand side so that this estimate holds for every t ≥ T . This immediately implies (A.1).

Lemma A.2. Let a, a 1 , b, b 1 ∈ R with a = 0. Then, the equation y tt + a -a1 t y t +