N
N

N

HAL

open science

ISOLATED BOUNDARY SINGULARITIES OF
SEMILINEAR ELLIPTIC EQUATIONS

Marie-Frangoise Bidaut-Veron, Augusto C. Ponce, Laurent Veron

» To cite this version:

Marie-Francoise Bidaut-Veron, Augusto C. Ponce, Laurent Veron. ISOLATED BOUNDARY SINGU-
LARITIES OF SEMILINEAR ELLIPTIC EQUATIONS. 2009. hal-00358178v2

HAL Id: hal-00358178
https://hal.science/hal-00358178v2
Preprint submitted on 9 Jul 2009 (v2), last revised 14 Jul 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00358178v2
https://hal.archives-ouvertes.fr

ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR
ELLIPTIC EQUATIONS

MARIE-FRANCOISE BIDAUT-VERON, AUGUSTO C. PONCE, AND LAURENT VERON

ABSTRACT. Given a smooth domain @ C RN such that 0 € 9Q and given
a nonnegative smooth function ¢ on 90X, we study the behavior near 0 of
positive solutions of —Au = u? in Q such that v = ¢ on 9Q \ {0}. We prove

__2_
that if N1 < ¢ < N—fg, then u(z) < C|z| ¢=T and we compute the limit of

N-—-1 N
2
|z|2=T u(x) as x — 0. We also investigate the case ¢ = % The proofs rely
on the existence and uniqueness of solutions of related equations on spherical
domains.
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1. INTRODUCTION AND MAIN RESULTS

Let © be a smooth open subset of RV, with N > 2, such that 0 € 9Q. Given
g>1and ¢ € C*°(0Q) with ¢ > 0 on 912, consider the problem
—Au=u? in Q,
(1.1) u>0 in
u=¢ on o\ {0}.
By a solution of ([.1]) we mean a function u € C?(2) N C(Q\ {0}) which satisfies
(D) in the classical sense. A solution may develop an isolated singularity at 0.

Our main goal in this paper is to describe the behavior of u in a neighborhood of
this point.

Date: July 9, 2009.
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In the study of boundary singularities of ([L.1]), one finds three critical exponents;

namely,
_ N+1 _ N+2 _ N+41
91 = §y—1» 492 = N—3 and 93 = N—3-

When 1 < ¢ < ¢y, it is proved by Bidaut-Véron—Vivier [E] that for every solution u
of (1)) there exists a > 0 (depending on u) such that

u(x) = alz| N dist(z, 00) (1+0(1)) asz —0.
In this paper we mainly investigate the case ¢1 < ¢ < gs.
The counterpart of (EI) for an interior singularity,
—Au=u? in Q\ {zo},
where zy € (2, was studied by P.-L. Lions in the subcritical case 1 < g < %,
N N

by Aviles [f] when ¢ = ~— and by Gidas-Spruck [T in the range o < g <
N+2

N5+ We prove some counterparts of the works of Gidas-Spruck and Aviles in the
framework of boundary singularities.
When (|L.1)) is replaced by an equation with an absortion term,

(1.2) —Au+u?=0 inQ,

the problem has been first adressed by Gmira-Véron [[14] (and later to nonsmooth
domains in ) These results are important in the theory of boundary trace of
positive solutions of ([L.9) which was developed by Marcus-Véron [[17,[[d, [[d] using
analytic tools and by Le Gall [IE] and Dynkin-Kuznetsov [E,E] with a probabilistic
approach. We refer the reader to Véron [@] for the case of interior singularities of

(L.

Let us first consider the case where €2 is the upper-half space Rf , and we look
for solutions of ([.1) of the form

u(z) = |x|7ﬁw(|;—|)

By an easy computation, w must satisfy
~Aw=lyw+w! inSY
(1.3) w>0 in SY1,
w=0 on SV,
where A’ denotes the Laplace-Beltrami operator in the unit sphere SV—1,

Ung =220 and SYH=SNTIARY.

Concerning equation (E), we prove
Theorem 1.1.
(1) If 1 < g < qi, then (1.3) admits no positive solution.
)

(i1) If 1 < q < g3, then admits a unique positive solution.
(iii) If ¢ > qs, then (L) admits no positive solution.

In Section Ewe study uniqueness of solutions of (E) with ¢y 4 replaced by any
¢ € R. The proofs are inspired from some interesting ideas taken from Kwong [[L3]
and Kwong-Li [14]. The nonexistence of solutions of ([L.4) when g > ¢3 is based on
a Pohozaev identity for spherical domains; see Theorem P.1| below.
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We now consider the case where Q C RY is a smooth domain such that 0 € 9.
Without loss of generality, we may assume that —ey is the outward unit normal
vector of ) at 0. We prove the following classification of isolated singularities of

solutions of ([L.1)):

Theorem 1.2. Assume that q1 < q < q2. If u satisfies (), then either u can
be continuously extended at O or for every € > 0 there exists § > 0 such that if
zeQ\{0}, & € SY ! and |z < 4,

7 Jaf
2
(1.4) ‘|:E|<r1u(:v) —w(%)‘ <eg,
where w is the unique positive solution of )
When ¢2 < g < g3, we have a similar conclusion provided u satisfies the estimate
u(z) < C|x|7% Vo € €,

for some constant C' > 0; see Proposition @ below. In the critical case ¢ = ¢1
there is a superposition of the linear and nonlinear effects since their characteristic
exponents %1 and N — 1 coincide. The counterpart of Theorem @ in this case is
the following:

Theorem 1.3. Assume that ¢ = q1. If u satisfies (), then either u can be
continuously extended at 0 or for every € > 0 there exists 6 > 0 such that if
xz € Q\ {0} and |z| < 4,

(1.5)

No1
|:C|N_1(logﬁ) *u(r) - K| <,

where Kk is a positive constant depending only on the dimension N.

Our characterization of boundary isolated singularities is complemented by the
existence of singular solutions which has been recently obtained by del Pino-Musso-
Pacard [@] We recall their result:

Theorem 1.4. Assume that Q C RN is a smooth bounded domain. There exists
p > q1 such that for every ¢ < q < p and for every &1,&a, ..., & € O0S), there exists
a solution of (1)) with ( =0 such that

u(z) — 400 as x — §; nontangentially for every i =1,2,... k.

In view of Theorems D and E any such solution must have the singular be-
havior we have obtained therein. In [@n, the authors conjecture that such solutions
exist for every q1 < g < go.

Some of the main ingredients in the proofs of Theorems D and B are Theo-
rem EI above concerning existence and uniqueness of positive solutions of (E), a
removable singularity result (see Theorems @ and @ below) and the following a
priori bound of solutions of ([L.)):

Theorem 1.5. Assume that 1 < q¢ < gq2. Then, every solution of () satisfies
(1.6) u(z) < C’|:1:|_q%1 vz € Q,
for some constant C > 0 independent of the solution.

We establish this estimate using a topological argument, called the Doubling
lemma (see Lemma @ below), introduced by Pol4¢ik-Quittner-Souplet [@]

Theorems D, D and E have been announced in [E}
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2. POHOZAEV IDENTITY IN SPHERICAL DOMAINS
We first prove the following Pohozaev identity in spherical domains.
Theorem 2.1. Let ¢ > 1, £ € R and S be a smooth domain in S’iv*l. If v €
C%(S)N C(S) satisfies
@21) ~ANv="tv+ " v in8,
v=20 on 08,
then

_ _ 2 —1(Lg+N—1 2
(352 = 4) [ IVl oo = 82 (452) [ 2odr =4 [ 19 (V'0u0)

where v is the outward unit normal vector on 8S, V' the tangential gradient to
SN=1 and ¢ is a first eigenfunction of the Laplace-Beltrami operator —A' in
Wwl2(sN-1)

o W+ )

We recall that the first eigenvalue of —A’ in Wol’z(SiV*l) is N — 1 and the
eigenspace associated to this eigenvalue is spanned by the function ¢(x) = %

Proof. Let
P=(V'¢, V)V
By the Divergence theorem,

(2.2) / div Pdo = / (P,v)dr.
S oS
Note that

div P = (V'0, V'¢)A'v + D*v(V'v,V'¢) + D*¢(V'v, V'v).
where D?v is the Hessian operator. Now,

D>u(V'0,V'¢) = (V' [V'0|*, V'6).

N =

Using the classical identity
D*¢+g$=0
where g = (g;,;) is the metric tensor on SNV~ we get

D2¢p(V'v,V'v) = —g(V'v, V'v)¢p = —|V'v|*¢.

We replace these identities in the expression of div P,
div P = —(V'v, V') (fo + [v]*" v) + %<v’ V02, V') — Vol 6.
Integrating over S, we obtain
/Sdidea __ /S<V'v, V'6) (oo " ) da+% /S<v' Vo2, V'e) do—/S V' 6 do.
Note that
/S<v'v, V') (o + o]t v) do = /S <v’(§u2 + Ay ol ) : v’¢> do

_ _[S (5% + e 1ol ) A6 do

= (N — 1)/5 (%112 + o Plian )(bda,
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and
/<v’|v’v|2,v’¢>da:—/ |V’v|2A’¢dJ+/ (V02 (V' ¢, 1) dr
S S 98

= (N—l)/ IV’vl2¢da+/ (V02 (V' ¢, V) dr.
S as
These identities imply
(2.3)
[ divPdr = =050 [ oo — 23 [ o oo+ 252 [Vl gt
S S q S g

+ %/ Vo (V'¢, v) dr.
a8
On the other hand, since v satisfies (P.1),
/(602 + o] ) pdo = —/ (A"v)vo do
5 5
= /(V'U,V’(U¢)) da:/ |V'U|2¢da+/<V'U,V’¢)U do.
5 5 5

Since vV'v = $V'(v?) and A’¢ = —(N — 1),

/S<V/U,V/¢>v do = %/<V’(U2),V/¢)> do = %/Sv%bda.

S
Thus,

/(ev2 + 0| g do = / V'o[* ¢do + %/u%da.
S S S
This implies

/S|v|q+1¢d0=/s|V’v|2¢do+ (52 —E)/v2¢da.

S
Inserting this identity in (2.3), we obtain

(2.4)
/Sdideo - (¥—%)/S V0 ¢ dor— (AN0 4 2o (2 —f))/sv2¢da+

+ %/ V0> (V' ¢, v) dr.
a8

Since v vanishes on 95, V'v = (V'v,v)v and, in particular, |V'v| = [(V'v,v)|.
Thus,

= ! "oW (Vv vy dr = "o )2 (Vb v) dr
AS<P’”>dT‘AS<V¢’V Y (V') d /85(<v )V, v)d
- / V02 (V' 6, v) dr.
oS

Combining (-2), (R-4) and (-§), we get the Pohozaev identity. O

(2.5)

Using the Pohozaev identity on Si_v ~! we can prove that the Dirichlet problem
can only have trivial solutions for suitable values of ¢ and /.
y q
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Corollary 2.1. Let N > 4. If ¢ > g3 and £ < —%, then the function identically
zero is the only solution in C?(SN=1) N C?(SN-1) of the Dirichlet problem
~Av="rto+ " v in SV,
{ v=20 on 0S iv -1
Proof. Let v be a solution of the Dirichlet problem. Applying the Pohozaev identity
with ¢(z) = ””TNI, then the left-hand side of the Pohozaev identity is nonnegative,

while its right-hand side is nonpositive. Thus, both sides are zero. If at least one
of the inequalitites ¢ > g3 or £ < —% is strict, then we immediately deduce that
v=0in S j_v -1

If g=¢g3 and £ = —%, then

/ IV'0|* (V' ¢, v) dr = 0.
syt
Since (V'¢,v) < 0 on 0S} ', we conclude that V'o = 0 on 9SY~'. Define the

function @ : S¥~! — R by

. v(z) ifze sV
(@) = 5
0 otherwise.
Then, v satisfies (in the sense of distributions)
AN =00+ 5|5 in SV
Since ¥ vanishes in an open subset of SV~1, by the unique continuation principle
we have © = 0 in SV~! and the conclusion follows. (|
3. UNIQUENESS OF SOLUTIONS OF A PDE IN S}

In this section we address the question of uniqueness of positive solutions of the
Dirichlet problem

—Av="(lv+0v? inSY
(3.1) v>0 in SY 1,
v=20 on BSiV -
where £ € R. A solution of (B.1]) is understood in the classical sense.
We shall prove the following results:

Theorem 3.1. Assume that N = 2. If ¢ > 1, then for every £ € R the Dirichlet
problem (B.1)) has at most one positive solution.

Theorem 3.2. Assume that N > 4. If 1 < q < g3, then for every £ € R the
Dirichlet problem (@) has at most one positive solution.

Theorem 3.3. Assume that N = 3. Then, the Dirichlet problem (B.1]) has at most
one positive solution under one of the following assumptions:
o for everyl < ¢ <5 and l € R,

o for every g > 5 and £ < %.
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Remark 3.1. In dimension N = 3 we do not know whether the Dirichlet problem
(B-1) has a unique positive solution if ¢ > 5 and £ > %.
We first show that the graphs of two positive solutions of (B.1) must cross.

Lemma 3.1. Assume that v1 and ve are positive solutions of (@) If v1 < wg in
Siv_l, then v1 = vs.

Proof. Multiplying by ve the equation satisfied by v; and integrating by parts, we
get

/ <V’Ul, V’UQ> do = / (61}1 + (’Ul)q)’UQ do.
syt syt
Reversing the roles of v; and vo, we also have
/ <V’02, V’Ul> do = / (61)2 + (’UQ)q)’Ul do.
syt syt
Subtracting these identities, we have
( g—1 _ ,, q—1 _
/ U1 (%) )’1}1’1)2 do = 0.
syt

Since the integrand is nonnegative we must have v19~! — v29~! = 0 and the con-
clusion follows. O

We now establish the uniqueness result in the case N = 2.
Proof of Theorem @ Denoting by
6 = arccos I%I’
then a solution of (B.1)) satisfies
vgg +lv+1v?1=0 1in (O, %),
{09(0) =0, v(3)=0.

Moreover, for every 6 € (0, 5], vg(6) < 0 (this can be established using for example
the moving plane method). Thus, v is decreasing. Let V : [0,v(0)] — R be the
function defined by

(3-2) V(&) = ve(v™'(€)).
Then, V is of class C*! in [0,v(0)). Since for every £ € [0,v(0)),

e 11
OO = ST T Ve

we deduce that
(3.3) (V?)e =2VVe =2V (vgg o v~ ") (v ")e = 2(vap 0 v~ ") = —2(£€ + £9).

Assume by contradiction that (B.1)) has two distinct positive solutions, say v; and
ve. We may assume they are both defined in terms of the variable §. Then, there
exists ¢; € (0, 5) such that vi(c1) = va(c1). Let ¢z € (c1, 5] be the smallest number
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such that vy (ca) = va(ca) (this point co exists since vig(c1) # vag(cr)). Without
loss of generality, we may assume that, for every 8 € (¢, c2),

v1(§) < v2(8).

Let V4 and V4, be the functions given by @) corresponding to v; and vs, respec-
tively. For i € {1,2}, let
a; = v1(e;) = va(e;).
By (B-3), for every € € (as,a1),
(Vi%)e(€) = —2(¢¢ + £7) = (Va?)¢(£).
Hence, the function V12 — V42 is constant. On the other hand, since v; < vo and
v1,v2 are both decreasing, by uniqueness of the Cauchy problem,
vig(c1) <wag(c1) <0 and  wag(ea) < vig(ez) < 0.
Thus,
Vit(a1) = Vo?(a1) >0 and Vi%(az) — Va?(as) < 0.

This is a contradiction. We conclude that problem (@) cannot have more than
one positive solution. O

In order to study (B.I]) in the case of higher dimensions, the first step is to rewrite
the Dirichlet problem in terms of an ODE. By an adaptation of the moving planes
method to S¥~1 (see [R(]), any positive solution v of (B.I]) depends only on the
geodesic distance to the North pole:

6 = arccos %

and v decreasing with respect to 6. Since in this case
1 d
A/ — el ind N-—-2
v (sin@)N—-2 do ((sm ) 1)9) ’
every solution of (B.]) satisfies the following ODE in terms of the variable 6:

{v99+(N—2)cot9v9+€v+v‘1:0 in (07%),

(3:4) ve(0) =0, (%) =0.

The heart of the matter is then to apply some ideas from Kwong ] and Kwong-
Li [@], originally dealing with positive solutions of

1

Urr + (N =2)=up, + u+u?=0 in (0,a),
r

ur(0) =0, wu(a)=0.

(3.5)

By Lemma and the discussion above, the graphs of two positive solutions of
(E) must intersect in (0, 5). Of course, the number of intersection points could be
arbitrarily large (but always finite in view of the uniqueness of the Cauchy problem).
The next lemma allows us to reduce the problem to the case where there could be
only one intersection point. The argument is standard and relies on the shooting
method; we only give a sketch of the proof.

Lemma 3.2. Assume that ( has two distinct positive solutions. Then, there
exist two positive solutions of (B.4) which intersect only once in the interval (0, F).
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Sketch of the proof. Let v; and vy be two distinct solutions of (B.4). We may as-
sume that vy (0) > v2(0). For each o € [0,v2(0)] let v* be the (unique) maximal
positive solution of

vgg + (N —2)cotOvg + v +v?=0 in (0, %),
’U@(O) = 07 U(O) = Q.

Note that v® = vy and v" = 0. As we decrease a from v2(0) to 0,

e the first intersection point o{* between v; and v* cannot tend to 0 since the
derivatives of v* in the interval [0, c¢] are uniformly bounded;

e two consecutive intersection points between v® and v, cannot get arbitrarily
close for otherwise there would exist v € [0,v2(0)] and o € [0, 5] such that
vY (o) = v1(0) and v7g(c) = v14(0), but this is impossible.

Combining these facts, we can make the number of intersection points between vy
and v® decrease one by one, until there is left only one intersection point. For the

first o where this happens, we must have v* (%) = 0. O

The next result is standard but we present a proof for the convenience of the
reader.

Lemma 3.3. Assume that v1 and ve are positive solutions of (@) whose graphs
coincide at a single point of (0,5 ). If v1(0) > v2(0), then the function

Ug(@)

003 =0

2

1S tncreasing.

Proof. Let J : [0,%] — R be the function defined as J = viv2g — vov1g. To prove
the lemma, it suffices to show that J > 0 in (0,%). Using the equations satisfied

by v1 and vo, one finds e
Jo = —(N —2)cot0J + (vf’fl — ’Uqul)’UlUQ.
Thus,
m ((sin H)N_QJ)H = (’Ulq_l — qu_l)vlvg.
Let o € (0, %) be such that v1(0) = v2(0). Since vig(o) # v2g9(0), we have vy > vy
in (0,0) and vy < ws in (o, §), we conclude that the function
0 €[0,Z] — (sin6)N2J(0)
is increasing in (0,0) and decreasing in (o, 3). Since it vanishes at 0 and 7, we
have

(sin@)V~2J >0 in (0,%).

Thus J > 0 in (0, 5) and the conclusion follows. O
The following identity will be needed in the proofs of Theorems @ and @

Lemma 3.4. Let v be a solution of @), =202 g 8= 2N=2a=1) gy

q+3 q+3
(3.6) w(f) = (sin)* v(0)
Then,
wy)? w? ittt w?
(3.7) % <(sm9)ﬁ( o) 4 G(0)= + o 1) = Go(0) 7
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where G : (0, 5) — R is defined by

(3.8) G() = ((a(N —2—a)+0)(sin)? + a(a+ 3 — N)) (sin )52,
Proof. Let w : (0,%) — R be the function defined by (B.6). Then,

2
ala+3—N) w? _o
sind)2 )T (sing)alaD

wee+ (N —2—2a) cot 6 wy+ (a(N —2—a)+0+

Multiplying this identity by (sin6)?, we get
(sin 0)% wge + (N — 2 — 20)(sin 0)7~ cos f wg + G(0) w + (sin §)P =@~V = 0
where G is defined by (B.§). We now observe that a and 3 satisfy
N—2—2o¢:§ and B—a(g—1)=0.
The identity satisfied by w becomes

(sin 0)° weg + g(siDH)B_l cosOwy + G(O) w+ w? = 0.

Since
d 2
— [ (sin@)” (o) = ( (sin 0)° wyy + é(sin )P~ cos O wy | wy
do 2 2
and ) )
d w w
L lao)=) =ae 0)L
% (605 ) = o + Gue)
identity (B.4) follows. 0

The following proof is inspired from Kwong-Li [[[4].

Proof of Theorem [B.4. We use the notation of Lemma B4. Let E : (0, 5) — R be
the function defined as

2 2 a+1
wo)” L (o) 4+ Y

— (sin 08
E() = (sin9)” 5 s T T

Then, by Lemma @,
Eg = G9w2.

We observe that E' can be continuously extended at 0 and . This is clear at 7,

where we take
(wo(3)? _ ((5)?

G ==

To reach the conclusion at 0, it suffices to observe that for every 6 € (0, §),
2

(sin0)° (we(0))? = (sin0)” (a(sin 0)°~! cos 0 v(0) + (sin 0)* vy (9))

2
— (sin g)20+A2 (a cos 0 v(0) + sin9v9(9)) :
Since N > 4,

_ 2(N-3) N-5
20+ —-2= s (q+m)>0,
the right-hand side of the previous expression converges to 0 as § — 0. We can
then define

E(0) = 0.
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Notice that
Go(0) = [(Q(N —2—a)+0)B(sind)’ +ala+3 - N)(B - 2)} (sin 8)°~3 cos 0.
By the choices of o and 3,

—_ p— 2 _
a(a+3— N)(§—2) = W2 (4 N5y (NEL ),

Since N >4and 1 < g < %—fé, this quantity is positive. Hence, there exists ¢ > 0
such that
Go(6) >0 VO € (0,¢).

In view of the expression of Gy, we have the following possibilities: either

(i) Go > 01in (0, %),
or

(ii) there exists ¢ € (0, %) such that Go > 0 in (0,¢) and Gp < 0 in (c, 3).
Assume by contradiction that (B.1) has more than one solution, hence by Lemma .9
problem (E) has two positive solutions v; and vy whose graphs intersect exactly
once in the interval (0, 5). Without loss of generality, we may assume that v; (0) >
v2(0). For ¢ € {1,2}, define w; and E; accordingly.

Assume that G satisfies property (i) above. Let

We have

and, since vz > v1 in a neighborhood of 7,

(B2 —7°E1)(0) = (v20(3))° —2’72(010(%))2

Thus, by the Mean value theorem, there exists o € (0, §) such that
(3.9) (B2 — 7*E1)g(0) > 0.
On the other hand, by Lemma E the function

Ug(@)
U1 (9)

is increasing. In particular, for every 6 € [0, §),
v2(0) lim v2(0) _ 029(? _
vi(0) o—z-v(0)  vig(3

> 0.

6ec(0,%)—

Hence,

(w2)? — 2 (w1)? = (sin 9)20‘((02)2 — 72(1)1)2) <0 in (O, %)

s

Thus, by Lemma B.4 and by assumption (i), we have for every 6 € (0, Z),

2
(B2 = 7*E1)a(0) = Go(0) ((w2)* —v*(w1)?) <0.

This contradicts (B.9). Therefore, problem (B.1]) cannot have two distinct positive
solutions if G satisfies (7).
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We now assume that G satisfies property (i¢) for some point ¢. Let

V2 (C)

1(c)

:)/:

<

As in the previous case,

(B> —%°E1)(0) =0 and (E; —5*E1)(%) > 0.
Thus, by the Mean value theorem, there exists & € (0, g) such that
(3.10) (B2 — 7*E1)g(5) > 0.

By Lemma @7 we have

U2 ~ . U2 ~ s
— < 0, and — > , 3.
o 4 in (0,¢) an o ¥ in (e, %)

Thus, by Lemma B.4 and by assumption (i), we have for every 6 € (0, %),
(B2 —3%E1)o(0) = Go(0) ((w2)* — 7% (w1)?) < 0.

This contradicts (B.10). Therefore, if G satisfies (i7), then problem (B.1]) has a
unique positive solution. The proof of Theorem @ is complete. (I

When N = 2, the proof of uniqueness of positive solutions of () is inspired
from Kwong-Li [[[4] (Case 1 below) and Kwong [[[3] (Case 2 below).

Proof of Theorem IE We split the proof in two cases:

2(3—q)
Case 1. q>1and€§W(q{1)-

Let G : (0,5) — R be the function defined by (B-§). Since N = 3, we have

a= ;—3 and f = 2((1‘1_;31). Thus,

ala+3-N)(B-2) = (5 -2) = — 25 <0.

Moreover, since by assumption ¢ < i 268-9) _ e have

q+3)(¢—1)”

(a(N=2-0a)+0)B+a(a+3—N)(B-2) =2l [(qig;j}l) +¢] <o.

Therefore, G satisfies
(iii) Gg < 01in (0, F).

Let E:(0,5) — R be the function defined as

w2 witl
7+q—|—1'

2
E() = (sin 9)5@ +G(9)
Then, by Lemma @,
Eg = G9w2.
We observe that F' can be continuously extended at 7, so that
(vo (%))
2 )
but not at 0 since E(6) diverges to +oo as § — 0.

E(Z) =

Assume by contradiction that (EI) has more than one solution, hence by Lemma @
problem (@) has two positive solutions v; and vy whose graphs intersect ex-
actly once in the interval (0, 7). Without loss of generality, we may assume that
v1(0) > v2(0). For i € {1,2}, define w; and E; accordingly.
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Let 0)
)
70y

By Lemma @ the function
. v2 (6
6e3)— ngei

is increasing. Thus,

(w2)? =42 (w1)? = (5in 6)** ((v2)* = 4%(v1)?) >0 in (0, F).
By Lemma B.4 and by assumption (iii), we have for every 6 € (0, %)
(3.11) (B2 = 5°E1)e(0) = Go(0) ((w2)? — 3% (w1)?) < 0.
Since va > v1 in a neighborhood of 7,

(B, - By)(3) = (20 ‘;2@19@»2

Although F7 and Es cannot be continuously extended at 0, one checks that
. 22 _
lim (E5(6) — 42 (6)) = 0.

> 0.

Thus, the function E; — 42E; can be continuously extended at 0. By the Mean
value theorem, there exists & € (0, §) such that

(B2 —4°E1)e(6) > 0.
This contradicts (B.11]). Therefore, equation (B.T]) has at most one positive solution

; 2(3—q)
1fq>1and€§m

2(3—q)
Case 2. 1<q§5and€>(qT(qq_l)-

Since 1 < q < 5, we have
2(3—q) 1 (5=9)(9—q)

(g+3)(g—1 — (¢+3)(e-1)
In particular, under the assumptions on g and ¢,
1
> —-.
- 4

(The remaining of the argument only requires 1 < ¢ <5 and ¢ > —%.)
Let z: (0, %) — R be the function defined as

2() = (sin )= v(6).

Then, z satisfies

3.12 PN S PO S
(3.12) Zee-i—( +Z+4(sin9)2>z+(51n9)% =

Assume by contradiction that equation @) has two positive distinct solutions.
Denote by v; and vs two solutions of (@) and define z; and zo accordingly. By
Lemma @7 the graphs of v; and ve intersect in (0, %) Let 01 < 02 be two consec-
utive points where the graphs of z; and zy intersect. Without loss of generality, we
may assume that

21 < z9 in (01,02).
Let
51 221(0'1) 222(0'1) and 52 221(0'2) :ZQ(O'Q).
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We first show that z; and zo cannot be both decreasing in [0, 02]. Assume by
contradiction that z; and zy are decreasing in [o71,02]. In particular, o1 > 0. We
may consider their inverses z;  : [€2,&1] — [01,02]. Fori € {1,2}, let Z; : [£2,&1] —
R be the function given by

Zi(8) = zin(21(9))
(Z; is well-defined since o1 > 0). Since
219(0'1) < 229(01) <0 and 229(0'2) < 219(02) <0,

we have
(Z1(&1))* > (Z2(&1))® and  (Z1(&))? < (Z2(&))*
From the Mean value theorem, there exists n € (£2,&1) such that

(3.13) (Z1%)e(n) > (Z2")¢(n)-
On the other hand, for ¢ € {1,2} and for every £ € (&2,&1),
ZiZie = zigp(2; " =—(£+1+ ! ) - i —
¢ = rmle ) T i @O e

Since z; ' < z; ' in (&2,&1), we deduce that
(Z1%)¢ = 22121 < 2Z2Z2¢ = (Z7)e.
This contradicts ( Therefore, z; and z2 cannot be both decreasing in (o7, 02).

We now show that z; and 22 cannot be both increasing in (o1, 02). Assume by
contradiction that z; and zp are increasing in (01, 02). In particular, oo < 5. We
may consider their inverses z; ' : [€1,&] — [01,00]. Fori € {1,2},let Y; : [£2,&] —
R be the function defined as

Yi(€) = zig(27 1(€)) (sin 71 (€))-
If & = o1 = 0, this formula is meaningless (since z; is not differentiable at 0) but
Y; can be continuously extended to 0 by taking ¥;(0) = 0. Since 21 < 23 in (01, 02),
we have

(3.14) (Y1(61))? < (Ya(&))? and  (Y1(&2))* > (Ya(&2))?
(equality may happen at & if & = 0). On the other hand, for i € {1,2},

Yie = (Ziee(zi_l(g))(smzi_l(f)) + zig(z; 1 (€))(cos Zﬁ(ﬁ)))ﬁ

= (saon(er H(€) sin = ()2 37 + o2 (€).

3

Thus,
5—aq

YiYie = Yicosz1(€) = = ((£+ )(sin 27 (€))2 + )¢ — (sinz1(€)) 7 €.
Since 27 > 25" in (£1,&) and € > — 1,

(€+ 3)(sinzy(§)* > (€+ 7)(sin 2 (€))%,

Since g < 5,

5—q 5—q

(sinz; '(€) 7 > (sinzy '(€)) * .

We deduce that
1Vie -V coszfl(ﬁ) <YoYoe — choszgl(ﬁ).
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Hence,
((Y1)? = (¥2)?), < 2(Yicoszy ' (€) — Yacos 2 ' (€))
< 2cos 2y 1 (€)

< SEE Y - )
coszy
e e (L (O]

Let f: (&1,&) — R be the function defined by

B 2605251(5)
e GRS A,

Using this notation,

(V)% = (Y2)%), < £(&) (1)? = (¥2)?).
Thus, for every € € [¢1, &),
(V1) = (Y2)?)(€) > (11)? - (Ya)?) (&) <" T,
Since, by (),
(Y1)? = (Y2)*)(&1) <0 and ((Y1)® — (Y2)?)(&) >0,

we have reached a contradiction. Therefore, z; and zo cannot be both increasing
in (0’17 0'2).

It follows from equation (B.19) that both z, and zg are concave. By Lemma B.J]
their graphs must intersect in (0, 7). Since z; and 2z cannot be simultaneously
increasing or decreasing between two intersection points, their graphs intersect
exactly once in (0, §). Let o € (0, %) be such that z;(¢c) = 22(c). Without loss of
generality, we may assume that

21>z in (0,0) and 2z <z in (0, %).

In particular,
z19(0) < 22¢(0).

Since z; and z2 cannot be both increasing in (0,0) and both are concave, we

must have z19(0) < 0. A similar argument using the interval (o, 3) implies that

z2g(0) > 0. Therefore, the maximum of z; is achieved in (0, ¢) while the maximum
of zy is achieved in (o, 5).

Denote the maximum of z; by m;. We first show that ms > m;. Indeed, assume
by contradiction that ma < my. Let 62 € (0, §) be such that
z9 (52) = Mma.
Let 61 be the largest number in (0, ) such that
z1 (51) = Mma.
The restrictions z; : (74, 5] — [0, m2] are both decreasing. Let Z; : [0,mz] — R be
the function defined as

Zi(€) = zig(2; 1 (€)).

In the interval [&;, Z] we have z; " < z; ', thus

(Z})e < (Z3)e.
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Since

(Z1(0))* < (Z2(0))* and  (Z1(m2))* > 0 = (Za(m2))?,
we have a contradiction.

We now show that m; > mso. Assume by contradiction that m; < mo. Let
g1 € (0,0) be such that
Z1 (5'1) =mj.
Let G2 be the smallest number in (0, §) such that
z9 (5'1) =mj.
The restrictions z; : [0,6;] — [0, m1] are both increasing. Let Y; : [0,m1] — R be
the function defined as

Yi(6) = zig (2 1 (€))sin z; 1 (€))

if ¢ # 0 and Y;(0) = 0. Then, Y; is continuous. In the interval [0,4;] we have
2t < 2yt thus

2coszfl(§) N2 2
< };,2_"_?1 ((Y2) (Yl) )

As before, this contradicts
((¥2)? = (V1)*)(0) <0 and ((Y2)* = (Y1)?)(ma1) > 0.

Since m; > mo and m; < msy we have reached a contradiction. Therefore,
problem (B.1)) can have at most one positive solution. O

4. PROOF OF THEOREM [L1]

Proof of (i). Assume that 1 < ¢ < ¢1. Let ¢ be a positive eigenfunction of —A’
in W&’Q(Sivfl) associated to the first eigenvalue N — 1, and let w be a solution of
(E) Using ¢ as test function, we get

/ (V'w,V'¢)do = / (Un,qw + w?)o do.
syt syt

On the other hand, since ¢ is an eigenfunction of —A’,

/ (V'w,V'¢)do = (N — 1) / wo do.

syt syt
Thus,
(4.1) (N—1—"4nyq) / wodo = / wi¢do.
syt syt

Since q < q1, we have
N-1)(g+1
N -1 b = S ) <o
Hence, the left-hand side of ([.1]) is nonpositive while the right-hand side is non-

negative. Thus,
/ wipdo =0

N-—-1
Sy
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We conclude that w = 01in S f ~1. Hence, problem (B) has no positive solution. [
Proof of (i1). Since ¢ > ¢,

N—1—ty, =020t (g X >0,

Thus, the functional 7 : Wy*(SY ™) — R defined by

J(w) = / (1w’ — Oy qu?) do
Sf’l

is bounded from below by 0. On the other hand, since ¢ < g3 we can minimize J

over the set
{w e Wy (s¥ 1 ; / (wh) do = 1}.

syt
Let w be a minimizer. Then, w' is also a minimizer, whence w = w™ and this
function satisfies
—A'w—lyqw = w! inSY!
for some A > 0. By standard elliptic regularity theory, w is smooth and vanishes
on 8Siv =1 in the classical sense. The function A\™Tw is therefore a solution of

(L. 0

Proof of (iti). We may assume that N > 4, for otherwise there is nothing to prove.
Note that if ¢ > g3,

Nt = k(g - D) <o,
Applying Corollary @, we deduce that (E) has no positive solution. ([

5. THE A PRIORI ESTIMATE

In this section we establish Theorem E whose proof is based on the following
result.

Proposition 5.1. Assume that 1 < ¢ < qz. Let 0 <7 < 1 diamQ and ¢ € C>(69)
with ¢ > 0 on 0. Then, every solution of

~Au=u? in QN (B \ B,),
(5.1) uw>0 in QN (B \ B,),
w=C  on 090 (B \ By,
satisfies
(5.2) u(z) < C[dist(z,T,)] 77 Va € QN (B \B,),
where T, = QN (0Ba, UOB,) and C > 0 is a constant independent of u.

We denote by B, the ball of radius r centered at 0. The proof of this estimate
is based on two results: a Liouville theorem for the equation —Awu = u9 in RV or
in RY (see [[f}) and the Doubling lemma of Pol4¢ik-Quittner-Souplet [R2] which we
recall:
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Lemma 5.1. Let (X,d) be a complete metric space, I' & X and v : X \T' —
(0, +00). Assume that v is bounded on all compact subsets of X \T'. Given k > 0,
let y € X \T be such that
~(y) dist(y,I') > 2k.
Then, there exists x € X \ T' such that
~(z) dist(z,T') > 2k;

v(z) = v(y);
o 27(35) Y(2), V2 € Bi)y(a) (T)-

Proof of Proposition E To simplify the notation we may assume that ¢ = 0
Assume by contradiction that @) is false. Then, for every integer k > 1 there
exist 0 < r, < 3 diam (2, a solution uj, of (B.1) with r = r¢, and y € QN(Bay, \ By,
such that )

uk(yg) > (2k)% [dist(ye, Ty, )] 7T
Applying the previous lemma with

q—1

X =Qn(Ba, \ Br,) and v=u,? ,
one finds z € X \ I';, such that
(1) ug(zg) > (Qk)% [dist(xk,l"rk)]_"%l;
(64) un(zk) = un(yn); )
(’LZ’L) 2ﬁuk(xk) > uk( ) Vz € BRk (:Ek) NQ, with Ry, = k[uk(xk)]*q%
By (i) we have Ry, < 3 dist(zy,T,) and thus
BRk (Ik) N FTk = 0.
Since dist(zx, [y,,) < 37 < 1 diam Q, we also deduce from (i) that

@) > ()T
R =\ Gam 0 '

ug(zr) — oo as k — +o0.

In particular,

For every k£ > 1, let
—1
te = [ug(zr)] 7,

Dk:{geRN; €| < k and :Ek—i—tk{“eQ}

and

(&) = up (zr + tr€) V& € Dy.

Then, v, satisfies
—Av, =0}, 0<u < 271 and ve(0) = 1.
Passing to a subsequence if necessary, we may assume that either
(A) for every a > 0 there exists ko > 1 such that if & > ko, then By, () N0 =

)

or
(B) there exists ap > 0 such that for every k > 1, By, (1) N OQ # 0.
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Since the sequence (vy) is uniformly bounded, it follows that (Awvy) is also uniformly
bounded. In both cases, by elliptic (interior and boundary) estimates, we have for
every 1 < p < +o00 and every s > 0,

||UkHW2vP(DmBS) < Csp.

If (A) holds, then up to a subsequence (vi) converges locally uniformly in RY to
some smooth function v such that

—Av=1v?, 0<v<2:7 and v(0) = 1.
On the other hand, if (B) holds, then up to a subsequence and a rotation of the
domain there exists some smooth function v defined in RY such that (v;) converges
locally uniformly to v. Since the sequence (vy,) is equicontinuous and for every k > 1,
v(0) = 0, we have v(0) = 1.
In both cases, we deduce that v is a nontrivial bounded solution of

—Av =1

in RY or in RY, which is impossible (see [d)). Therefore, estimate (f.3) must
hold. O

Proof of Theorem [[.4. It suffices to establish ([L.f) if + € Q and |2| < 2 diam Q.
For this purpose, we apply Proposition @ with r = %|:1:| Since dist(x,T,) = %r,
we deduce that

u(r) < C[dist(x,rT)rq% _C (g)*ﬁ _ Gl

This establishes the result. O

6. THE GEOMETRIC AND ANALYTIC FRAMEWORK

We recall some of the preliminaries and the geometric framework in [@] which
will be used in the remaining of the paper.

We denote by (z1,...,zy) the coordinates of z € RY and by B = {eq,...,ex}
the canonical orthonormal basis in RY. Since we are assuming that the outward
unit normal vector is —epn, 9f2 is the graph of a smooth function in a neighborhood
of 0. In other words, there exist a neighborhood G of 0 and a smooth function
¢ : GNTHl — R such that

Gﬂan{(;v',:EN) RN xR ; 2 € GNTHQ and :EN:qS(:E')}.

Furthermore,

$(0) =0 and Ve¢(0)=0.
Setting ®(z) =y, with y; = 2; if i =1,...,N — 1 and yn = zn — ¢(2’), we can
assume that @ is a C* diffeomorphism from G to G = ®(G), and P(QNG) =
GnN Rf . To avoid introducing some additional notation, we will assume that

G = B;.

Given ¢ € C*°(919), let z be the harmonic extension of ¢ in 2. For every solution

u of ([L1)), we denote
u(z) —z(x) = aly), () =Z(y) and ((x) = (),
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for every & = ®~1(y) with y € G N RY. Since u is superharmonic and u = z on
010, we have @ > 0. On the other hand, a straightforward computation yields
Au= A+ |V Uy yn — 2V, Viiyy) — tiyy A
Thus, u satisfies the equation
—Au— |V¢|2 Uyyyn + 2(V¢, Vﬁyw> + ﬁyNA(b = (a+2)%.

Rewriting this equation in terms of spherical coordinates, one obtains

_ 1,0 N—=1+4mn . o
(L4 m) ity + 5 A1+ ———L i+ (i +2)" =
1 B 1 _ 1 )
= ,r,_2<v/u7 %> + ;<V/Ur7 m> + T—2<V/<V/u, eN>a 77—5)>

where

m = —2¢.(n,en) +|Vo|* (n,en)”,

= —r(n,ex)A¢ — 2(V'(n, en), V'9) +7[Vel* (V'(n,ex), en),

7 = — (20, = Vol (n,en) — ) e,

7 =~ (190 (n,en) — 26, ) ex + > (n,ex)V's,

i =—|Vo[ en + %V'qﬁ.
Taking into account the fact that ¢(0) = 0 and V¢(0) =0,

[p(x)] < Cr?,  |Dg(x)] < Cr and |D*¢| < C.
Thus, for every j =1,...,5,
17;(r, L= < Cr ¥r € (0,1).
Lemma 6.1. Let
(6.1) t=logl, w(to)= raT a(r,o) and a(t,o) = raT Z(r, o).
Then, v satisfies
(6.2) (1+e) v +Av— (N - % + 62) v+ (Ungt+e)v+ (v+a) =
= (V'v, &) + (V'ui, &) + (V/(V'v,en), &),

where €; are functions defined in (0, +00) x Siv_l satisfying the estimates
(6.3) lej(t, )L < Ce™" V>0,
for every j=1,...,6.

We refer the reader to [l for the proof of Lemma [.1] and for the explicit
expressions of the functions ¢;.

For every T'> 0 and § > 0, let
Qr = (T,+00) x SY ™' and Qrs = (T —5,T+ ) x SY .

We have the following W ?2P-estimates satisfied by v:
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Proposition 6.1. Let v be defined as in Lemma @ If v is uniformly bounded in
Qo, then for every 1 < p < 400,

_ 2T
(6.4) lelwes@r.y < C(Iolzagra) +e7a7) VT 22,
or some posiiitve constan epenaing on ||V~ ana on p.
f positi tant depending on [v|| d onp

Proof. Since A’ is uniformly elliptic and ® is a diffeomorphism, the operator L
given by

L(’U) = (1 + El)Utt + A/’U - (N - % + 62) U+

- (V/v, 6—4>> - <v/vt7 6—5>> - (V/<V/v, eN>7 6—6>>

is uniformly elliptic. Let § > 0. By the Agmon-Douglis-Nirenberg estimates (see [m])
applied to the restriction of v on the set Q7 1+s,

||v||W2’p(QT,1+5) < C(||U||LT’(QT,1+25) + ||(a + U)q||LT’(QT,1+25)>'

Since « and v are uniformly bounded in Qy, for every s € (1,2) we have
-1

@+ 0)llin@ry < lla+ ol

< C(llallzo(@rn + Il zrer..))

Since Z is uniformly bounded in §2,

a~+v|Lr(Qr.)

_ 2T | _ _ 2T
ol r(@r.) < Ce a1 ||Z||p(q) < Ce™a T,

Thus,

2T
(6.5) ||U||W2”’(QT,1+5) < C(||UHLP(QT,1+25) t+e o )

In particular,

-

_ 2T
||U||W21P(QT,1) < C(H’UHLP(QT’%)) +e q*l),

By a bootstrap argument based on the estimate (6.5) above and the Sobolev imbed-
ding, we also have

_ 2T
Illza@y g < C(I0lz2@ra +777).

Combining these inequalities, the estimate follows. O

7. REMOVABLE SINGULARITIES AT 0

The goal of this section is to show that solutions of ([L.I]) which are not too large
in a neighborhood of 0 must be continuous at 0.

Theorem 7.1. Let q > q; and let u be a solution of ([L.1)). If
(7.1) limO |:E|% u(z) =0,

then u can be continuously extended at 0.
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Proof. Let v be the function given by (B.1]). By assumption (f.1]), we have

(7.2) tiigloo v(t,-) =0 uniformly in SY '
We now rewrite (6.9) under the form
(7.3) Vgt — (N - _2(qu11)) v+ Ingv+Av+ (v+a)?=H,

where H is given by
(7.4) H = —e1vy + eavp — e3v + (V'v, &1) + (V' &5) + (V/(V'v,en), €)-
Thus,

(7.5) /vvttda—(]\]—%) /vvtda—FéN’q / v2do + / vA'vdo+

N-1 N-1 N-1 N-1
s Sy Sy Sy
+ / v(v+a)ldo = / vHdo.
N-—1 N—-1
s s

Let
X(t) = ||’U(t, ')||L2(Sl+\ffl) vt > 0.

Note that for every ¢ > 0,
(7.6) XX, = / vug do.

syt
Using Hélder’s inequality we have

XX0] < ot Ve syoy lort )l s
Thus,
(.7) 150] < fon(t, )l ooy
Computing the derivative with respect to ¢ on both sides of identity ([.6), we get
(Xt)2 + XXtt = / (’Ut)Q do + / VUt do = ||’U15(lf7 .)”12(51\[71) —+ / VUt do.
syt syt : syt

From this identity and estimate (7.7), we deduce that
(78) XXtt Z / VU do.

syt

On the other hand, since the first eigenvalue of the Laplace-Beltrami operator —A’
in Wy?(S¥ 1) is N -1,

(N -1)X%< / |V'v|* do = — / vA'vdo.
syt syt
By Holder’s inequality,
/ vH do < X||H(t, ~)||L2(Si\171).

N-—-1
Sy
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From the elementary inequality
(v 4+ a)? <29(v? + o),
we get
/ v(v+ a)ldo < 27 / (" +vaf) do
syt syt

It follows from Holder’s inequality that

(7.9) / v(v+ a)ldo < 21 (X2||v(t, -)HqL;l(Sf,l) + X|a(t, ')”%2‘1(51\[71))'
syt

We may assume that u is a nontrivial solution of ) By the strong maximum
principle, we have u > 0 in Q, thus X > 0. Combining (F.5), ([7.§) and (F.§)-([.9),
one gets

Xon— (N = 280) X, + (g = N+ 1+ 27o(t, )52 ) X >
> —(IH(t, )2 + 27 et )] F20)
(to simplify the notation we drop the explicit dependence of the set Siv ~1). From

the definition of the function «, there exists C' > 0 such that

2qt

2 a(t, |20 < Cemar.
In view of ([7.9), given € > 0 there exists to > 0 such that
29||u(t,-)[|%" <& on [t,00).
We deduce that for every t > tg we have
Xpp— (N = 22D) X, 4 (g = N+ 1+2) X > —|[H(t, |12 — Ce™ 75,

qg—1

We shall show that
2t
X(t) < Ce a1 ¥Vt >0,

The conclusion will now follow from a bootstrap argument. Note that the linear
equation

Ty — (N— %) Zi+(Ung—N+1)Z=0
has two linearly independent solutions:

Zit) =e i1t and  Zo(t) = eN it

We can then take £ > 0 small enough so that the linear equation

Ztt—(N—%)Zﬁ(mq—]vﬂm)z:o

has two linearly independent solutions:
Zie(t) =e™" and Zp.(t) = e™><"
such that

2
T1,e < — and 7. > 0.

In particular,
Zs(t) — 400 ast — +oc.
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From assumption (f.1)), v is bounded. In view of (6.J) and Proposition [p.1] with
p = 2, there exists C; > 0 such that
|H(t,)||z2 < Cie™" Vvt >0.
Thus,
X — (N = 2ED) X, + (b = N+ 1) X 2 ~Cre ™,

Since
X(t)—0 ast— +oo,

from the maximum principle there exists a constant Cy > 0 such that
X(t) < Ci(Zie(t) +e7h).

If ri . > —1, then
X(t) <2C1 71 (t).

Since 71 < —q_%, the estimate above implies that u is bounded and thus by
standard elliptic estimates u is continuous. Otherwise r; . < —1, in which case,

X(t) < 2Ce7t.
Thus, by Proposition @ for every T > 2,
ollw=2(Qra) < Cre™™.
In view of (B.J), there exists Cy > 0 such that
[H(t,-)||L2 < Cae™? V¥t >0.
Thus,
Xip = (N = ZED) X, o+ (G = N+ 1) X 2 ~Coe ™.
This implies as before that
X(t) < Co(Zrc(t) + 7).
If r1, > —2, then
X(t) <2C2 71 (1)
and u is bounded. Otherwise 1 . < —2, in which case,
X(t) <2Cye 2
We can continue this argument and deduce in finitely many steps that
X(t) < 20121 6(0).
Applying Proposition @ with p > %, we deduce that for every T' > 2,
lelwes@r,y < C(Z1.e(T) +e777) < Co™1,
Thus, by Morrey’s embedding,
]| o (Qr1) < Ce .

This implies that « is bounded and hence continuous in €. O
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The conclusion of Theorem @ is false with the critical exponent ¢ = ¢;. In fact,
combining Theorem and the result of del Pino-Musso-Pacard mentioned in the
Introduction (Theorem BL when ¢ = ¢; there exist solutions of (@) such that

_N-1
u(z) ~ zylz| " (log |916—|) 2
in a neighborhood of 0. These solutions are necessarily discontinuous at 0 but, since

2 _
qlil_N—l,

lin% |x|rzflu(:v) =0.
The right statement in this case is the following:
Theorem 7.2. Let ¢ = q1 and let u be a nonnegative solution of (D) If
N-1
t o (10g ) % ula) =
then u can be continuously extended at 0.

Proof. Let
N-1
W(t) =t2 HU(t7 ')”Lz(si\f*l) Vt 2 O7
where v is the function given by (@) By assumption, W (t) — 0 as t — 400. As

in the proof of Theorem [7.1], for any e > 0 there exists o > 0 such that for every
t> th

1 -
Wi+ (N = X)Wy 4 - (-2 ey MLy >

> T | H(t, )2 — CtT e N
The linear equation
1 _
th+(N—¥)Wt+;(—W+%)W=O

has two linearly independent solutions W7 and W5 such that for ¢ sufficiently large
(see Lemma [A. below)

Wit) =tz e N(1+0(1)) and Wa(t)=t = (1+o(1)).
We can then take € > 0 small enough so that the linear equation
th+(N—¥)Wt+%(W+a+%)Wzo
has two linearly independent solutions W; . and Wy . such that
Wio(t) <Ct'z e (N-L
and
Wae(t) — 400 ast — +oo.
In view of (@) and Proposition @ with p = 2, there exists C1 > 0 such that
|H(t, e < Cit™ 7 et ¥Vt > 0.
Thus,

Wit + (N = 1) W, 4 — (—NU\;’” e+ NZ;l) W >—Ce .

Since
W(t) —0 ast— +oo,
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from the maximum principle there exists a constant C; > 0 such that
W(t) < CL(Wy.(t) +e7?).
Thus,
W(t) < Cret.
Thus, by Proposition @ with p = 2, for every T > 2,
lollwz(ra < Crt— e

In view of (@)7 there exists Cy > 0 such that

IH(t, )2 < Gt~ 7 e vt >0.

We can continue this argument as in the previous theorem and deduce after finitely
many steps that

W(t) < CuWie(t) < Ctor e (N-1E

which implies that u is bounded and hence continuous in €. O

8. PROOF OF THEOREM [L.9

We first establish the following

Proposition 8.1. Let ¢1 < q < g3, with ¢ # q2. If u is a solution of (EI) such
that

|x|% u(x) is bounded in <,
then for every e > 0 there exists § > 0 such that if x € Q\ {0}, ra € SY! and
|z| < 6, then

(8.1) ‘|x|%u(;v)—w(|§—|)’ <e

where w is a solution of (L.3).

Proof. Let v be the function given by (B.1]). We first rewrite equation (.) under
the form

(8.2) v+ N+ Ao+ (v + ) — (N—%) v = H,

where H is given by (.4). Multiplying (8.4) by v; and integrating over S iv ~! yields

/vtvttda—l—éN,q / vvdo + / ve Ao do + / ve(v+ @) do+

N-—-1 N-—1 N-—-1 N-—-1
sy sy sy sy
- (N——2<q‘Z_+11>) / (v)*do = / v H do.
N-—-1 N-—-1
SN SN
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Thus,
(8.3)
d (v1)? Uy qv* |V’v|2 (v + a)rtt 2(q+1) 2,
E/[2 T T Ty T do—(N - q—l)/(vt)da_
SNt syt
= / [th—Fozt(v—l—a)q] do.
syt

From our assumption on u, v is bounded. It follows from (f.4) and the Sobolev
imbedding that v, v; and V'v are uniformly bounded in S iv ~1' X R,. Integrating
(B-3) from 0 to T, for any T > 0, one deduces that

/ (0)? | Ing® V)P (04 @)
2 2 2 q+1
Sf’l

do < C inRy

for some constant C' > 0. On the other hand,

lv,H|do < Ce™".
syt

Moreover, since v is bounded and « satisfies (f.9), we have

/ lo| (v + a)?do < Ce a1,
syt

Thus, integrating (8.9) on (0, +00), we obtain

+oo
‘N—%‘/ / vf do < +00.
0

N—-1
Sy

Since q # g2, N — % # 0. Hence,

—+oo
/ / vt2 do < +o0.
0

SN7 1
+
By (@) and Morrey’s estimates, v; is uniformly continuous on QQy. We deduce that
ve(t,-) — 0 uniformly in SY ! as t — +oo0.
We now prove that
v(t,) — w uniformly in SY * as t — +o0,

where w is a nonnegative solution of (@) For this purpose, we study the limit set
of the trajectories of v, namely the set

I'= Ooy {o(t, )},

where the closure is computed with respect to the usual norm in C°(SY ). Since T'
is the intersection of a decreasing family of closed connected subsets of C°(S iv -,
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T" is closed and connected. In addition, since v is uniformly continuous in @, it
follows from the Arzela-Ascoli theorem that I" is also compact and nonnempty.

We claim that every w € I satisfies problem (E) Indeed, let (1) be a sequence
of nonnegative real numbers such that ¢, — +o0o and

v(t, ) — w uniformly in ST '
Clearly, w is nonnegative and w = 0 on 85’5—1. For each k£ > 1, let
Vit (s,0) € 0,1] x S¥ "t v(ty, + 5,0).

For every ¢ € Cg°(SY ') and for every e € (0,1), from the equation satisfied by v
we have

//[(Vk)ttweN,qVWJrva’@Jr(Vk+a)q¢—(N—%) (Vi)eep| do dt =
0

syt
tp+e
= / / Hydo dt,
tk N—-1
SN=
As k — o0,
tr+e
/ / Hydodt — 0.
tk
syt
Since v; — 0 uniformly as ¢ — +o00, we also have
€
/ / (Vi)tpdodt — 0.
Osi’*l
Note that
€
/ / (Vi) dodr = / [ve(tk +€,0) — ve(tr, o) do — 0.
Osf” sh=t

Since the sequence (V}) is bounded in C!, passing to a subsequence if necessary,
we may assume that for some continuous function W,

Vi, — W uniformly in [0,1] x SY .

We conclude that for every e € (0, 1),

€
/ / [eN,qwcp ~ WA+ quo} do dt = 0.
Osi’*l
Dividing both sides by € and letting ¢ — 0, we get
[ (v 0000 - w0.0)8 0 + (W(0.0)1%6] do = 0.
syt

Since w = W (0, ), we conclude that w satisfies ([L.J). Hence, every element of T'
is a nonnegative solution of ([L.3). Since these solutions form a discrete subset of
CO(SY 1) and I is connected (in our case, the set of nonnegative solutions is {0, w},
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where w is the unique positive solution of (E)), T" contains a single element. In
particular,
v(t,") — w uniformly in Sfrv* as t — +00.

The proposition follows from this convergence. (Il

Proof of Theorem @ Let u be a solution of ) Since ¢ < g2, by Theorem @
there exists C' > 0 such that for every x € €,

0< |;E|% u(z) < C.

Thus, by Proposition B.1, there exists a solution w of ([.9) such that (8.]) holds.
Either w is the unique positive solution of ([.J) (see Theorem [[1)) or w = 0. If
w = 0, then

lim |x|ﬁ u(z) = 0.
x—0
Hence, by Theorem E u can be continuously extended at 0. ([l
9. PROOF OF THEOREM [[.3

We first prove an estimate which improves Theorem when ¢ = ¢, except
that we do not know whether the constant C below can be chosen independently
of the solution.

Theorem 9.1. Assume that ¢ = q1. Then, every solution of (D) satisfies
u(@) < Clal~ ¥ V(log )T Veeq,
for some constant C > 0 possibly depending on the solution.
In the proof of this result we need the following lemma:

Lemma 9.1. Let a = q; and E = ker [A' + (N — 1)I]. Given a solution of ([L.]),
denote by v the function given by (@ If

V=101 + V2

is the decomposition of v as the orthogonal projections in LQ(S_J,_V_l) onto E and
EL, respectively, then

(91) floalt, oy S CEF and sty )|y < Ce™d v >0,

Proof. Denoting by ¢; the first eigenfunction of A" with ||¢1||z: = 1, we have

vi(t,0) = y(t)p1(0) where y(t) = / v(t,o)é1(0)do.
syt
Since ¢ = q1, equation (@) becomes
(9.2) v + Nvg+ (N — Do+ A'v + (v+a)? = H,
with H defined in (F.4). Since o > 0, we have (v + @)% > v9. Thus,
v + Nog + (N — 1)v + A'v + 0 < H.
By Jensen’s inequality,
yit < / v1' ¢y do.

N-—-1
Sy
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Multiplying (p.9) by ¢1 and integrating over Sj_v 1 we get

Y+ Ny +y? < / Ho, do.
syt
By Theorem [L.4, v is uniformly bounded in R4 x .S f ~1. In particular, by (p.3) and
Proposition with p = 2, we have for every ¢t > 0,
/ H¢ido < Ce™ .

syt
Thus,

y”—i—Ny’—i—y“ < Ce_t.
Applying Lemma @ we deduce that

y(t) <Ot~z Wt > 0.
This concludes the proof of the first estimate in (P.1)).

In order to prove the estimate for v, let
Y(t) = loa(t, ) ags—ry V2 0.
Since v(t,0) = y(t)d1(o) + va(t, o), we have
v = ypp1 + (ve)e and vy = Y1 + (v2)u-
Using the orthogonality between ¢, and vo,

YY, = / va (V)¢ do = / Vg [ytgbl + (vg)t} do = / Vo do.
SN71 SN71 SN71
+ + +
From the first equality, we have
Ve < flva(t, )l 2
One also shows that
YY, > / VoV do.
syt
On the other hand, since the second eigenvalue of the Laplace-Beltrami operator
—A in Wy (SY 1) is 2N,
INY? < / |V’v2|2 do = — / vo N vgdo = — / vy A'v do.
SN71 SN71 SN71
+ +

Multiply (P-J) by v2 and integrate over Sj_v ~1. As in the proof of Theorem 1, for
every € > ( there exists t; > 0 such that for every ¢ > t1,

Yiu + NY; = (N+1—-¢)Y > —Ce "
Note that for € > 0 small the linear equation
Ziw+ NZy—(N+1—-2)Z=0
has two linearly independent solutions Z; . and Zs . such that

Zie(t) =e"t and  Zy . (t) = et
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with )
Ti,e < —5 and T2.e > 0.
Since Y (t) — 0 as t — 400, applying the maximum principle one deduces that
Y(t) < O(Z1:(t) +e7").

In particular,
t

Y(t) <Ce 2.
This gives the estimate for vs. O
Proof of Theorem [9.]. By Lemma P.1] above, we have

lo(t, )||pe < Ct~"2 ¥t > 0.
Inserting this estimate into estimate (f.4) for some p > & the result follows. O
Proof of Theorem [.3. By Theorem .1, the function w : [0, +00) — R given by
N—-1
w(t,o) =tz v(t,o)
is bounded. By a straightforward computation, w satisfies
(9.3) wu+ (N = 22 ) wy + (N =14+ Bzl w+ Alwe
+ % (w‘“ - Ww) =t H,

where H is given by ([4). Let ¢ : S¥~' — R be the function defined by ¢(o) = ‘I%VI;

we recall that ¢ is an eigenfunction of —A’ in Wol’z(SiV*l) associated to the first
eigenvalue N — 1. Let

z(t) = / w(t,o)p(o)do ¥t > 0.

N-—1
e

Multiplying @) by ¢ and integrating over .S iv ~1 we obtain the following equation
satisfied by z:

1 N _
ft (N = N20) 7 4 Mozl g o / Wi pdo — NN 25 / Hodo.
syt syt
Thus,
1
2+ (N — Tl) zt + n (92"“ N(N-1) ) =,
where
0 = ¢¢I1+1 do
syt
and )
U=tz / Hodo — Mtz + - / [(20)" — w]¢ do.
R st

By Lemma @, we have
(9.4) 12006 — w(t, )2 < Ot e,
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Since
[(20)" — w?| < qi|2¢ — w|[(2¢)" 7 +w "],
z is bounded in Ry and w is bounded in R} X S’iv_l,
(0" —w[odo < flz0 = wll s [=n 19" 1+ 2]
syt
N—-1 t
<Ct 7 e 2.
By Proposition @, (@) and Proposition @ with p = 2,
N1y
[H(t, ) < Ct™ 2 e

Thus,
10, ) < o(e*t 2 +t¥e*%) <t
By a straightforward modification of the end of the proof of [E, Corollary 4.2], z
admits a limit k > 0 when t — 400, where x satisfies
O — w,’q =0.

N-1

Therefore, either x = 0 or kK = (W) 7

By (@) we deduce that, as t — +o00,

N—-1

t 2 o(t,) — ke in LA(SY ).

By Proposition @ with p > % and Morrey’s estimates, we conclude that

tN’;lv(t, ) — k¢ uniformly in SY 1.

Rewriting the convergence in terms of u, we conclude that either ([L.5) holds or
N-1

(9.5) lz|¥ " (log ﬁ) > u(x) — Oas ¢ — 0.

If (0.9) holds, then u must be continuous in view of Theorem .3 O

APPENDIX A. SOME ODE LEMMAS

We gather in this section a couple of ODE results which are used in this paper.
These results are presumably well-known to specialists:

Lemma A.1. Given T > 0, let y € C*([T,+0)) be a nonnegative function such
that
{ Yt + ayt + byq S Ceit m (TJ +OO)7

i y(t) =0,
where q,a > 1 and b,c > 0. Then, there exists C' > 0 such that
(A.1) 0<ylt)<Ct o1 Vt>T.
Proof. Given A > 0, let
2(t) = y(t) + Ae™t Wt >T.
Then, z satisfies

zy +az + 627 < [c— (a— 1) A]e™" + (27 — y9).
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By convexity of the function ¢ € Ry — ¢4,
y? > 29 — gzt Ae ™,
Thus,
(A.2) zu +az +b27 < [c— (a— 1+ bgz? 1) Ale ™.

Since a > 1 and z(t) — 0 as t — oo, we can choose 71 > T and A > 0 sufficiently
large so that the right-hand side of ([A.d) is negative on [T}, ). Thus,

(A.3) zer +aze + 029 <0 in [Th,00).

Let w = 2179, By a straightforward computation, we have
Zit + az

(A.4) wy + awy > —(q — 1)%.

Combining (A-3)-(A-4), we deduce that
wy + awy > b(g—1) in [T1, 00).
The function x = w; satisfies
zy +ax >blg—1) in [T1,00).
Thus, taking To > T} sufficiently large,
w(t) > Mzl | pemat > ML)y >,
Since w; = x, choosing T3 > T5 large enough, we then get

w(t) >0y v > Ty

4a
Therefore,
1
2(t) < (%t—l)"’l Vvt > Ts.
We can now enlarge the constant in the right-hand side so that this estimate holds
for every ¢ > T. This immediately implies ([A.1]). O

Lemma A.2. Let a,a1,b,b1 € R with a # 0. Then, the equation
i+ (a— %)y +1(0—%)y=0 in (0,+00),
has two linearly independent solutions y1 and ys such that
yi(t) =t ae (14 0(1)) and ya(t) =t < (14 o0(1))
for t sufficiently large.
Proof. Let

at

2(t) = et T y(t).

Then, z satisfies the equation
2
e (5 - 4+ 48)2 =0,

2
where A; = b+ 23 and Ay = by + % + % By [B, pp. 126-127], the equation
satisfied by z has two linearly independent solutions with the following asymptotic

behaviors as t — +o0:
Al

At) = e Ft T (1+0(1) and z(t) =¥t~ (1+o(1)).

Rewriting these formulas in terms of the function y, the result follows. O
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