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Intégrales stochastiques pour les processus de
type Volterra

L.. Decreusefond

E.N.S.T., 46, rue Barrault, 75634 Paris cedex 13, FRANCE

Abstract

Nous jetons les bases d'un calcul stochastique pour les processus de type Volterra,
c’est-a-dire définis comme l'intégrale stochastique d’un noyau déterministe dépen-
dant du temps par rapport & un mouvement brownien ordinaire. L’hypothése de base
sur le noyau porte sur la régularité de 'opérateur intégral associé, que l'on suppose
continu de l'espace des fonctions de carré intégrable dans un espace de fonctions
hoéldériennes.

L’intégrale stochastique est définie comme limite de sommes discrétes, de type
Stratonovitch. On montre ensuite que la limite s’exprime au moyen du gradient et
de la divergence au sens du calcul de Malliavin. La régularité trajectorielle du pro-
cessus obtenu dépend étroitement de la régularité du noyau initial. On s’intéresse
ensuite & une formule d’Itd6 pour les processus ainsi construits. Cette formula est
établie pour des processus “simples” définis comme intégrale stochastique de pro-
cessus cylindriques. Le papier se termine en donnant la régle de transformation des
intégrales stochastiques lors d’'un changement absolument continu de probabilité.

Key words: Calcul de Malliavin, intégrale stochastique, mouvement brownien
fractionnaire.
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Stochastic Integration with respect to Volterra
processes

L. Decreusefond

E.N.S.T., 46, rue Barrault, 75634 Paris cedex 13, FRANCE

Abstract

We construct the basis of a stochastic calculus for so-called Volterra processes, i.e.,
processes which are defined as the stochastic integral of a time-dependent kernel with
respect to a standard Brownian motion. For these processes which are natural gener-
alization of fractional Brownian motion, we construct a stochastic integral and show
some of its main properties: regularity with respect to time and kernel, transforma-
tion under an absolutely continuous change of probability, possible approximation
schemes and It6 formula.

Key words: Fractional Brownian motion, Malliavin calculus, stochastic integral.
1991 MSC: 60H05, 60H07, 60G15

, Laurent .Decreusefond@enst.fr (L. Decreusefond).

1 Introduction

In the past few years, more than twenty papers have been devoted to the
definition of a stochastic integral with respect to fractional Brownian motion
or other “related” processes, see for instance [1] and references therein. Remind
that fractional Brownian process of Hurst index H € (0,1), denoted by B,
is the unique centered Gaussian process whose covariance kernel is given by

ef Vi
Ry(s,t) =E[BYBl| & TH(SZH + 27— |t - s|2H>

where
def T'(2—2H)cos(mH)

Vi = TH(1—2H)
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Among other properties, this process has 1/H-finite variation and a finite
generalized covariation of order 4 for H > 1/4, (see [2,3] for the definition), has
Holder continuous trajectories of any order less than H and has the following
representation property:

BY(1) = /O "Kult,s) dB, (1)

where B is a one dimensional standard Brownian motion and K is determinis-
tic kernel with an intricate expression (see [4]). Therefore, a “related” process
means altogether a process with finite p-variation, called a process with rough
paths in [5,6], or a process with Holder continuous sample-paths as in [7,§]
and also a process of the form (1) with a general kernel as in [9-12].

This is the last track that we will follow here. Our present work, which is the
expanded version of [11], differs from the other two papers [9,10] in two ways.
First, the method to define the stochastic integral is different. In these two
papers, the kernel is regularized, if needed, to obtain a semi-martingale. The
second step is then to use the classical theory of stochastic integration and
then pass to the limit after a stochastic integration by parts in the sense of the
Malliavin Calculus. We here use an approach based on convergence of discrete
sums. It should be already noted that for smooth integrands, their notion of
integral and ours coincide. The other difference is to be found in the kind
of hypothesis put on K. In [9,10], hypothesis are made on the regularity of
the function K(t, s) itself. We here work with assumptions on the linear map
f = [ K(t,s)f(s) ds. Properties of K(t,s) and K f are, of course, intimately
related but we think that working with the latter gives more insight on the
underlying problems.

In Section 2, we recall basic definitions and properties of deterministic frac-
tional calculus. In Section 3, we introduce the class of processes, named Volterra
processes, that we will study. We then give a few properties of their sample-
paths. In Section 4, we deal with a Stratonovitch-like definition of the stochas-
tic integral with respect to Volterra processes. Section 5 is devoted to the time
regularity of the previously constructed integral and in Section 6, we establish
an It6 formula. In the last section, we show how the Stratonovitch integral
is related to a Skorohod-like integral and how a Ité-like process constructed
from such an integral is modified through an absolutely continuous change of
probability.

2 Preliminaries

This section is only devoted to the presentation of the tools of deterministic
fractional calculus we shall use in the sequel. For f € £1([0,1]; dt), (denoted



by L' for short) the left and right fractional integrals of f are defined by :

v def 1 ‘ -1

P Y 5 [ SO =, 20
¥ def 1 ! -1

(- f)(z) = W/w fOt—=)7dt, v <1,

where v > 0 and [§, = IY. =1Id. For any v > 0, p,¢ > 1, any f € £? and
g € L% where p~! + ¢7! < v, we have :

1 1
| 16 @hg)(s) ds = [ (1L F)(s)g(s) ds. @
The Besov-Liouville space I, (£?) := Z, is usually equipped with the norm :
g« flizz, = Il fllze. (3)

Analogously, the Besov-Liouville space I] (LP) := 7., is usually equipped
with the norm :

17 Iz, = I F1lev-

We then have the following continuity results (see [7,13]) :

Proposition 1 i If0<y<1,1<p<1/y,then Ij; is a bounded operator
from LP into LT with ¢ = p(1 — vp) L.

1. For any 0 < v < 1 and any p > 1, I;L,p 15 continuously embedded in
Hol(y—1/p) provided that v—1/p > 0. Hol(v) denotes the space of Holder-
continuous functions, null at time 0, equipped with the usual norm.

iii. For any 0 <~y < < 1, Hol(B) is compactly embedded in T, .

w. By I, respectively 1,”', we mean the inverse map of I}y, respectively
I . The relation Ig+lé3+f = Igfﬂf holds whenever B >0, v+ > 0 and
ferLt

v. For vp > 1, the spaces I;L,p and L, are canonically isomorphic. We will
thus use the notation Z,, , to denote any of this spaces. This property isn’t
any more true for yp > 1, see Lemma 2.3 and text below Definition 13.

We now define the Besov-Liouville spaces of negative order and show that they
are in duality with Besov-Liouville of positive order (it is likely that this exists
elsewhere in the literature but we have not found any reference so far). Denote
by D, the space of C* functions defined on [0, 1] and such that ¢*)(0) = 0.
Analogously, set D_ the space of C* functions defined on [0, 1] and such that
#*)(1) = 0. They are both equipped with the projective topology induced
by the semi-norms py(¢) = ngk||¢(j)||oo- Let D', resp. D, be their strong
topological dual. It is straightforward that D, is stable by I, and D_ is stable
I, for any v € R. Hence, guided by (2), we can define the fractional integral



of any distribution (i.e., an element of D’ or D', ):

For T € DL, Ig+T 0D < T, Ii[(b >p! D,
ForTeD; I'.'T: ¢ € Dy =< T, I]:¢ >p! D, -

We introduce now our Besov spaces of negative order by

Definition 2 For v > 0 and r > 1, T* _ (resp. I~ ) is the space of distri-
butions such that I),T (resp. I'_T ) belongs to L". The norm of an element
T in this space is the norm of I).T in L™ (resp. of I.T).

Theorem 3 For v > 0 and v > 1, the dual space of I, (resp. I ,) is
canonically isometrically isomorphic to I, (L") (resp. I,7/(L""),) where r* =
r(r—1)7%

PROOF. Let T be in D! , we have:
sup | <T,¢>|= sup |<T, I}i¢>]
¢1||¢||I;r,r =1 Vil er=1

= sup |<I| T, ¢>|
¥:|9]| gr =1

hence by the Hahn-Banach theorem,

Te(T]) < sup |<T, ¢>|<oco<=I_TeL,
&gl + =1
y,T

and ”T”(I;Cr)’ = ||T||11‘j(m*)- The same reasoning also holds for (Z,)".

Theorem 4 For 3 > v > 0 and r > 1, If_ 1S continuous from I:% nto

Iﬂif’yﬂl :

s

PROOF. Since T belongs to 2~ . = (Z,,+)', we have:
(<IPT,6>|=|<T, o> | < cllIfdla,,. = e "¢l

Thus, I f_T is a continuous linear form on Z-" 4. and thus belongs to the dual
of this space which, according to the previous theorem, is exactly Z;_ . .

For n > 0 and p € [1,400), the Slobodetzki space S, is the closure of C*
functions with respect to the semi-norm:

_ |f(z) = f(y)]P
115, = //[0,1}2 de dy,



For n = 0, we simply have Sy, = LP([0,1]). We then have the following

continuity results (see [7,8]) :

Proposition 5 & For any 0 <~y <1 and any p > 1, S, 18 continuously
embedded in Hol(y — 1/p) provided that v — 1/p > 0. Hol(v) denotes the
space of Hélder-continuous functions, null at time 0, equipped with the
usual norm.

For0 <y <1/p, S, is compactly embedded in LP*=?)7"([0,1]). More-
over, if p = 2, the embedding of S, into L*([0,1]) is Hilbert-Schmidt.
ii. It 1s proved in [7] that for 1 > a > b > ¢ > 0 that we the following
embeddings are continuous (even compact)

Sap C T, C Sep (4)

iii. For any 0 <y < B < 1, Hol(B) is compactly embedded in S, .
iv. Let a > 0,1 <p<gq<oo. Supposeb=a—1/p+1/q> 0. Then S, is
continuously embedded in Sp 4, see [14].

One of the key property we shall use, is this result due to Tambaca [15].

Lemma 2.1 Let r,s € [0,1/2) and lett = r+s—1/2 > 0. For f € Ss2,
g € 8,2, the product fg belongs to S and we have:

1£9lls.. < cllflls, - llglls. .-

From this Lemma and the embeddings of Eqn. (4), we have:

Corollary 6 Let r,s € [—00,1/2) and let t < r+ s —1/2. For f € TI,,,
g € I, 9, the product fg belongs to Z; 2 and we have:

1fgllz., < cllfllz..llgllz, .

We will need a similar result in the simpler situation where r is greater than
1/2.

Lemma 2.2 Let r > 1/2, for f and g in I, 5, we have

179lls,» < cllflls.»llglls, .- (5)



PROOF. Since r > 1/2, f and g are continuous and || f|| < ¢||f]|s,,- The
same holds for g. Thus,

_ 2
7l < [ (1 |I_rv>|1+2;a<y>> L la)
< C(Hf ol + ol 1),

((fl2) = f®)
|z =yl ) e dy

and the result follows.

One could probably work with only one family of spaces (i.e., either Z,, or
Sa,p) but depending on the properties, some are easier to verify in the setting
of Riemann-Liouville spaces and some in the setting of Slobodetzki spaces, see
for instance the property below.

Lemma 2.3 Let v > 7 > 1/2 and f € S, then (f — f(t))1j0y belongs to
S5.2.

PROOF. First note that f is (7 —1/2)-Holder continuous thus that f — f(t)
is well defined. Moreover,

[ )= SO o = () = SO0l

oy

,1]2
_//ot |f|ﬂL“— \1” e dy +2//0t x[0,1] |x— |1£21‘2d dy

|~T_t|27 ' 2
<IBaCw2 ff e dedn) < B

3 Volterra processes

Consider that we are given a deterministic Hilbert-Schmidt linear map, K,
satisfying:

Hypothesis I There exists a > 0 such that K is continuous, one-to-one,
from £2([0,1]) into Zo11/95. Moreover, K is triangular, i.e., for any X € [0,1],
the set Ny = {f: f(t) =0 fort < A} is invariant by K.

Remark 7 Since K is Hilbert-Schmidt from £2([0,1]) into itself, there exists
a measurable kernel K(.,.) such that

Kf(t) = /01 K(t,$)f(s) ds.



The triangularity of K is equivalent to K(t,s) =0 for s > t, i.e.,

Kf()= | " Kt $)f(s) ds.

Consider now the kernel R(t, s) defined by
tAs
R(t,s) := / K(t,r)K(s,r) dr.
0

The map associated to R, i.e., Rf(t) = [, R(t,s)f(s) ds, is equal to K K* and
for any fy,..., 05, any ti,...,t,, we have

S B R(t ) = [ KM (3 Bie,)(s)° ds > 0,
]

so that R(t,s) is a positive kernel and we can speak of the centered Gaussian
process of covariance kernel R. Let X be this process and be the subject of
our study.

Lemma 3.1 The process X has a modification with a.s. continuous sample-
paths.

PROOF. We have

E[(Xt—XS)2] / dr—i—/ (s,7) dr—Z/ K(s,r)dr
—K(K( )= K(s,))(t) = K(K(t,.) = K(Sa-))(S)

<t - s|°‘</01(K(t,r) — K(s,m)? dr)w.

Expanding the square in the last integral, we get the right hand side of the
first equation, thus
1/2
B[ - %7 < et - sl
Kolmogorov Lemma entails that X has a modification with Hélder continuous
sample paths of any order less than «.

We thus now work on the Wiener space 2 = Cy([0, 1]; R), the Cameron-Martin
space is H = K(L£%([0,1])) and P, the probability on € under which the
canonical process, denoted by X, is a centered Gaussian process of covariance
kernel R. The norm of h = K(g) in H is the norm of g in £2([0, 1]).

A mapping ¢ from €2 into some separable Hilbert space X is called cylindrical
if it is of the form ¢(w) = %, fi((vi1,w), -+, (Vi n, w))x; Where for each i,
fi € CC(R™,R) and (v;;, j =1...n) is a sequence of Q* such that (7, j =



1...n) (where ¥;; is the image of v; ; under the injection Q* < £2([0,1]) ) is
an orthonormal system of £2([0,1]). For such a function we define V¢ as

Vo(w) = Z 0; fil{vig, w), -+, (Vip, W))V;; @ ;.

i.j=1

From the quasi-invariance of the Wiener measure [16], it follows that V is a
closable operator on LP(€2; X), p > 1, and we will denote its closure with the
same notation. The powers of V are defined by iterating this procedure. For
p > 1, k € N, we denote by D, ;(X) the completion of X-valued cylindrical
functions under the following norm

k
181156 = > IV Sllr@ixecaoper -
i=0
Remark 8 Note that the Sobolev spaces S, enjoy the useful property of p-
admissibility (after [17]) and thus for any 0 < v < 1 and any p > 1, the spaces
D,k (Sap) and Sap(Dy k) are isomorphic.

The divergence, denoted 0 is the adjoint of V: v belongs to Dom, 6 whenever
for any cylindrical ¢,

B[ w90 ds) | < cloll

and for such a process v,

E [/Olusvs¢ ds] — E[¢6u].

It is easy to show (see [4]) that {B; := d(1jo4), t > 0} is a standard Brownian
motion such that du = [us; dB; for any square integrable adapted processes
u and which satisfies

t
Xt:/ K(t,s) dB..
0

Moreover, B and X have the same filtration. In view of the last identity
and because K is lower triangular, we decided to name such a process, a
Gaussian Volterra process. The analysis of processes of the same kind where
B is replaced by a jump processes is the subject of our current investigations
with N. Savy.

Example 1 The first ezample is the so-called Lévy fractional Brownian mo-
tion of Hurst index H, defined as

1

i b "

This amounts to say that K = Igfflﬂ, thus that hypothesis I and II are imme-

diately satisfied, with oo = H, in view of the semi-group properties of fractional



integration.

Example 2 The other classical example is the fractional Brownian motion
with stationary increments of Hurst index H, for which

t—r)f-3 1 1

t
~ ) F(=—-HH->-H+
I'(H+3) (

K(t,r) = Ku(t,r) = 1= )1 (r)- (6)

1
2 2’ 2’
The Gauss hyper-geometric function F(a,f3,v,2) (see [18]) is the analytic
continuation on C x C x C\{-1,-2,...} x {z € C,Arg|l — z| < 7} of the
power series

(v)kk! 7

1 and (a déf F(a+k)
(a)o =1 d ( )k F(a)

We know from [13] that Ky is an isomorphism from L%([0,1]) onto IIJ;+1/2,2
and

kzj:: (O‘)k(ﬁ)kzk

and
=ala+1)...(a+k—1).

Kyf= Igfxlﬂ_HIéf_HxH_l/Qf for H<1/2,
Kyf= I(}JF:UH*I/QI(ﬁ*l/Q:vl/%Hf for H>1/2.

It follows easily that Hypothesis I and Il are satisfied with o = H.

Example 3 Beyond these two well known cases, we can investigate the case
of K(t,s) = Kpuw(t,s) for a deterministic function H. This is the process
studied in [19]. It seems interesting to analyze since statistical investigations
via wavelets have shown that the local Holder exponent of some real signals (in
telecommunications) is varying with time and this situation can’t be reflected
with a model based on fBm since its Hélder reqularity is everywhere equal and
strictly infertor to its Hurst index.

Lemma 8.2 For f € L2, for Hi > Hy >~ > 0, we have

(K f(s) = K, f(8)] < clt = s["[|fl 2, (7)
| Kn, f(s) = Kn, [(s)| < ¢[Hy — Hall| fl| 2, (8)

where ¢ is a constant independent of Hy, Hy and f.

PROOF. Since H, is greater than vy, Ky, f belongs to L1122, and (7) follows
directly from the embedding of I.1/22 into Hol(7y).

Another expression of the hyper-geometric function is given by:

F(a,b,c,z) = % /01 111 — 1)V — 2t) O dt.

10



Classical and tedious computations show that for H € [hy + €, hy — €,

d
—Kg(t,s)| <c. su Ky(t, s)|,
aglatbellse s Kl s)]

where c. = sup,¢(o 1) [t°Int|. It thus entails that

|Kp,(t,s) — Ky, (t,s)| <c. sup |Kg(t,s)||Hy— Hyl|.
He(Hy,Ha)

Cauchy-Schwarz inequality yields to (8).
Theorem 9 Let H belong to Syja1a,2 and be such that infy H(t) > 1/2, then
K(t,s5) = Knw)(t, s) satisfies I for any o < inf, H(t) — 1/2.

PROOF. Let f belong to L?, set v = inf, H(t) and let « < v—1/2. According
to the previous lemma, we have

K K,
K510 = [, 0O ST 4 g

[t — s>+
<2, el gt O
+2//01 Knw! ‘t_s‘i’jyﬂ I s
< c|lf|2 //01 Sﬂ;a dt ds + || f]|2 // |2+§‘Z)‘2 dt ds.

The right-hand-side is finite by hypothesis and thus K is continuous from L?
nto Sl/2+a,2-

4 Stratonovitch integral

Starting from scratch and trying to define a stochastic integral with respect to
X by a limit of a sequence of finite sums, we have two main choices: Either we
discretize X (or more probably dX) or we discretize B (likely dB) and then
derive a discretization of d.X. The first approach yields two possibilities: for a
partition m whose points are denoted by 0 =ty < t; < ... < t, =T, we can
consider

RS (u) = tz u(t;)AX; or (9)
SSx(u) = tZ %(/thlu(s) ds) AX;, (10)

11



where §; = t;11 —t; and AX; = X (t;31) — X (¢;). They are both reminiscences
of respectively Riemann and Skorohod-Stratonovitch sums as defined in [20].

In the other approach, we first linearize B and then look at the approximation
of X it yields to. Let

1
BT(@) = B(tz) + —ABZ(t — tz) fort € [ti, tz’_|_1),

0;
and
/ K(t,s)ds AB;
t €7T ti
= Z tz tH—l (t)ABZ'
tze’ﬂ'

It follows that it is reasonable to consider

B = 3 5 { [ w0 K@ aif a8,

t,em 1
under the additional hypothesis that for any b > 0, the function K(1joy) is

differentiable with a square integrable derivative. For u sufficiently smooth in
the sense of the calculus of variations, we have

Riw =6(Z 5 v GF et dﬂ[tm)
titr1
+ Z /f, / 1[ti,ti+1])(t) d¢ dr.

t€7r

Using K., the formal adjoint of K := I, o K on £*([0,T7]), we have

R (u —5(2 / Kiu dt)+2 //}C*Vu dt dr. (11)

tiem ti t; Gﬂ' tv, tisa]?

We now recognize the Skorohod-Stratonovitch sum associated to the standard
Brownian motion B and to the integrand /Chu. For the sequel to be meaningful,
we need to assume that the map K exists. This is guaranteed for o > 1/2, since
I;LH /2.2 is embedded in the set of absolutely continuous functions with square
integrable derivative, but for @ < 1/2, we need to introduce an additional

hypothesis.

Hypothesis II We assume that for any T € [0,1], the map K = I,;}' o K
is a densely defined, closable operator from L%([0,T]) into itself and that its
domain contains a dense subset, D, stable by the maps pr, for any T € [0,1],
where prf = flyr). We denote by K% its adjoint in L£*([0,T]). We assume
furthermore that K is continuous from Z{,,_, , into L*([0,T]), for any p > 2.

12



Remark 10 In the preceding examples, D may be taken to T1/2—a)+ 2-

Remark 11 For the sake of simplicity, we will speak of the domains of K and
IC. independently of the position of o with respect to 1/2. It must be plain that
for a > 1/2, Dom K = £2([0,1]) and Dom K% = £2([0,T]).

Remark 12 Since I{_(g;) = 1y, we have
K*(104) = K*(e¢) = K(2,.).
This means that I} is identical to the operator denoted by K i [10].

Notation 1 For any p > 1, we denote by p* the conjugate of p. For any
linear map A, we denote by A%, its adjoint in L*([0,T]). We denote by c any
wrrelevant constant appearing in the computations, ¢ may vary from one line
to another.

Definition 13 Assume that Hypothesis I holds for a > 1/2. We say that u is
Stratonovitch integrable on [0, T] whenever the family Rj(u), defined in (11),

converges in probability as || goes to 0. In this case the limit will be denoted
by fOT us o dXs.

This definition could be theoretically extended to o < 1/2 but would be prac-
tically unusable. Indeed, as we shall see below, when o < 1/2, the convergence
of the second sum of Rf.(u) requires that u belongs to Zy4, 42 for some n > 0
and K% to be continuous from this space to a space of Holder functions. Since
1+n—a—1/2> 0, the two spaces I,;"*(£2([0,T])) and I77*(£2([0,T7))
are not canonically isomorphic (if u belongs to the first one then u(0) = 0
whereas when u belongs to the latter, u(7) = 0). We thus have to specify to
which one u belongs exactly. In view of the example of the Lévy fractional
Brownian where K% = I77"/2 it is more convenient to assume that u belongs

T ’ g
to I,7""(£2([0,T])) and thus that u(T) is equal to 0. That raises a prob-
lem because the restriction of an element of I, " (£2([0,T])) to a shorter
interval, say [0, S], does not belong 757" (£2([0,S])) so that, we can’t see
J§u(r)o dX, as fj u(r)1lps(r)o dX,.

On the other hand, since (u—u(S5))1 s belongs to 151 (£2(]0, S)) as soon
as u belongs to I (£2([0,T])), it is reasonable to consider Rf(u — u(T)).
For the limit to stay the same, we have to add the term u(7)X (7). Indeed,
the well known relationship (see [20,16])

1
8(a€) = ad€ — [ V,a¢(r) dr. (12)
for a € Dy and € € L3(Q x [0,1]), entails that

Ry (u) = Ry (u — u(T)) + u(T)X™(T). (13)

13



As a conclusion, for o < 1/2, the definitive definition is

Definition 14 (Definition for a < 1/2) Assume that Hypothesis I and II
hold for o < 1/2. We say that u is Stratonovitch integrable on [0, T], whenever
the family R.(u—u(T)) converges in probability as |w| goes to 0. In this case,
we set -
/ uso dX, = lim R (u = u(T)) +u(T)X(D). (14)
0 | —>

In view of the preceding discussion, the following lemma will play a key role
in the sequel.

Lemma 4.1 For T € (0,1], let prf denote the restriction of f to [0,T). For
any f € Dom K3, f belongs to Dom K%, prf belongs to Dom K} and we have

prKi(prf) = K5(f). (15)

PROOF. Since K is triangular, for ¢ € D, prg belongs to Dom I and
prKg = prK(prg) = Kprg. By derivation, it follows that prKg = prKprg =
Kprg, so that, for f € Dom K7,

[ $)Kals) dsl = | [ (orf)(s)Kg(s) ds
|/ pT/Cg )d5|
|/ pTg )d5|

< C”pTg”E?(O,l = cllgll z2(o,1-

By density, this identity remains true for ¢ € Dom I, thus this means that f
belongs to Dom K% and that prf belongs to Dom K.

For g € £2([0,T]) N Dom K, we denote by g its extension to £2([0,T]) defined
by G(s) = 0 whenever s > T. We have

[ prkipri(s)a(s) ds = [ Kiprf(s)pra(s) ds

where the last equality follows by the first part of the proof and the defini-
tion of the adjoint of a linear map. Since g can be arbitrary, (15) follows by
identification.

14



Theorem 15 Let a < 1/2 and p > 2. Assume that Hypothesis I and II
hold. Assume furthermore that there exists ¢ > 1/p and n > 0, such that

1 is continuous from I, into Hol(n). If u belongs to Dy, (7}, ,), for some
e > 0, then for any T € [0, 1], there exists a measurable and integrable process,

denoted by Dru such that, for any s, any 0 < a <b < 1,

| [/ 1639, = D)) = Drutr)P

1
< CE[/ s — rP|V,ulP . (16)
0 Io'+£,p

Moreover,
T P P
B[ Drur) drlf, | < clully o (1)

PROOF. Since ¢ > 1/p, u is continuous and we can speak unambiguously
of u(T). The assumed continuity of Kf entails that K (u — u(T")) belongs to
D, ; (Hol(n)) and that

B | /19K~ u(T)e) = 9, Kiu = u(T)P o]

1
< cE [/ s — 7P| VP, dr] . (18)

0 Ia'+5,p
Consider (p,, n > 1) a one-dimensional positive mollifier, we can define P® dr

a.s., Dru(s) by
. T
Dru(r) = lim o (T (Vpu) (T — 1) dT.

n—o0 Jo

Hence, Dpu(r) is measurable with respect to (w,r) and according to (18), we
have (16). Substituting 0 to s (18), we get

T
P < p i
| [ 1DrutP as < ellulf o,

This means that f; Dru(s) ds belongs to Z;", and that (17) holds.

P
Example 1 continued. In this case, K] = IlH__l/ ? is continuous from I;;
into [ ,_, /2,p- This latter space is embedded in a space of Holderian functions

provided that 0 > 1/2—a+ 1/p. O

Ezample 2 continued. According to [13], K = z/2 H[~1?zH-1/2 ang
since since 2(1+ H —1/2) = 2H +1 > 1, we infer from [13, Lemma 10.1] that

* : 1= 5 +
K1 is continuous from Z; , into 2\, 45, for any o > 0. -
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Theorem 16 Let o < 1/2 and p > 2. Assume that Hypothesis I and II hold.
Assume furthermore that there exists c > 1/p and n > 0, such that K} is

continuous from I} , into Hol(n). If u belongs to Dy, (I, ), for some e > 0,

then u is Stratonovitch integrable on [0,T] for any T € [0,1], and

/0 Cu(s)o dX, = 6(Khu) + /0 " Dru(s) ds -+ u(T)X(T). (19)

PROOF. For the latest sum of Rf.(u — u(T)), we have according to Theo-
rem 15,
p]

<cE|} 5% /t;m /t;m K3 (Vo (u = u(T))(s) = Dru(r) P ds dr]

_ti en

1 tit1 fliva . o
E Z 5_2 /?% /t7, ICTVT(U — U<T))(S) ds dr —A DTU(T') dr

t,em

[ 1 tit1 plit1
<cB |3 = [ s ol

t;em g oTeP

< ¢l P yl1P '
sC ‘7T| ”UH]D)p,1 (Ig'ls,p)

ds dr}

Therefore, the latest sum of R7.(u — u(T')) converges in LP(Q2) (and thus in
probability) to [y Dyu(s) ds. In order to conclude, note that in virtue of
the continuity of the divergence, the first term of R%.(u — u(7T)) tends to
(K (u — u(T))), see [20].

Lemma 4.2 Under the assumptions of Theorem 16, for any 0 < S < T <1,
uljo,s) is Stratonovitch integrable on [0,T]| and we have

/OT(U(T)—U(S))W,S](T)O X, = /0 " ulr)o dX,, (20)

forany 0 < S<T<1.

PROOF. According to Eqn. (12) and to Lemma 4.1, we have
Ri(ps(u —u(S))) = Rg(u = u(S)) + u(S)X"(S).

According to Theorem 16, the right-hand-side sum converges so that ulp g
is Stratonovitch integrable on [0, 7] and Eqn. (20) follows by remarking that
ps(u—u(S))(T) = 0.

Remark 17 For the hypothesis “ K} is continuous from I, into Hol(n)” to
hold, in view of the examples cited above, this requires that o to be greater than

1/2—a+1/p+n.
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For o > 1/2, the map K is still a regularizing operator so that the hypothesis
are much weaker. Following the very same lines, we can prove:

Theorem 18 Let o > 1/2. Assume that Hypothesis I holds. Assume further-

more that K7 s continuous from LP into I, , , , for some p > (a—1/2)7L If
u belongs to D1 (LP), then, for any T € [0, 11 there exists a measurable and
integrable process, denoted by Dru such that, for almost any r,

, - 1/ /o
E[|V,Kgu(s) — Dru(r)P| ™" < s = r[*72717)| Vo] oo,

Moreover,
[H/ DU dT”Hol 1— 1/p:| < C“u“%p,l(ﬁp)'

Theorem 19 Assume that Hypothesis I holds for o > 1/2. Assume fur‘ther—
more that K is continuous from LP into I, , ., for some p > (a—1/2)7t
If u belongs to D, 1 (LP), then for any T € [0 1], w is Stratonovitch mtegmble
on [0,T] and

T T .
/ uso dX, = 6(Khu) + / Dru(s) ds.
0 0

Remark 20 The difference in this case is that LP([0,1]) is stable by the maps
pr so that we immediately have:

T
/ u(s)o dX; = / 1o7(s) o dX,,
0

in both theorems 16 and 19.

Coming back to SS;(u), we have:

u) =(5<t;€; /t, Us ds K(tit1,.) —K(ti,.))>
/tf< (Veus)(tig1) = K (V.ous ) (2 )) ds

tETF

The trace-like term is similar to those we had to treat in the previous the-
orems. The difference is that its limit is formally [ (KXV)u(s) ds instead of
Jy V(K3u)(s) ds in Theorems 15 and 18. We thus need some regularity of the
map s — Vu(r) which is something less easy to verify than properties on the
map s — V,u(s). This restriction reduces the interest of this approach.

Theorem 21 Assume that Hypothesis I holds for o > 1/2. Assume fur-
thermore that K is continuous from LP([0,1]) into I, , for some p >

(a — 1/2) 1 If u belongs to Dy, (LP([0,1])), then there ewists a measurable
and integrable process, denoted by Du such that, for almost any r,

E[|(KV)au(r) — Du(r)|] < c|s = | Du(r)llp,, coqoayy-  (21)
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Moreover,

E

| [ Dutr) drifuamsym) < cllull,engoy: (22)

Furthermore, Kj.u belongs to Dom & and the family SSx(u) converges in L*(Q)
to §(Kxu) + fy Du(s) ds.

Remark 22 For u belonging to D, 1 (LP([0,1])) and cylindric, it is easy to see
that

1 1
/ Du(r) dr :/ Dyu(r) dr. (23)
0 0

According to (22) and (18), this remains true for any u € Dy, 1 (LP([0, 1])).

Remark 23 For a < 1/2, one could also state a similar theorem but it would
be practically of little use since it is rather hard to determine whether

1
E[/ ||V_u(s)||‘291+ _., ds| s finite.
0 n—a,

5 Regularity

There are two kinds of regularity results which may be interesting : continuity
with respect to the time variable and continuity with respect to the kernel.
Actually, when one thinks to the generalized fBm (see Example 3), the com-
plete identification of the model requires the perfect knowledge of the function
H. Since that seems out of reach, one can naturally ask how much an error
on H will modify the stochastic integral of a given integrand. The trace-like
term can be controlled via theorems 18 and 15. We are now interested in the
diver%ence part. We denote by ||K7 4, the norm of K7 as a map from Z;, _, ,,
into LP.

Theorem 24 Leta € (0,1/2) and1 < p < (1/2—«)™', assume that assump-
tions I and II hold. Assume furthermore that there exists e € (0,1/p—(1/2—a))
such that u belongs to Dy 1(Zyj2—atep)- Then, the process {6(Kju), t € [0,1]}
admits a modification with £-Holder continuous paths for any & < e, and we
have the mazrimal inequality :

B0 < I aplltlln, 2oy

PROOF. Since 1/2 — a + ¢ is strictly less than 1/p, we know that for any
T € [0,1], pru belongs to Z/p—qtep, see Proposition 1. In view of Lemma
4.1, we have 6(Kju) = (K5 (ulpy)). Therefore, for g € C* and ¢ a cylindric

18



real-valued functional,

E

[ ks utogte) de] = [ [ Kt a)(r)a(0) 7 dr]

=B [ [ Kitull-g)(r)V, dr] =B [5(K3 (01 g)0]

Thus, )
/0 S(Kiu)g(t) dt = 6(K: (u.Il_g)) P-as.. (24)

Since p < (1/2 — a)7}, 1/2 — a < 1/p, we can then apply Corollary 6 with
t=1/2—a,r=1/p—¢and s =1/2—a+e. Since g is deterministic, we have

1603 (u-Ti-g)) 2oy < cllK Naplltells, @ arep) 111-91121) 2, (25)

We then obtain that for ¢ € L (Q), for g € (I, , . ),

1
B[] oK1 (utp)o) dty] |

< A el . el synnny (26)
It follows that {3(Kju), t € [0,1]} belongs to (L”" (2217, ,,, ;,)), which is
isomorphic to LP(S%Z" Jp+épe)> and that

Ilé'(’Ciku)||LP(Q;Il+/p*+€’p*) <c ||]C*||a,p”U||Dp,1(I1/2—a+s,p).

This induces that there exists a modification of {6(Kju), t € [0,1]} with &-
Holder continuous sample-paths.

Remark 25 Note that 1 belongs to Iijp .5 for any € > 0, thus we retrieve
that X; = 6(Kipu) has a version with (a«—e)-Héolder continuous sample-paths.

If e > 1/p—1/2+a, we cannot apply Lemma 2.1 any more, since s = 1/2—a+¢
would be greater than 1/p. This is more than a technical problem: in this
situation, i.e., u € Z.11/2_qp, u is continuous and pru does not necessary
belongs to Z.;1/2-ap, S0 that the whole principle of the above proof fails.
However, as Lemma 2.3 shows, if we consider py(u — u(T)) instead of Pru,
this function belongs to Z. 1/2_4p, for a smaller €. Thus, we have:

Theorem 26 Let o € (0,1/2) and p > 1, assume that assumptions I and
II hold. Assume furthermore that there exists e € ((1/p—1/2 4+ «)t,1) such
that w belongs to Dy1 (L5 ). Then, for any & <e, the process {6(Kj(u —
u(t))), t € [0,1]} admits a modification with £-Hélder continuous paths and
we have the mazximal inequality :

16K (w = u( )] oo,

+
’Il/p*+5',p*)

< el lapllvllp, , o o (27)

e+l/2—a,p
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PROOF. Note that we are allowed to consider u—u(t) since 1/p—1/24+a < ¢

implies that € +1/2 — a > 1/p and thus that 77, , ,, is embedded in

Hol(s +1/2 — oo — 1/p). The very same techniques as above show that

/01 O(K; (u—u(t)g(t) dt = 6(Ki(ul}-g — I)-(ug))), P as..

A classical integration by parts and then a fractional integration by parts (see
(2)) give that

1
| 00K (w = u(®))g(t) dt = (K3 (1= (Iofu IE-g))), P as..
Now, we clearly have

||‘[117 (I()_+Cu‘[f_g) ||I1/27a,p = ||I()_+Cu If_g||I—1/2fa,p'

Applying Corollary 6 with ¢ = 1/2 —a+ec—-1/p+¢&,t = —(1/2 + a),
s+(=1/2—a+candr+s=t+1/p+¢' for some £ > 0 sufficiently small,
we get

I (- (g uli-g))ller < e gullz - 9llz-,

= cllulz-, lloll—

= ¢ ||u||Il_/2—a+£,p||g||I:1+1/P—5+5’=1"

It follows as in the previous proof that {6(K;(u — u(t))), t > 0} belongs to

LP(Q; If/p* 1zp-) (With &€ = & —¢') and that the maximal inequality (27) holds.

Theorem 27 For any o € [1/2,1), assume that assumption I holds. Let u
belong to D, (LP) with ap > 1. The process {§(Kju), t € [0,1]} admits a
modification with (a—1/p)-Hélder continuous paths and we have the mazximal
mequality :

60C W o tatasymy < cllK laalulls, -

PROOF. We begin as in Theorem 24 until Eqn. (24). Since a > 1/2, it is clear
that K is continuous from £?([0,1]) into Z, 12,2 thus that X* is continuous
from I}, , , in £([0, 1]). Since Z, 15,2 is continuously embedded in Lo
it follows that £/« = (£~} is continuously embedded in T, 4. Since
u belongs to D, ; (L?), the generalized Hélder inequality implies that

luli-gll e < llulleoll 13- 9| /w1
It follows that {6(K;u), t € [0,1]} belongs to LP(Q; Z;

1,(1—a+1/p)~1
|0(K u) ||LP(Q;Iff(1,a+1/p)*1 )

) with

< dlIKillazllullp,, -
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The proof is completed remarking that 1 —1/(1 —a+1/p) ' = a—1/p so

that If:(l—a—kl/p)_l is embedded in Hol(aw — 1/p).

Remark 28 These results extend similar results in [9] in the sense that the
assumptions on the kernel and on the integrand are here much weaker for the
same conclusion.

6 Itd6 Formula

We are now interested in non-linear transformations of It6-like processes:
¢
Z(t) =z +/ u(s) o dXj, (28)
0

for a sufficiently regular u. The Itd formula for fBm-like processes has already
a long history. There are two technical barriers: it is relatively easy to prove
It6 formula for o > 1/2, since we then have a process more regular than the
ordinary Brownian motion and all the limiting procedures are straightforward
(cf. [21,22,4]) . Harder is the situation where a belongs to (0, 1/2], Alos et
al. [23] obtained a formula for the fBm of Hurst index greater than 1/4. By a
very different procedure, Gradinaru et al. [2] were able to include 1/4 in the
domain of validity of the formula. In another different approach, Feyel et al.
[24] also gave a formula for any Hurst index via analytic continuation of the
formula obtained for o > 1/2. Carmona et al. [10] obtained an It6 formula for
a > 1/6, for a class of processes similar to our so-called Volterra processes.
For a restricted set of integrands u, we will now establish an It6 formula valid
for any o € (0, 1).

The following results owe much to the paper [10] which gave me the hope that
it was possible to go beyond the barrier 1/4, to the paper [9] which gives the
simplest expression of the It formula and to the work [2] which emphasizes the
importance of symmetrization. Actually, the key remark is that there exists
integrands v for which

1
Rp(u) := h—l/o (ICTPHW(S) - Tptu(s)) (}C’{pt+hu(3) +Kfptu(s)> ds
1
= h_]-/o ICTpt,t-l-hu(S)ICT(pt +pt+h)u(3) ds (29)

1
=17 [ (Kipranu(s)? = Kipiu(s)?) ds.

has a finite limit. If u = 1, since 1y = I7(e,), it follows from the definition
of K that Kip;1 = K(t,.) and thus R,(1) = h='(R(t + h,t + h) — R(t,1)),
where R is the covariance kernel of X. For instance, if X is the fBm with

21



stationary increments, this expression is proportional to h'((t + h)** — 29).
The different barriers can be explained from the behavior of this last term,
whose limit is clearly #>**~!. When o > 1/2, this is a bounded function of
t so easily controllable in the limiting procedures. For oo € (1/4,1/2), it is
no longer bounded but still in £2([0,1]). When, a < 1/4, we only have an
L? integrable function for 1 — p~! < 2. In the last two cases, the limiting
procedures are much more involved but still feasible for cylindrical processes
as show the next lemma.

Hypothesis III Let R the set of processes such that Ry(u), as defined in
(29), has a finite limit in L*(Q2). We assume that Kt is such that R is non-
empty.

Lemma 6.1 Let o € (0,1), be given and assume that hypothesis I, II and 111
hold. Let u be a cylindrical process, belonging to R. Let

=inf{n: 2na > 1}.

For any f € Cy*, i.e., ny-times differentiable with bounded derivatives, we
have

d

SE[£(Z0v] = B|£(Z) (0 )(u(t)o)|

—i—%E[f” Z dt/ it
LB [u )/ )t< / V), u(r) dr)]

+ E[u(t) s lcv»(/c:ptu))w] .

(30)

PROOF. Introduce the function g as

a+b a+b
+

gla) = F(2 4 2) = f(E ),
This function is even, satisfies
g@H(0) = 2f @+ ((a +8)/2) and 9(C=2) = £(b) ~ f(a)

Applying the Taylor formula to g between the points 0 and (b — a)/2, we get

. - 2j4+1 p(2j41) (@ F b
o gQJH —ap e (D

b—a)®™ 11 o 1 (on
+%/0 A2 g (g + (1 — A)b) dA.

22



We thus have

na—1 272]'

E [(f(Zt+h) - f(Zt))¢] = Z

=0

1 1
5B (i = 20 [l (07,4 (1= 1) Zugn) dr w] . (31)

2541 £(2j+1 a+b
mEl(b—a) T +)(T)¢]

We need to prove that, when divided by h, the latter quantity has a limit
when A goes to 0. It turns out that the sole contributing term is the first one.
We first show that n, is chosen sufficiently large so that the last term vanish.
Since Z belongs L?(Q; Hol(a — ¢)) for any £ > 0, and since g(>"+) is bounded,
the last term is bounded by a constant times h?"=(®=%) Hence, this last term
divided by h vanishes when h goes to 0. We next deal with the first order
term. Since u is cylindric,

Zy = 6(Kipu) + /Ot I (Vspru)(s) ds. (32)

Substitute Eqn. (32) into the first order term and use integration by parts
formula, this yields to:

B[(Zun — 207/ (750
= B [[ Ki ) () V(2 ds
B[P T2y [ K Vo) (s) ds |
= B [f(EEEZE) [ K (e (s) V0 ds
B[Py [ K ran) (5) V(2 s |
+B [y [ K pa ¥ u)(s) ds | = gAi.

We can write A; as

A =E [/:Mu(s)(lCV)sw ds f'(%)w] ,

by dominated convergence, it is then easily shown that
lim b~ 41 = E[u(t)(Z) (K] (53)

By direct calculations, since u is cylindric, we have

1 t+h
/ K3 (Pe4nVsu)(s) ds = / (KV)su(s) ds, thus,
0 t
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lim h™" A3 = B [(Z)0(KV)ut)]. (34)
Expanding V(Z; + Z;11,), we obtain

24 = B[220, [ ) (5)ICE (s + prs)(5) ds |

B 12 [ ) (515 (K3 0+ pro) Vo)) dis |
1 1
+E [ /0 K3 (Drnt) (5) Vs ( /0 (Dt + pen) (Y )u(r) dr dr) ds
Z,+ 7, 3
% f”(tTHh)w] = ZBZ"
=1
According to Hypothesis 111,
. -1 d . * 2 "
limh™'By = E |— /0 1t (pe) (5)? dsf"(Z)w | . (35)

It is rather clear that

lim = By = 2E [u(t)(lCV)t( | V) u(r) dr)F(Z0w]

(36)

To deal with By, we need to apply once more the integration by parts formula.
This gives,

1 1
B, =E [/0 /O IC (Dr44n V1) (8) VKT (e + pryn)u(r) ds dr

A A
« f (%W]
1 1
B[ [ Kiuma)(s) [ K+ pan) Ve ()
0 0
Zi+ 7,
xVT(f”(%)w) dr ds] .
It follows from this expression that
1
lim b1 B; = 2 | [ (C9)u(CTpan) (1) V (ul(t) £ (Z0)) |
h—0 0
= 2B [u(t)f"(Z)v §((KV)Kip)] (37)
The remaining terms are of the form
B[(Zusn — 27t fore (A D
2
Lo, iy L+ 7,
=B [ Kieamn) )V, ((Zuinn — 202 0D (ZEZ00 )
X . 7.+ 7 1
+E [(Zt—l—h - Zt)ZJf(QJH)(%)Qﬁ/O K (ptp+n Vsu)(s) ds ] = (1 + Co.
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By dominated convergence, it is clear that h~'C, vanishes as h goes to 0. As
to (1, it can be split into three parts

Oy = 2 B[(Zuyy — 27 pern (L 2ty
<[ K Pasntt) (8)Vs (Zosn — 70) ds]
LB [(ZM _ Zt)”f”””(%)lﬁ
[ Kt ()7L
+E [(Zm _ ZO%#%H)(%)

1
X/O K’{(pt,H_hu)(s)sz dS] = ;Dz

By dominated convergence, h~!D; vanishes as h goes to 0. Expanding the
Gross-Sobolev derivative Dy, we get

Zy+ Zyp

5 N(Ziin — Z2)7

1
% [ K prs) ()3 (pu + prs)(5) ds|
)(Zisn = Z0)*4
1
< /0 K{(pt,mu)(s)a(}q(ptvsu+pt+hv5u)) ds]
Dt 2 Zyo — 20

<[ 'K (prsenu)(5)Vs (f (91 + poon) (KV)wuu(r) ar) ds].

2D, = E [f(21'+2)<

Zi+ Ziin

+E [f(2j+2)( 5

+E f(2j+2)<

Following the reasoning applied to A, we see that all the terms in the integrals
are converging a.s. (when divided by h) to a finite limit, since there still is a
factor (Zy,p — Z;)*, with j > 0, the product converges to 0. By dominated
convergence, the convergence can be seen to hold in L'(Q), thus h='Dy goes
to 0 as h goes to 0. The really difficult term is D;. For the sake of clarity, we
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only treat the case j = 1. For j =1,

Dy =B [(Zuon — 270 (2T 20y
< [ Kipesn)(5)V(Zuon — 21) ]
=2 B[(Zsn— Z0fO 7y [ Kipueanan) ) d]
+2E :(ZH,L - Zt)f“)(%)@b
< [ Kt (O (01 + pen) Vi) ds
2B |(Zn - zgﬂi”(%)w
< [ i) [ KT+ pnu)(r) dr ds].

Dominated convergence implies that the last term, divided by A, vanishes as
h goes to 0. For the two other summands, the idea is always the same, each
time there is a divergence term, we apply integration by parts formula. Then,
each new term is treated by the previous methods. For instance, the most
difficult term to handle is one of the term which comes from derivative of the
divergence in the first summand:

E [f(3)(%)¢ /01 Vr(/ol Ky (pt,t+hu)(3)2 ds) K7 (pt:t+hu)<7q) dr
[ MW

— (3)
E |/9(=5
1 rl 1
< [ K e () (o V) (5)KCE (pr) (7) i ds
—E _f(?”(%)w

« /t e u<s)/c( /0 K Psn Vo) (VK (prsenu)(r) dr) (s) ds: .

Once again, in this form, it is clear that this term, divided by h, converges
to 0. All the remaining term are treated likewise and do not contribute. Thus
from Eqn. (30) follows from (33), (34), (35), (36) and (37).

Since wu is cylindric, all the terms of (30) are integrable with respect to t, we
thus have
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Corollary 29 Under the assumptions of the previous lemma, we have,

BIf(Z)v) = Elf(@)u] + B | / FZ)(KV) (u(s)) ds]
+ % EV /0 (2, / Kipau(r)? dr ds]
+E [¢ / ") P2 KV, ( / S(/CV)TU(T) dr) ds]
+ B[y [(ul)(2)5(Kipo (k)0 5],

for any ¥ such that V1 belongs to Dom K.

Since (KV) is a derivation operator, we obtain after a few manipulations:

B[f(Z)y] = BLf(2)4] + B / t(fcv>s<f'<zs>u<s>w> as]

+ %E lw /Ot "(Zs / Kipsu(r)* dr dS]

~Efu [ tU(S)f”(Zs)/C/CT(pSU)(S) ds .

This means that for any ¢, we have a.e.,

1(2) = I )+/tf’(Z) (s)o dx,
+3 / "z / Kipsu(r)® dr ds (38)
— [ uls) 1K (pru)5) s

Remark 30 We have proved so far that a “reqular” Ité formula holds for
processes of the form (82) with u cylindric and belonging to R, for any o €
(0,1). It must be noted that, in Example 1 and 2, it is well known that R
contains constant functions. As a consequence, we have established an Ité
formula for the non-linear transformations of both Lévy and classical fractional
Brownian motion, valid for all Hurst indexes.

Remark 31 In [11], we announced an Ité6 formula for general u and any

€ (0,1). This is unfortunately wrong for a € (0,1/2). Actually, starting
from (88), the problem is now to pass to the limit. For the very first term of the
righthandside of (38), we need to find a class of processes u for which foZ.u is
Stratonouvitch integrable. The most restrictive part is to find conditions under
which this process has a “trace” in the sense of Theorem 15. It is important to
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note that
V. Zy = Kipi(u—u(t))(r)+6(KipiVe(u—u(t)))+ V., /Ot(}CV)S(u—u(t))(s) ds
+ X)) V,u(t) +u(t)K(t,r)
and thus, we have
K(V.Z,)(r) = K(Kipe(u — u(t)))(r) + K(6(Kip:V (u — u(?))))(r)

H(T. [ UCT), = u(t))(5) ds)(r) + K(X(OF.u(0)) ()
+ K(u(t)K(t,.))(t).

)
)

It is possible to impose hypothesis on u such that the first four terms of the
previous equations have a signification when r = t. Unfortunately, for the very
last term, we have

KK ))(1) = u(t) 2 R(t,5) st

In the case of the fBm with stationary increments, this is equal, up to a con-
stant, to u(t) (s~ — (t—5)?*™ 1) s—y. Since this quantity is infinite for a < 1/2,
we haven’t been able to go below 1/2.

Remark 32 If we don’t have a trace term we can state the following result.

Theorem 33 Let a € (0,1), be given and assume that hypothesis I, II and
IIT hold. Let u be a cylindric process, belonging to R. Let

= inf{n: 2na > 1}.

Let
Ly = 5(qutu)-

For any f € CJ, i.e., ny-times differentiable with bounded derivatives, we
have

F(Z0) = () + «s(/c* (wro7))
% / iz / Krpsu(r)? dr ds
+ / (/qpsacwsu)
for any t, a.s..

PROOF. The proof is exactly the same as the previous one.
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If u =1, we get the same result as in |9,10,4,24] valid for any o € (0,1).
If £ =1d, i.e., X is an ordinary Brownian motion, and u is not necessarily
adapted, this formula coincides with that given in [25].

7 Skorohod integral

Since the term [ Dru(s) ds is a trace-like term, it is reasonable to introduce
the following definitions. We now introduce a stochastic integral defined

Definition 34 We denote by Dom dxx, the set of processes u belonging a.s. to
Dom K* and such that KC*u belongs to Dom . We denote by Dom dx, the set
of processes u in Dom 0xx such that VK*u is P-a.s. a trace class operator.

Definition 35 For u € Domdx, we define the stochastic integral of u with
respect to X by

! def ! * *
/0 us % dX, /0 (K*u)(s)0 B, + trace(V(K*u))

To define the integral of u between time 0 and ¢, we use Lemma 4.1:

Definition 36 For u € Domdx, we define the stochastic integral of u with
respect to X between 0 and t by

t 1
/ us * dX, :/ (pru)(s) * dX
0 0

= [ () (3B, + trace(p (K;u),

where the second equality follows by (15).
Eqn. (23) has its equivalent in this setting :

Lemma 7.1 Assume that I and II hold. Let u € Dom K* belong to Dy 1 (£2([0,1]))
and be such that Vu belong (a.s.) to Dom K. Then trace(V(K*u)) is finite iff
trace((KV)u) is finite and they are equal.

PROOF. Since Dom K*NDom K is a dense subset of £, one can find {h;, i >
1} an ONB of £? where for any i, h; belongs to Dom K* N Dom K. Set m, the
orthogonal projection in £? onto the vector space spanned by h1,...,h,. Let
Vi = o{6h;,i =1,...,k} and consider uy , = m,E [Pl/ku | Vk] where P, denote
the Ornstein-Uhlenbeck semi-group of the Wiener process X. It is known, see
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[26, Lemma B.6.1], that u; can be written as
U = Zfz-”(éhl, ..., 0hg)h; where f; € C* for any 1,
i=1

and that uy, converges to u in Iy ;. Furthermore, it is clear that we have

trace((KV)ug,,) = trace »_ 0; f(0h, ..., 0hi)h; @ Kh;

Z.7|j

= SO s, 00) [ i) (Khy)(5) s

1
_ Zajfi”(éhl,...,éhk)/o (K*hy) ()l (s) ds
Z?]
= trace(V (K ugy,)). (39)
Moreover, if trace((KV)u) exists a.s., then the series

> < (KV)u, hi ® h; >r2gc2 is convergent.

i

Thus, by Cauchy-Schwarz inequality,

trace((XV)ug ) — trace((KV)u)
< Z < (ICV)uk,n — (}CV)U,hZ ® h; >r2e02 -1-2' < <ICV)U, h; ® h; >r2e02 |

i<n >N

S n||(lCV)(u - uk’n)||£2®£2 -+ Z ‘ < (KV)U, hz & hz >L'2®L'2 |

i>n

As n goes to infinity, the rightmost term converges a.s. to 0, hence for ¢ > 0,
one can find n such that

P(Z | < (ICV)U, h; @ h; >regr2> 6/2) < 6/2.

i>n
Since K is a closed map, for this value of n, one can find k, such that

P(|(KV) (v — ug, n)llc20c2 > €/2n) < €/2.
For such n and k,, we have
P(|trace((XV)ug, n) — trace((KV)u)| > €) < e.
Hence there exists a subsequence (kj,n;) such that trace((KV)uy; ;) con-

verges P-almost surely, thus that trace(V(K*u)) is finite and that the two
expressions are equal. trace(V(K*u)) = trace((KV)u).

The very same reasoning holds true when trace(V(K*u)) is finite.
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Following [20], we know that when u belongs to the domain of the two inte-
grals (that of definition 13 and that of the last definition), these two integrals
coincide.

A nice feature of this version of the stochastic integral is that we can compute
its transformation under absolutely continuous change of probability.

Theorem 37 Let T(w) = w + Kv(w) be such that v belongs to D), 1 (L?) for
somep >1 and T*P <« P. Let u be such that u and uoT belong to Dom §x~
and VK*u and V(K*uoT) are a.s. trace class operators. Then,

(/OIU<5)* dXs) OT:/Ol(uoT)(s)* dXS+/OIIC*(uoT)(s)U(5)d5_

PROOF. Theorem B.6.12 of [26] stands that
S(K'u)oT =06(K*(uoT))+ /IC* (uoT)(s)v(s)ds + trace((VK*u) o T.Vu).
Proposition B.6.8 of [26] implies that

trace((VK*u) o T.Vv) = trace(V(K*uo T')) — trace(VK*u) o T.

The proof is completed by substituting the latter equation into the former.

For u deterministic and v adapted, this means that the law of the process
{fEudX, — [T K*u(s)v(s)ds,t > 0}, under T*P, is identical to the P-law of
the process { [i u,dX,,t > 0}.

8 Conclusion

We have set the basis of a stochastic calculus with respect to Volterra pro-
cesses. The stochastic integral, which is originally defined a la Stratonovitch, is
shown to be expressible with the usual tools of the Malliavin calculus (gradient
and divergence). For this integral, we have been able to prove some regular-
ity results which reminds of maximal inequalities for martingales. At last, we
established It6 formula for processes of the form (32) with u cylindrical and
belonging to R for any «. It is now an open problem to exhibit a larger class
of processes, i.e., ideally relaxing the hypothesis that v is cylindric, for which
this formula still holds.
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