
HAL Id: hal-00358125
https://hal.science/hal-00358125v2

Submitted on 29 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast solving of Weighted Pairing Least-Squares systems
Pierre Courrieu

To cite this version:
Pierre Courrieu. Fast solving of Weighted Pairing Least-Squares systems. Journal of Computational
and Applied Mathematics, 2009, 231 (1), pp.39-48. �10.1016/j.cam.2009.01.016�. �hal-00358125v2�

https://hal.science/hal-00358125v2
https://hal.archives-ouvertes.fr

1/21

Fast solving of Weighted Pairing Least-Squares systems

Pierre Courrieu

LPC, UMR 6146, CNRS-University of Provence, Marseille, France

E-mail: Pierre.Courrieu@univ-provence.fr

Published in: Journal of Computational and Applied Mathematics 231 (2009) 39-48.

Abstract

 This paper presents a generalization of the "weighted least-squares" (WLS), named

"weighted pairing least-squares" (WPLS), which uses a rectangular weight matrix and is

suitable for data alignment problems. Two fast solving methods, suitable for solving full rank

systems as well as rank deficient systems, are studied. Computational experiments clearly

show that the best method, in terms of speed, accuracy, and numerical stability, is based on a

special {1, 2, 3}-inverse, whose computation reduces to a very simple generalization of the

usual "Cholesky factorization-backward substitution" method for solving linear systems.

Keywords: weighted pairing least-squares; generalized inverses; generalized Cholesky factor.

1. Introduction

In this paper, we consider weighted least-squares problems in the following

generalized form:

E(V ;X,Y,W) 
i1

m1

 wij Xi,:V Yj,:

2

j1

m 2

 ,

C  arg min
V R n1n 2

E(V ;X,Y,W) , (1)

2/21

where three matrices are given: X  Rm1n1, Y  Rm 2n 2, and W  (wij) is a rectangular

m1 m2 "weighted pairing" matrix whose coefficients are non-negative real numbers. Xi,:

denotes the ith row of X , and Yj,: denotes the jth row of Y . Note that this generalization is

not the same as the so-called "Generalized Least Squares" [10]. In the special case where

m1  m2  m and W is a diagonal matrix, the above problem clearly reduces to an ordinary

weighted least-squares problem, that is:

C  arg min
V R n1n 2

wii Xi,:V Yi,:

2

i1

m

  arg min
V R n1n 2

W 1/ 2XV W 1/ 2Y
2
. (2)

In Section 2, we show that, in fact, every problem having the form (1) can be reduced

to a problem having the form (2). In such problems, each equation of the least-squares system

receives a specific weight that typically depends on some estimate of the reliability of the data

used in that equation. The usual non-weighted case corresponds to W  I (identity matrix).

Ordinary weighted least-squares (2) are commonly used to solve regression problems with

noisy data [12], and in "iteratively re-weighted least-squares" procedures for computing

robust regression statistics such as M-estimators [2][7]. The generalization (1) is potentially

relevant in "data alignment" problems, where there is no given one-to-one correspondence

between X data points and Y data points (rows), but one has some non-negative "adequacy"

or "plausibility" measure for each possible data pair, which is represented by W . Data

alignment is a hard to solve problem commonly encountered in image processing and pattern

recognition [6]. In this paper, ||.|| denotes the Euclidean norm for vectors, and the Frobenius

norm for matrices. As in Matlab, the notation "a:b" denotes an index interval of bounds "a"

and "b", and if the bounds are not specified (:), this corresponds to the whole index range.

Whenever W 1/ 2X is of full column rank in (2), the solution to this problem is unique

and the normal equations lead to the well-known result:

3/21

C  (X 'WX)1 X 'WY , (3)

where X ' denotes the transpose of X (or the conjugate transpose in the complex case).

One of the fastest ways of numerically obtaining the factor (X 'WX)1 that appears in

(3) consists of computing a Cholesky factorization LL' of the positive definite Gram matrix

X 'WX , then one inverts the upper triangular factor L' by a simple backward substitution

method, and one obtains (X 'WX)1  L'1 L1. However, if W 1/ 2X is not of full column rank,

then the above method does not work because the matrix X 'WX is singular, and in this case,

the weighted least-squares system is said to be rank deficient. The solution of rank deficient

systems requires more robust methods, which are also slower than the above mentioned, in

general. Among the fastest methods, we can consider those based on the use of suitable

generalized inverses, such as the popular Moore-Penrose inverse [1][4][8]. A solution to (2) is

then:

C  (W 1/ 2X)†W 1/ 2Y  (X 'WX)† X 'WY , (4)

where the Moore-Penrose inverse is known to provide the least-squares solution C whose

each column has the minimum Euclidean norm ([1], p. 109).

However, one must note that the solution of least-squares problems does not

specifically require the use of the Moore-Penrose inverse, and that other types of generalized

inverses, such as {1, 3}-inverses whose numerical computation is possibly faster, can as well

be used. According to ([1], pp. 104-105), one has always a solution to (2) with:

C  (W 1/ 2X)(1, 3)W 1/ 2Y , (5)

where A(1, 3) denotes any {1, 3}-inverse of the matrix A (see Section 3.2).

In fact, the problem of the computational cost is crucial in many practical applications,

where one must repeatedly solve large least-squares systems. On the other hand, most

practical problems lead to full rank systems that could be solved fast using (3), however, rank

4/21

deficient systems can occasionally appear, and it is commonly not acceptable to obtain a

"fatal error" diagnostic at run time. Thus, in order to optimize the performance of

applications, we present in Section 3.2 a quite fast solution of type (4), and in Section 3.3 a

solution of type (5) whose computational cost is similar to that of (3), which has the

advantage of being fast while providing a suitable least-squares solution in all cases, even if

the system is rank deficient. These solutions apply to problem (2) and to problem (1) as well.

2. The weighted pairing least-squares problem

In this section, we consider the generalization of the weighted least-squares (WLS)

problem stated in (1), which we refer to as the "weighted pairing least-squares" (WPLS)

problem.

Theorem 1. Every WPLS problem of type (1) reduces to a WLS problem of type (2) since:

 arg min
V R n1n 2

i1

m1

 wij Xi,:V Yj,:

2

j1

m 2

  arg min
V R n1n 2

hii Xi,:V  Zi,:

2

i1

m1

 ,

where:

H  (hij) is a diagonal matrix with diagonal coefficients hii  wij , 1 i  m1

j1

m 2

 ,

Z  H†WY ,

H†  (hij
†) is the Moore-Penrose inverse of H , with hii

† 1/hii if hii  0 , and hij
†  0 if hij  0.

Proof.

Set dik  wij y jk
2

j1

m 2

  hii
† (wij y jk)2, 1 i  m1, 1 k  n2

j1

m 2

 . (6)

Then one has:

5/21

(hii Xi,:V  Zi,:

2

i1

m1

  dik

k1

n 2

)

 hii(Xi,:

k1

n 2


i1

m1

 V:,k  hii
† wij y jk)2  dik

j1

m 2



 (hii
1/ 2Xi,:

k1

n 2


i1

m1

 V:,k  hii
1/ 2hii

† wij y jk)2  dik

j1

m 2



 hii(Xi,:

k1

n 2


i1

m1

 V:,k)2  2hiihii
† (Xi,:V:,k) wij y jk  hiihii

†2(wij y jk

j1

m 2

)2  dik

j1

m 2



 hii(Xi,:

k1

n 2


i1

m1

 V:,k)2  2(Xi,:V:,k) wij y jk  hii
† (wij y jk

j1

m 2

)2  dik

j1

m 2



 (wij

j1

m 2

 (Xi,:

k1

n 2


i1

m1

 V:,k)2)  2(wij y jk (Xi,:V:,k))  (wij y jk
2

j1

m 2

)
j1

m 2



 wij

j1

m 2

 ((Xi,:

k1

n 2


i1

m1

 V:,k)2  2(Xi,:V:,k)y jk  y jk
2)


i1

m1

 wij Xi,:V Yj ,:

2

j1

m 2

 .

Noting that the additional terms (dik) given by (6) are independent of V , one obtains

Theorem 1.☐

Corollary 1.

(i) If H1/ 2X is of full column rank, then (1) has the unique solution:

C  (X 'HX)1 X 'HZ  (X 'HX)1 X 'WY .

(ii) No matter H1/ 2X is not of full column rank, (1) has the minimum norm solution:

C  (H1/ 2X)† H1/ 2Z  (X 'HX)† X 'WY .

(iii) No matter H1/ 2X is not of full column rank, (1) has all solutions of the form:

C  (H1/ 2X)(1, 3) H1/ 2Z ,

6/21

where H and Z are defined as in Theorem 1.

Proof. This directly follows from Theorem 1 and equation (3) for (i), equation (4) for (ii), and

equation (5) for (iii).☐

3. Fast solutions based on generalized inverses

3.1 Generalized Cholesky factors

Several generalizations of the Cholesky factorization can be found in the literature. A

well-known generalized Cholesky factorization for solving the so-called "augmented linear

systems" is available in [9] and [11]. Another type of generalization of the Cholesky

factorization has been proposed in [3], and this approach has been successfully used to define

a fast numerical method for computing the Moore-Penrose inverse [4]. The fundamental

result for the generalized Cholesky factorization is:

Theorem 2 (from [3]). Let G be a symmetric positive semi-definite matrix of order n  n .

Then there is an upper triangular matrix R such that R'R  G, rii  0 , 1 i  n , and if for an

index i one has rii  0 , then rij  0, 1 j  n. Moreover, the matrix R with these properties is

unique.

Proof. A proof of this is available in ([3], Theorem 4).☐

The corresponding algorithm for computing the generalized Cholesky factor R

defined in Theorem 2 is a very simple variant of the usual Cholesky factorization algorithm,

7/21

and its computational complexity is the same. However, the generalization has the advantage

of providing a suitable factor in all cases, even if the matrix G is singular.

Algorithm 1. {Generalized Cholesky factor R of the given matrix G}

rij  0, 1 i, j  n {initialization of R}

r11  g11

for j  2 to n

 for i1 to j

 if i  j then rii  gii  rki
2

k1

i1

 else if rii  0 then rij  (gij  rkirkjk1

i1)/rii

 {else rij  0 as a result of the initialization}.

By construction, the output of Algorithm 1 is an upper triangular factor R with r non-

zero rows, and n  r zero rows, where r is the rank of G. The algorithm complexity is in

O(n3) , but the exact operations count depends on r and the indices of zero rows. When

r  n , this count is maximum, and it is equal to that of the classical Cholesky factorization

(plus n(n 1) /2 low cost tests).

3.2 Fast Moore-Penrose inverse based solution

Using Algorithm 1, one can define a fast method for computing the Moore-Penrose

inverse of every finite matrix. Before examining this method, we rapidly recall some

definitions and notations concerning generalized inverses.

8/21

Every finite matrix A has (possibly an infinite number of) generalized inverses

(hereafter denoted B) that satisfy one or several of the following four Penrose equations:

ABA  A (P1)

BAB  B (P2)

(AB)' AB (P3)

(BA)' BA (P4)

Every matrix B that satisfies the equation set {Pi, Pj,...} is said to be a {i, j,...}-inverse

of A , and it is usually denoted A(i, j,...) . The Moore-Penrose inverse of A is the unique matrix

A†  A(1,2,3,4). For a complete explanation, the reader can see [1].

There are several methods for computing the Moore-Penrose inverse, the most usual

being based on the singular values decomposition (SVD). This method is numerically very

stable, however it is computationally heavy and hardly usable in many practical applications.

Another usual method is based on Gram-Schmidt orthonormalization, which is clearly faster

than SVD. However, the classical Gram-Schmidt orthonormalization (CGS or GSO) is known

to be numerically instable. A simple and effective remediation to this drawback has been

proposed in the form of a re-orthogonalization additional step, leading to the CGS2 method

[5]. However, the additional step in CGS2 slows down the process, while it has been observed

that CGS is not the fastest method for computing the Moore-Penrose inverse [4]. In fact, it

turned out that among the most usual methods, including Greville's method, SVD, CGS/GSO,

and iterative methods, the fastest known numerical method for computing the Moore-Penrose

inverse is based on Algorithm 1 and on the following result [4]:

Theorem 3 (from [4]). Let A be a m  n matrix, with m  n, set G  A' A, compute the

generalized Cholesky factorization G  R'R using Algorithm 1, remove all zero rows from R,

9/21

which results in a full row rank matrix S of size r  n, with r  n, and such that S'S G.

Then:

A†  S'(SS')1(SS')1SA' .

Proof. The proof is available in [4]. Since it is short, we provide it hereafter.

We start with equation (3.2) from [8], that is:

(EF)†  F '(E ' EFF ')† E '. (7)

Setting E  A , and F  I in (7), one obtains:

A†  (A' A)† A' G† A'.

Setting E  S', and F  S in (7), one obtains:

G†  (S'S)†  S'(SS'SS')† S  S'(SS')1(SS')1S , (8)

since SS' is invertible because S is of full row rank. ☐

If A is a m  n matrix, with m  n , it suffices to use the relation A†  ((A')†)' . Note

also that (8) provides a simple formula for the Moore-Penrose inverse of any symmetric

positive semi-definite matrix, and that if S is of full rank r  n , then G†  G1.

Corollary 2. Set A  H1/ 2X in Theorem 3, then the minimum norm solution of (1) is:

C  S'(SS')1(SS')1SX 'WY ,

where S is defined as in Theorem 3.

Proof. This immediately follows from Theorem 3 and Corollary 1 (ii). ☐

3.3 Fast {1, 2, 3}-inverse based solution

10/21

Although Corollary 2 provides a fast solution to (1), this is not necessarily the fastest

way of solving this problem. Moreover, observing equation (8), one can suspect a potential

numerical instability whenever the matrix SS' is ill-conditioned, worsened by the fact that the

factor (SS')1 is repeated. In this section, we describe a {1, 2, 3}-inverse based solution to (1)

whose computational complexity is similar to that of (3), using Algorithm 1 and a simple

variant of the backward substitution method for inverting upper triangular matrices. The

simplicity of this solution allows us to expect not only faster computation, but also better

numerical stability than the Moore-Penrose inverse based approach. We first define the

generalization of the backward substitution method for computing generalized inverses of

generalized Cholesky factors as they are defined in Theorem 2. The computational

complexity of the generalized algorithm is the same as that of the original backward

substitution method (O(n3)). The algorithm is designed to solve in U the following equation:

RU  IR , (9)

where IR is a diagonal n  n matrix whose ith diagonal coefficient is equal to 0 if the ith row

of R is zero, else this diagonal coefficient is equal to 1. The algorithm to solve (9) is then:

Algorithm 2. {{1, 2, 3}-inverse U of the given generalized Cholesky factor R}

uij  0, 1 i, j  n {initialization of U}

for j  n downto 1

 if rjj  0 then {note: this test is optional}

 for i j downto 1

 if rii  0 then

 if i  j then uii 1/rii

 else uij (rikukjk i1

j)/rii.

11/21

The test at the third line of Algorithm 2 is optional because it has no influence on the

result. However, including this test allows to save a number of useless floating-point

operations (whose result is zero) whenever R is singular.

By construction, the output of Algorithm 2 is an upper triangular matrix U that has the

property that if the ith row of R is zero, then both the ith row and the ith column of U are

zero. Note that the rank of U is equal to the rank of R, which is itself equal to the rank of the

factorized matrix G and to the trace of IR . Note also that if R is not invertible (in the usual

sense), then UR  IR , however, UR is always idempotent since URUR UIR R UR .

Theorem 4. Let R be a generalized Cholesky factor as defined in Theorem 2, let U be the

corresponding output of Algorithm 2, then U is a {1, 2, 3}-inverse of R.

Proof.

U is a {1}-inverse of R since RUR  IR R  R ,

U is a {3}-inverse of R since RU  (RU)' IR ,

U is a {2}-inverse of R since U is a {1}-inverse of R and has the same rank as R, then the

conclusion follows from ([1], p. 46). Alternatively, one can easily verify that

URU UIR U .☐

Theorem 5. Let A be a m  n matrix, with m  n, set G  A' A, compute the generalized

Cholesky factorization G  R'R using Algorithm 1, compute U  R(1, 2, 3) using Algorithm 2.

Then:

(i) The equation A  QR has a solution in Q such that Q'Q  IR . This solution is Q  AU .

12/21

(ii) The matrix B UU' A' is a {1, 2, 3}-inverse of A.

Proof.

Q'Q U ' A' AU U 'R'RU  (RU)'RU  IR IR  IR ,

AU  QRU  QIR  Q ,

which proves (i).

Since (i) implies that B UQ' , one has:

B is a {1}-inverse of A since ABA  QRUQ'QR  QIR IR R  QR  A ,

B is a {2}-inverse of A since BAB UQ'QRUQ'UIR IRQ'UQ' B,

B is a {3}-inverse of A since AB  QRUQ' QIRQ' (AB)' ,

which proves (ii), and then completes the proof of Theorem 5. ☐

Corollary 3. Set A  H1/ 2X in Theorem 5, then a solution to (1) is given by:

C UU' X 'HZ UU ' X 'WY ,

where U is defined as in Theorem 5.

Proof. This immediately follows from Theorem 5 (ii) and Corollary 1 (iii). ☐

One can note that if H1/ 2X is of full column rank, then U  R1, and the solution

provided by Corollary 3 is equal to that of Corollary 1 (i). Moreover, if H1/ 2X is of column

rank r  n1, then each column of the solution C to problem (1) provided by Corollary 3 has at

most r non-zero coefficients, since the first factor (U) of the solution has n1 r zero rows.

Note, however, that one can find particular examples showing that the above solution is not

always the one having the minimum number of non-zero coefficients.

13/21

4. Computational test

4.1 Implementation of methods

The methods defined in Corollary 2 and Corollary 3 for solving (1) have been

implemented in Matlab code (version 7.5), and are listed in Appendix 1. The Matlab function

corresponding to Corollary 2 is named "WPLSdagger", and the Matlab function

corresponding to Corollary 3 is named "WPLS123". This makes available various

implementation details that are not specified in the formal definition of algorithms, such as

the way of testing the equivalence to zero of floating point diagonal coefficients, or the way

of avoiding an a posteriori removing of zero rows in Corollary 2 solution. In order to make

the performance of the two tested methods comparable, we avoided the use of high level

Matlab operators such as "inv()", "chol()", or "\", whose implementation is hidden and

compiled.

4.2 Test problems

In order to test the performance of methods for solving (1) in terms of speed, accuracy,

and numerical stability, we must build test problems in a way that allows strict control of

relevant characteristics such as the size and the rank of the equation system, the exact

weighted least-squares residue norm, and the ratio of extreme non-zero singular values of the

system matrix (which can be seen as a kind of generalized condition number). Note that the

solution (C) itself is not relevant for comparisons, since it is not unique in the case of rank

deficient systems. Building coherent test problems having all required properties is not so

easy, and we propose the following method.

14/21

First, one chooses the size parameters m1, n1, m2, n2, the rank parameter r  n1, and

the maximum ratio, denoted r , of non-zero eigenvalues of the Gram matrix X 'HX to be

built. For practical reasons, one must choose the size parameters such that m2  m1 n1. Then

one builds two orthogonal Householder matrices:

M  I  2
uu'

u'u
, with a random column vector u  Rm1,

N  I  2
vv'

v'v
, with a random column vector v  Rn1,

where the identity matrices (I) have the appropriate size in each case. One also builds a r  r

diagonal matrix D, whose ith diagonal coefficient is equal to r
(r  i) / 2(r  1), 1 i  r. Then

one selects the first r columns of M and the first r rows of N , and one builds the matrix:

A  M:,1:rDN1:r, : .

The m1 n1 matrix A is of rank r , the greatest eigenvalue of A' A is equal to r , and the

lowest non-zero eigenvalue of A' A is equal to 1. Thus, we can set X 'HX  A' A , that is

H1/ 2X  A .

For the next step, one builds a random (m1 r)  n2 real matrix F , and one sets:

P  M:, (r1):m1
F ,

where we note that the columns of P are orthogonal to those of A .

One can now build a suitable diagonal matrix H  (hii),1 i  m1, by taking:

hii  max | aijj1

n1 |, | pijj1

n 2 |

 




2
,

which guarantees that both A and P can be factorized with H1/ 2 as the first factor, in order to

build a coherent problem, and one obtains the first matrix of problem (1) by:

X  (H1/ 2)† A .

For the next step, one builds a random n1 n2 real matrix V , and one sets:

HZ  H1/ 2(AV  P).

15/21

It remains to build a m1 m2 matrix W , with non-negative coefficients, such that

wij  hii,1 i  m1
j1

m 2 , and such that there is a m2 n2 matrix Y that is solution of the

equation WY  HZ . Unfortunately, there is no available deterministic method for factorizing

HZ in a suitable way, thus we must use a random "trials and errors" approach, as follows.

Repeat the following four steps until WY  HZ (at the working precision):

- build a m1 m2 matrix T  (tij) with non-negative random coefficients,

- compute the diagonal matrix K with kii  tijj1

m 2 ,1 i  m1,

- set W  HK1T ,

- set Y W †HZ .

The Moore-Penrose inverse W † can be obtained using an accurate (slow) SVD method. In

general, one obtains a suitable solution quite rapidly when m2  m1, and r is not too large.

However, one can observe that the above process frequently fails for large systems if r  212,

which seems to be a practical limit for generating problems in common computational

environments such as Matlab.

We have now suitable matrices X , Y , and W for problem (1), and it remains to

compute the exact weighted sum of quadratic residues (i.e. the minimized E function of (1))

corresponding to this problem as a reference value for testing the accuracy of solving

methods. In order to do this, we use the fact that the columns of the matrix P are orthogonal

to those of A , and the proof of Theorem 1. Then one obtains:

Eexact  P
2  dik

k1

n 2


i1

m1

 ,

where the additional terms (dik) are defined as in (6).

16/21

4.3 Results

 Using the procedure described in Section 4.2, we generated various problems of type

(1) with the parameter sets n1 128, 256, 512 , r  16, 256, 4096 , r  n1, 7
8 n1 

(corresponding to "full rank" and "rank deficient" systems, respectively), while m1  2n1,

m2  2m1, n2  32. Using all parameter combinations, one obtained 18 types of problems,

and 10 problems of each type were randomly generated. Each problem was solved by both the

WPLSdagger function (fast Moore-Penrose inverse based solution), and the WPLS123

function (fast {1, 2, 3}-inverse based solution). In each case, the solving time was recorded in

milliseconds (in Matlab 7.5, on a MacBook computer), and the accuracy of each method was

measured by (Emethod  Eexact)/Eexact . The mean solving times are reported in Table 1, and

the mean accuracy values are reported in Table 2. All differences between the two methods

are statistically significant (p<.01) using the sign test.

Table 1. Mean solving time (in milliseconds) of WPLS problems by the two methods.

n1 :
r :

16

128
256

4096

16

256
256

4096

16

512
256

4096

Full rank

WPLSdagger

WPLS123

Rank deficient

WPLSdagger

WPLS123

126

109

103

89

126

109

102

89

127

109

102

89

608

523

502

433

610

523

497

434

607

523

498

433

3438

2868

2805

2412

3438

2869

2803

2412

3434

2869

2803

2468

As one can see in Table 1, the {1, 2, 3}-inverse based method is faster than the fast

Moore-Penrose inverse based method, in all cases. One can also note that rank deficient

systems are solved faster than full rank systems of the same size by both methods, which is a

consequence of the zeroing of certain rows in Algorithm 1. Moreover, an inspection of Table

2 clearly shows that the {1, 2, 3}-inverse based method is accurate in all cases, while the fast

17/21

Moore-Penrose inverse based method is less accurate and highly sensitive to the parameter

r , thus numerically instable. In summary, it seems that the {1, 2, 3}-inverse based method is

globally preferable to other known methods suitable for solving problem (1), except if, for

some particular reason, one requires a minimum norm solution. However, in this last case, it

is certainly preferable to use an accurate and numerically stable method for computing the

Moore-Penrose inverse, but the price to be paid for this is, in general, a quite long

computation time.

Table 2. Mean accuracy of the two methods in solving WPLS problems.

n1 :
r :

16

128
256

4096

16

256
256

4096

16

512
256

4096

Full rank

WPLSdagger

WPLS123

Rank deficient

WPLSdagger

WPLS123

8.9E-6

< 10-12

3.6E-6

< 10-12

9.9E-3

< 10-12

11.9E-3

< 10-12

1.532

< 10-12

2.872

< 10-12

1.4E-6

< 10-12

0.9E-6

< 10-12

1.3E-3

< 10-12

2.1E-3

< 10-12

0.436

< 10-12

0.570

< 10-12

0.2E-6

< 10-12

0.1E-6

< 10-12

0.2E-3

< 10-12

0.3E-3

< 10-12

0.099

< 10-12

0.137

< 10-12

5. Conclusion

 We have first generalized "weighted least-squares" (WLS) to "weighted pairing least-

squares" (WPLS) problems. This generalization, which allows using a rectangular weight

matrix, includes, as particular cases, the classical weighted and non-weighted least-squares

problems, and it is more particularly suitable in the framework of data alignment problems.

We have shown that WPLS problems can always be reduced to problems having the same

form as WLS problems, and we have studied two fast methods for solving such problems in

the case of rank deficient systems as well as of full rank systems. Numerical experiments

clearly showed that the best solving method, in terms of speed, accuracy, and numerical

18/21

stability, is based on a special {1, 2, 3}-inverse whose computation is very simple. In contrast,

approaches based on the Moore-Penrose inverse lead to slow computation, or alternatively to

numerical instability.

Appendix 1

The following codes are provided for example, and for academic use only. The code is

not optimized and exception cases are not managed.

Matlab code (version 7.5) of the WPLSdagger function:

function [C,Emethod,time] = WPLSdagger(X,Y,W)
% Moore-Penrose inverse based solution of a WPLS problem
tic % start the clock
[m1,n1]=size(X); [m2,n2]=size(Y); H=sum(W,2); g=X'*((H*ones(1,n1)).*X);
% s = full row rank generalized Cholesky factor of g
tol=n1*eps(norm(g,inf));
s=zeros(n1,n1); ii=0;
for i=1:n1
 ii=ii+1;
 v=g(i,i:n1)-s(1:(ii-1),i)'*s(1:(ii-1),i:n1);
 if v(1)>tol
 s(ii,i)=sqrt(v(1));
 if i<n1
 s(ii,(i+1):n1)=v(2:end)/s(ii,i);
 end
 else ii=ii-1; end
end
rs=ii; s=s(1:rs,:);
% r = classical upper Cholesky factor of ss'
g=s*s';
r=zeros(rs,rs);
for i=1:rs
 v=g(i,i:rs)-r(1:(i-1),i)'*r(1:(i-1),i:rs);
 r(i,i)=sqrt(v(1));
 if i<rs
 r(i,(i+1):rs)=v(2:end)/r(i,i);
 end
end
% u = classical inverse of r
u=zeros(rs,rs);
for j=rs:-1:1
 for i=j:-1:1
 if i==j
 u(i,i)=1/r(i,i);
 else
 u(i,j)=-r(i,(i+1):j)*u((i+1):j,j)/r(i,i);
 end
 end
end
% iss = inverse of ss'
iss=u'*u;
% solution
C=s'*iss*iss*s*X'*W*Y;
time=toc; % record the solving time
% compute the weighted sum of quadratic residues

19/21

XC=X*C;
Emethod=0;
for i=1:m1
 for j=1:m2
 Emethod=Emethod+W(i,j)*sum((XC(i,:)-Y(j,:)).^2,2);
 end
end
end

Matlab code (version 7.5) of the WPLS123 function:

function [C,Emethod,time] = WPLS123(X,Y,W)
% {1,2,3}-inverse based solution of a WPLS problem
tic % start the clock
[m1,n1]=size(X); [m2,n2]=size(Y); H=sum(W,2); g=X'*((H*ones(1,n1)).*X);
% r = generalized Cholesky factor of g
tol=n1*eps(norm(g,inf));
r=zeros(n1,n1);
for i=1:n1
 v=g(i,i:n1)-r(1:(i-1),i)'*r(1:(i-1),i:n1);
 if v(1)>tol
 r(i,i)=sqrt(v(1));
 if i<n1
 r(i,(i+1):n1)=v(2:end)/r(i,i);
 end
 end
end
% u = {1,2,3}-inverse of r
u=zeros(n1,n1);
for j=n1:-1:1
 if r(j,j)~=0
 for i=j:-1:1
 if r(i,i)~=0
 if i==j
 u(i,i)=1/r(i,i);
 else
 u(i,j)=-r(i,(i+1):j)*u((i+1):j,j)/r(i,i);
 end
 end
 end
 end
end
% solution
C=u*u'*X'*W*Y;
time=toc; % record the solving time
% compute the weighted sum of quadratic residues
XC=X*C;
Emethod=0;
for i=1:m1
 for j=1:m2
 Emethod=Emethod+W(i,j)*sum((XC(i,:)-Y(j,:)).^2,2);
 end
end
end

References

20/21

[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications (2nd

Ed.), Springer-Verlag, New York, 2003.

[2] K.P. Bube and R.T. Langan, Hybrid l1/l2 minimization with applications to tomography,

Geophysics 62(4) (1997) 1183-1195.

[3] P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural

Networks 15 (2002) 1185-1196.

[4] P. Courrieu, Fast computation of Moore-Penrose inverse matrices, Neural Information

Processing – Letters and Reviews 8(2) (2005) 25-29.

[5] L. Giraud, J. Langou, M. Rozloznik, and J. van den Eshof, Rounding error analysis of the

classical Gram-Schmidt orthogonalization process, Numerische Mathematik 101 (2005) 87-

100.

[6] S.-H. Lai, Robust image matching under partial occlusion and spatially varying

illumination change, Computer Vision and Image Understanding 78 (2000) 84-98

[7] R.A. Maronna, R.D. Martin, and V.J. Yohai, Robust Statistics: Theory and Methods, John

Wiley & Sons Ltd, New York, 2006.

[8] M.A. Rakha, On the Moore-Penrose generalized inverse matrix, Applied Mathematics and

Computation 158 (2004) 185-200.

21/21

[9] W. Wang and J. Zhao, Perturbation analysis for the generalized Cholesky factorization,

Applied Mathematics and Computation 147 (2004) 601-606.

[10] J.Y. Yuan, Numerical methods for generalized least squares problems, Journal of

Computational and Applied Mathematics 66 (1996) 571-584.

[11] J. Zhao, The generalized Cholesky factorization method for saddle point problems,

Applied Mathematics and Computation 92 (1998) 49-58.

[12] T. Zhou and D. Han, A weighted least squares method for scattered data fitting, Journal

of Computational and Applied Mathematics 217 (2008) 56-63.

