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Abstract

In this paper, we present a Branch-and-Bound procedure to mini-

mize total tardiness on one machine with arbitrary release dates. We

introduce new lower bounds and we generalize some well-known dom-

inance properties. Our procedure handles instances as large as 500

jobs although some 60 jobs instances remain open. Computational

results show that the proposed approach outperforms the best known

procedures.
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1 Introduction, General Framework

In this paper we consider the scheduling situation where n jobs J1, . . . , Jn

have to be processed by a single machine and where the objective is to min-

imize total tardiness. Associated with each job Ji, are a processing time pi,

a due date di, and a release date ri. All data are supposed to be positive in-

tegers. A job cannot start before its release date, preemption is not allowed,

and only one job at a time can be scheduled on the machine. The tardiness

of a job Ji is defined as Ti = max (0, Ci − di), where Ci is the completion

time of Ji. The problem is to find a feasible schedule with minimum total

tardiness
∑

Ti. The problem, denoted as 1|ri|
∑

Ti, is known to be NP-hard

in the strong sense [15].

A lot of research has been carried on the problem with equal release dates

1||
∑

Ti. Powerful dominance rules have been introduced by Emmons [10].

Lawler [12] has proposed a dynamic programming algorithm that solves the

problem in pseudo-polynomial time. This algorithm has been extended for

scheduling serial batching machines by Baptiste and Jouglet [3]. Finally,

Du and Leung have shown that the problem is NP-Hard [9]. Most of the

exact methods for solving 1||
∑

Ti strongly rely on Emmons’ dominance rules.

Potts and Van Wassenhove [14], Chang et al. [6] and Szwarc et al. [16], have

developed Branch-and-Bound methods using the Emmons rules coupled with

the decomposition rule of Lawler [12] together with some other elimination

rules. The best results have been obtained by Szwarc, Della Croce and Grosso

[16, 17] with a Branch-and-Bound method that efficiently handles instances

with up to 500 jobs.

There are less results on the problem with arbitrary release dates. Chu
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and Portmann [7] have introduced a sufficient condition for local optimality

which allows them to build a dominant subset of schedules. Chu [8] has also

proposed a Branch-and-Bound method using some efficient dominance rules.

This method handles instances with up to 30 jobs for the hardest instances

and with up to 230 jobs for the easiest ones.

The aim of this paper is to propose an efficient Branch-and-Bound method

with constraint propagation to solve the problem with arbitrary release dates.

In the remaining parts of this introduction, we describe the general framework

of our Branch-and-Bound procedure. The several “ingredients” that make it

efficient will be described in the remaining sections.

In the following, a time window is associated with each job Ji; it rep-

resents the time interval within which each job can be scheduled. Before

starting the search, the time window of Ji is initially set to [ri,M), where ri

is the release date of the job and where M is a large value such as the largest

release date plus the sum of the processing times. During the Branch-and-

Bound, the time windows are tightened due to decisions taken at each node

of the search tree together with constraint propagation and dominance rules.

To keep it simple, we will say that the lower bound of the time window is the

release date ri of Ji (while this value can be larger than the initial release

date). The upper bound of the time window δi will be referred to as the

deadline of Ji.

In Constraint Programming terms, a variable Ci representing the com-

pletion time of Ji is associated with each job. Its domain is [ri + pi, δi).

The criterion is an additional variable T̄ that is constrained to be equal

to
∑

i max(0, Ci − di). Arc-B-Consistency (see for instance [13]) is used to
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propagate this constraint. It ensures that when a schedule has been found,

the value of T̄ is actually the total tardiness of the schedule. To find an op-

timal solution, we solve successive variants of the decision problem.

At each iteration, we try to improve the best known solution and thus, we

add an additional constraint stating that T̄ is lower than or equal to the best

solution minus 1. It now remains to show how to solve the decision variant

of the problem.

We rely on the edge-finding branching scheme (see for instance [4]).

Rather than searching for the starting times of jobs, we look for a sequence

of jobs. This sequence is built both from the beginning and from the end of

the schedule. Throughout the search tree, we dynamically maintain several

sets of jobs that represent the current state of the schedule (see Figure 1).

• P is the sequence of the jobs scheduled at the beginning,

• Q is the sequence of the jobs scheduled at the end,

• NS is the set of unscheduled jobs that have to be sequenced between

P and Q,

• PF ⊆ NS (Possible First) is the set of jobs which can be scheduled

immediately after P ,

• and PL ⊆ NS (Possible Last) is the set of jobs which can be scheduled

immediately before Q.

At each node of the search tree, a job Ji is chosen among those in PF and

it is scheduled immediately after P . Upon backtracking, this job is removed

from PF . The heuristic used to select Ji comes from [7, 8]: Among jobs
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of PF with minimal release date, select the job that minimizes the function

max(ri + pi, di). Of course, if NS is empty then a solution has been found

and we can iterate to the next decision problem. If NS 6= ∅ while PF or

PL is empty then a backtrack occurs. Moreover, several propagation rules

relying on jobs time-windows, are used to update and adjust these sets. These

rules, known as edge-finding [5, 2], are also able to adjust the time-windows

according to the machine constraint.

Due to our branching scheme, jobs are sequenced from left to right, so

it may happen that at some node of the search tree, all jobs of NS have

the same release date (the completion time of the last job in P ). In such a

case, to improve the behavior of the Branch-and-Bound method, we apply

the dynamic programming algorithm of Lawler [12] to optimally complete

the schedule.

Such a Branch-and-Bound procedure is very easy to implement on top

of a constraint-based scheduling system such as Ilog Scheduler. Unfor-

tunately, it does not perform well since no specific technique has been used

in the above formulation to solve the total tardiness problem. In the follow-

ing sections, we introduce dominance properties (Section 2), lower-bounds

(Section 3) and constraint propagation techniques (Section 4) to improve

the behavior of the Branch-and-Bound method. Finally, our computational

results are reported in Section 5.

5



2 Dominance Properties

A dominance rule is a constraint that can be added to the initial problem

without changing the value of the optimum, i.e., there is at least one optimal

solution of the problem for which the dominance holds. Dominance rules can

be of prime interest since they can be used to reduce the search space.

In this section, we present a generalization of Emmons dominance rules

that are valid either if preemption is allowed or if jobs have identical process-

ing times. We also propose some dominance rules relying on the sequence P .

Finally, we introduce an Intelligent Backtracking scheme.

2.1 Emmons Rules

We recall Emmons Rules and generalize them to take into account release

dates. Unfortunately, these rules are not valid if preemption is allowed (or,

for some of them, if jobs have identical processing times). Nevertheless, we

will see in Section 3 that these rules can be used in a pre-processing phase

before computing a preemptive lower-bound of the problem.

2.1.1 Initial Emmons Rules

Emmons [10] has proposed a set of dominance rules for the special case

where release dates are equal (1||
∑

Ti). These rules allow us to deduce

some precedence relations between jobs. Following Emmons notation, Ai

and Bi are the sets of jobs that have to be scheduled, according to the

dominance rules, respectively after and before Ji. In the following, we say

that Ji precedes Jk when there is an optimal schedule in which Ji precedes
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Jk and for which all previously mentioned dominance properties hold.

Emmons Rule 1. ∀i, k(i 6= k), if pi ≤ pk and di ≤ max(
∑

Jj∈Bk
pj + pk, dk)

then Ji precedes Jk (Ji ∈ Bk and Jk ∈ Ai).

Emmons Rule 2. ∀i, k(i 6= k), if pi ≤ pk and di > max(
∑

Jj∈Bk
pj + pk, dk)

and di + pi ≥
∑

Jj /∈Ak
pj, then Jk precedes Ji.

Emmons Rule 3. ∀i, k(i 6= k), if pi ≤ pk and dk ≥
∑

Jj /∈Ai
pj, then Ji

precedes Jk.

2.1.2 Generalized Emmons Rules (1|ri, pmtn|
∑

Ti)

Our aim is to generalize Emmons rules to the situation where we have arbi-

trary release dates. Such a generalization is relatively easy to do if we relax

the non-preemption constraint. We will see that the resulting rules can be

used to tighten the lower bound of the non preemptive problem (Section 3.4).

In the preemptive case, Ji is said to precede Jk if and only if

Jk starts after the end of Ji. As in Section 2.1.1, Ai and Bi respectively

denote the set of jobs that are known to execute after and before Ji.

Note that active schedules are dominant, i.e., we only consider schedules

in which jobs or pieces of jobs cannot be scheduled earlier without delaying

another job. It is easy to see that all active schedules have exactly the same

completion time Cmax. To compute this value, we can build the schedule

where jobs are scheduled in non decreasing order of release dates. Now

we can tighten the deadlines since each job Ji cannot be completed after

Cmax −
∑

Jj∈Ai
pj.

In the following, we note Cmax(E) the completion time of active sched-

ules of a subset E of jobs (other jobs are not considered). As mentioned
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previously, all active schedules have the same completion time and it can be

computed in polynomial time. Cmax(E) is a lower bound of the maximal

completion time of the jobs of E in any schedule of {J1, . . . , Jn}. If Bi, as

in Section 2.1.1, is a set of jobs that have to be processed before Ji then Ji

cannot start before Cmax(Bi), i.e., the release date ri can be adjusted to

max(ri, Cmax(Bi)).

First, we make the following remark which allows us to compare the val-

ues of the tardiness of a job Ji in two schedules S and S ′.

Remark 1. Let Ci and C ′

i be the completion times of Ji on two preemptive

schedules S and S ′ and let Ti and T ′

i be respectively the tardiness of Ji in S

and S ′.

• If C ′

i < Ci and di ≤ Ci then T ′

i − Ti = max(C ′

i, di) − Ci ≤ 0 (see

Figure 2).

• If di ≥ max(Ci, C
′

i) then Ji is on time in S and in S ′ and T ′

i − Ti = 0.

Generalized Emmons Rule 1. Let Ji and Jk be two jobs such that ri ≤ rk,

pi ≤ pk and di ≤ max(rk +pk, dk), then Ji precedes Jk (Ji ∈ Bk and Jk ∈ Ai).

Generalized Emmons Rule 2. Let Ji and Jk be two jobs such that ri ≤ rk,

di ≤ dk and δi ≤ dk + pk, then Ji precedes Jk

Generalized Emmons Rule 3. Let Ji and Jk be two jobs such that ri ≤ rk

and δi ≤ dk, then Ji precedes Jk.

We now prove all these rules in the following single proof.
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Proof. Consider a schedule S in which job Ji and job Jk satisfy the assump-

tions of one of the Generalized Emmons Rules. First, assume that job Ji is

completed before job Jk. Rescheduling the pieces of the two jobs, such that

all pieces of Ji are completed before the pieces of Jk, can only decrease the

tardiness of Ji, and leave unchanged the tardiness of Jk.

Now, assume that job Jk is completed before job Ji (Ck < Ci). Let us

reschedule the pieces of Ji and Jk such that all pieces of Ji are completed

before the pieces of Jk (see Figure 3). Note that the exchange is valid since

ri is lower than or equal to rk. We show that this exchange does not increase

total tardiness. Let S ′ be this new schedule and let C ′

i be the completion

time of Ji in S ′. In S ′, Jk is completed at time C ′

k = Ci. If Ci ≤ di, the jobs

Ji and Jk are on time in the two schedules S and S ′ and the exchange has

no effect. From now on, we suppose that di < Ci.

Since the completion times of all other jobs remain the same, the difference

between the total tardiness of S ′ and of S is exactly ∆ = T ′

i−Ti+T ′

k−Tk. Fol-

lowing Remark 1, T ′

i−Ti = max(C ′

i, di)−Ci and T ′

k−Tk = C ′

k−max(Ck, dk) =

Ci − max(Ck, dk).

Assume that Ji and Jk follow the assumptions of the Generalized Emmons

Rule 1. We have, ∆ = max(C ′

i, di) − max(Ck, dk). Since pi ≤ pk, note that

all pieces of Ji are completed before Ck in S ′. We have then C ′

i ≤ Ck and

∆ ≤ max(Ck, di)−max(Ck, dk). If max(rk +pk, dk) = dk then di ≤ dk, which

leads to ∆ ≤ 0. If max(rk + pk, dk) = rk + pk then di ≤ rk + pk ≤ Ck and

dk ≤ rk + pk ≤ Ck, which leads to ∆ ≤ Ck − Ck = 0.

Now, assume that Ji and Jk follow the assumptions of the Generalized Em-

mons Rule 2. We have dk + pk ≥ δi ≥ Ci , thus dk ≥ Ci − pk. All pieces
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of Jk are scheduled between C ′

i and Ci so C ′

i ≤ Ci − pk and T ′

i − Ti =

max(C ′

i, di) − Ci ≤ max(Ci − pk, di) − Ci. Thus ∆ = T ′

i − Ti + T ′

k − Tk ≤

max(Ci − pk, di) − max(Ck, dk). We have di ≤ dk and Ci − pk ≤ dk then

∆ ≤ 0.

Now, assume that Ji and Jk follow the assumptions of the Generalized

Emmons Rule 3. Note that we have Ci ≤ δi, which leads to T ′

i − Ti =

max(C ′

i, di) − Ci ≤ 0. We have Ck ≤ Ci ≤ δi ≤ dk then Jk is on time in S

and in S ′. Thus T ′

k − Tk = 0 and ∆ ≤ 0.

In all cases, the exchange does not increase total tardiness.

As shown in Figure 4, the Generalized Emmons Rule 1, does not hold in

the non-preemptive case. Indeed, J1 would have to be completed before J2,

which is not true in the non-preemptive case.

2.1.3 Applying Generalized Emmons Rules

We can use these dominance rules one after the other to adjust the data of

an instance: if a set Bi of jobs is proved to precede Ji according to the Ge-

neralized Emmons Rules, it is possible to adjust ri to ri = max(ri, Cmax(Bi)).

Each rule can be implemented in O(n2). The jobs are sorted in non-decreasing

order of release dates in a heap structure, which runs in O(n log n). For each

job Ji, we consider the set of jobs which are completed before Ji according

to the Generalized Emmons Rules. Computing the earliest completion time

of this set and adjusting ri runs in O(n), since the jobs are already sorted

in non-decreasing order of release dates. The heap structure is maintained

in O(log n). Therefore, we have an overall time complexity of O(n) for each

job. New precedence dominances can be found and the rules might have to
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be applied again. Each job can be adjusted at most n − 1 times. Hence, in

the worst case the whole propagation is in O(n3).

2.1.4 Equal Length Jobs

We come back to the initial non-preemptive problem with release dates. We

prove that, considering two jobs which have the same processing time, the

first Emmons Rule is valid. Note that, contrary to the Generalized Emmons

Rules, this dominance property is valid even in the non-preemptive case.

Theorem 1. Let Ji and Jk be two jobs such that pi = pk. If ri ≤ rk and

di ≤ max(rk + pk, dk), then there exists an optimal schedule in which Ji

precedes Jk.

Proof. Consider a schedule S in which job Ji and job Jk satisfy the assump-

tions and in which job Jk is completed before job Ji. Let us exchange Ji and

Jk in S. Note that the exchange is valid since ri is lower than or equal to the

earliest start time of Jk. We have pi = pk, then the completion time of the

other jobs do not change. This exchange does not increase total tardiness as

it has been proved for the Generalized Emmons Rule 1.
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2.2 Removing Dominated Sequences

Several dominance properties have been introduced in [7, 8]. These rules

focus on the jobs in NS plus the last job of P . They determine that some

precedence constraints can be added. Such constraints allow us to adjust

release dates and to filter PF . All these rules are used in our Branch-and-

Bound procedure. On top of this, we also consider dominance properties

that take into account the complete sequence P . Informally speaking, our

most basic rule states that if the current sequence P can be “improved”, then

it is dominated and we can backtrack.

In the following, let Cmax(P ) and T (P ) denote the completion time and

the total tardiness associated with the current sequence P . Now consider a

permutation P ′ of P of and let us examine under which condition P ′ is “as

good as” P .

• If Cmax(P ) ≤ Cmax(P
′) and T (P ) ≤ T (P ′), then we can replace se-

quence P ′ by sequence P in any feasible schedule so sequence P is at

least “as good as” sequence P ′.

• Now, assume that we have Cmax(P ) > Cmax(P
′). Let rmin be the

smallest release date of job belonging to set NS . If we replace se-

quence P ′ by sequence P in a feasible schedule, all jobs in NS ∪Q have

to be shifted of at most: max(Cmax(P ), rmin) − max(Cmax(P
′), rmin)

time units. So, the additional cost for jobs in NS ∪ Q is at most

(|NS | + |Q|)(max(Cmax(P ), rmin) − max(Cmax(P
′), rmin)). Hence, P is

at least as good as P ′ if T (P ) + (|NS | + |Q|)(max(Cmax(P ), rmin) −

max(Cmax(P
′), rmin)) ≤ T (P ′).
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Now we can define the notion of “better” sequence:

Definition 1. We say that sequence P is “better” than sequence P ′ if se-

quence P is at least “as good as” sequence P ′ and if either (1) sequence P ′ is

not at least “as good as” sequence P (2) or if sequence P is lexicographically

smaller than P ′.

To compare two sequences, we just have to build the schedules associated

with them and this can be done in linear time.

We propose simple techniques to detect that a job Ji ∈ PF cannot be

actually scheduled just after P and thus can be removed from PF . We note

P |Ji the sequence where Ji is scheduled immediately after P . Informally

speaking, our most basic rule states that if the sequence P |Ji can be “im-

proved”, then it is dominated, so Ji can be removed from set PF .

Theorem 2. Let Ji be a job belonging to PF . If there exists a permutation

π which is “better” than P |Ji, then sequence P |Ji is dominated.

Proof. If sequence π is “better” than P |Ji, then we can replace sequence P |Ji

by sequence π in any feasible schedule so P |Ji is dominated.

If scheduling Ji after P leads to a dominated schedule, then Ji can be

removed from the set PF .

To find better permutations π of P |Ji, we can enumerate all permutations

π that are identical to P |Ji except for the k last jobs. When k is large,

we have a great reduction of the search space but this takes a lot of time.

Experimentally, k = 6 seems to be a good trade-off between the reduction of

the search tree and the time spent in the enumeration.
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We can also enumerate the permutations π that are obtained from P |Ji by

inserting Ji somewhere inside P or by interchanging Ji with another job of P .

Since there are O(n) such permutations and since comparing two sequences

can be done in linear time, the algorithm runs in O(n2) for a given job Ji.

2.3 Intelligent Backtracking

Intelligent Backtracking techniques “record”, throughout the search tree,

some situations that do not lead to a feasible (non-dominated) solution.

Given a node ν of the search tree, let P ν be the “value” taken by sequence

P at node ν. Whenever a backtrack occurs, the node ν is stored in a “no-

good” list. We only save: (1) the set of jobs belonging to sequence P ν , (2) the

completion time Cmax(P
ν) of sequence P ν , and (3) the cost T (P ν) associated

with sequence P ν .

Now assume that we encounter another node µ such that sequence P ν

is a permutation of sequence P µ, i.e., the set of jobs belonging to sequence

P µ is exactly the set of jobs belonging to sequence P ν . If sequence P ν is a

“better” sequence (see Definition 1) than sequence P µ, then µ is dominated

by ν.

We use this information in two ways. First, we can use it to filter the

set of possible first jobs PF . Suppose that scheduling a job Ji just after the

current sequence P leads to a node µ which is dominated by a node ν which

has been stored in the “no-good” list. The sequence P |Ji is then dominated

and we can remove Ji from set PF . We can also use this information in

the following way. When a backtrack occurs, the backtracking strategy can

lead to a node µ which is dominated by a node ν which has been stored
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in the “no-good” list. We have then to backtrack again and that until the

backtracking strategy could lead to a node which is not dominated.

With a view to using efficiently the “no-good” list, we use an Hash-

Table. Most of the time, it allows us to obtain a pertinent state of the list in

O(n log n). A state of the list consists of a set of jobs sorted in Lexicographic

order coded with a list of pointers, and a list of couples (T (P κ), Cmax(P
κ)),

also coded with a list of pointers, which fit to the different states of nodes κ

which have ever been visited with this set of jobs. Assume that we encounter

a node µ such that the set of jobs belonging to sequence P µ is the same

than a state of the “no-good” list. Sorting jobs in Lexicographic order runs

in O(n log n). Computing an index in the Hash-Table of this set of jobs

runs in O(n). Since jobs are sorted in Lexicographic order, comparing two

sets of jobs runs in O(n). If an associated couple (T (P κ), Cmax(P
κ)) of this

state is such that its tardiness T (P κ) and its completion time Cmax(P
κ) are

respectively greater than or equal to those of sequence P µ, then this couple

is replaced by the tardiness T (P µ) and the completion time Cmax(P
µ) of

sequence P µ.

2.4 Adjusting Deadlines

Consider a job Ji ∈ NS and assume that the current node of the search

tree can be extended to a feasible optimal schedule where Ji is completed

at some time point Ci. Let P |λ|Ji|µ|Q be the sequence of the jobs in the

feasible optimal schedule and let us modify this sequence by removing Ji and

inserting it somewhere in P . The new sequence is P ′|Ji|P
′′|λ|µ|Q, where

P ′|Ji|P
′′ is the sequence derived from P after the insertion of Ji.
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In the following, we assume that ri ≤ Cmax(P
′). Under this hypothesis,

it is easy to see that Cmax(P
′|Ji|P

′′|λ) ≤ Cmax(P |λ|Ji) and thus the tar-

diness of the jobs in µ|Q has not been increased. On top of that, the

jobs in λ have been shifted of at most Cmax(P
′|Ji|P

′′)−Cmax(P ) time units.

Thus, the total tardiness of the jobs in λ has been increased of at most

|λ|(Cmax(P
′|Ji|P

′′)−Cmax(P )) ≤ (|NS | − 1)(Cmax(P
′|Ji|P

′′)−Cmax(P )). Fi-

nally, the total tardiness of the jobs in P ∪ {Ji} has been increased of

T (P ′|Ji|P
′′) − (T (P ) + max(0, Ci − di)). Consequently, the total tardiness

has been increased of at most

(|NS |−1)(Cmax(P
′|Ji|P

′′)−Cmax(P ))+T (P ′|Ji|P
′′)−T (P )−max(0, Ci−di).

Since the initial schedule is optimal, the above expression is greater than or

equal to 0 and thus,

Ci ≤ di + (|NS | − 1)(Cmax(P
′|Ji|P

′′) − Cmax(P )) + T (P ′|Ji|P
′′) − T (P ).

In other words, the deadline δi of Ji can be adjusted to

min(δi, di + (|NS | − 1)(Cmax(P
′|Ji|P

′′) − Cmax(P )) + T (P ′|Ji|P
′′) − T (P )).

Since there are O(n) sequences P ′|Ji|P
′′ (with ri ≤ Cmax(P

′)) that can be

derived from P and since the completion time and the total tardiness of a

sequence can be computed in linear time, all adjustments of deadlines related

to Ji can be computed in O(n2).

3 Lower Bounds

Relaxing non-preemption is a standard technique to obtain lower bounds for

non-preemptive scheduling problems. Unfortunately, the problem with no
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release dates (for which the preemption is not useful) is already NP-Hard,

so some additional constraints have to be relaxed to obtain a lower bound

in polynomial time. From now on, assume that jobs are sorted in non-

decreasing order of due dates. First, Chu’s lower bound is recalled then,

a new lower bound is described and finally, we show how the Generalized

Emmons Rules can be used to improve this lower bound.

3.1 Chu’s Lower Bound

Chu [8] has introduced an O(n log n) lower bound, lbChu , that can be com-

puted as follows. Preemption is relaxed and jobs are scheduled according to

the SRPT (Shortest Remaining Processing Time) rule. Each time a job be-

comes available or is completed, a job with the shortest remaining processing

time among the available and uncompleted jobs is scheduled (see Table 1 and

Figure 5). The computation of the lower bound is based on Proposition 1

([8]).

Ji ri pi di

J1 0 5 5

J2 1 4 6

J3 3 1 8

Table 1: An Instance of 1|ri|
∑

Ti.

Proposition 1. Let [i] denote the index of the job which is completed in the
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ith position in the SRPT schedule. The total tardiness is at least

n∑

i=1

max(C[i] − di, 0).

3.2 A New Lower Bound

We introduce two propositions, that are valid in the preemptive case only.

Proposition 2 is a weak version of the Generalized Emmons Rule 1. Proposi-

tion 3 shows that under some conditions, due dates can be exchanged without

increasing the objective function.

Proposition 2. Let Ji and Jk be two jobs such that ri ≤ rk, pi ≤ pk and

di ≤ dk, then there exists an optimal schedule in which Jk starts after the

end of Ji.

Proof. See proof of Generalized Emmons Rule 1.

Proposition 3. Let Ji and Jk be two jobs such that ri ≤ rk, pi ≤ pk and

di > dk. Exchanging di and dk does not increase the optimal total tardiness.

Proof. Consider an optimal schedule S of the original instance and let Ci

and Ck be the completion times of Ji and Jk in S. Let ∆ be the difference

between the tardiness of S before and after the exchange.

∆ = max(0, Ci − dk) + max(0, Ck − di) − max(0, Ci − di) − max(0, Ck − dk).

First, assume that Ci < Ck. Note that ∆ = max(dk, Ci) + max(di, Ck) −

max(di, Ci) − max(dk, Ck). If di > Ck then di > Ci and max(di, Ck) −

max(di, Ci) = 0. Moreover, max(dk, Ci) − max(dk, Ck) ≤ 0 since Ci < Ck.

This leads to ∆ ≤ 0. Now, if di ≤ Ck then dk < Ck since di > dk and
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max(di, Ck) − max(dk, Ck) = 0. Moreover, max(dk, Ci) − max(di, Ci) ≤ 0

since di > dk. This leads to ∆ ≤ 0.

Now assume that Ck < Ci. After the exchange of due dates, we exchange

the pieces of the jobs, such that all pieces of Ji are scheduled before those of

Jk. This exchange is valid since ri ≤ rk. In this new schedule, Ji is completed

before or at Ck because pi ≤ pk, thus the tardiness of Ji is lower than or equal

to max(0, Ck−dk). Moreover, Jk is completed at Ci and its tardiness is equal

to max(0, Ci−di). Thus ∆ ≤ max(0, Ci−di)+max(0, Ck−dk)−max(0, Ci−

di) − max(0, Ck − dk) ≤ 0.

These propositions allow us to compute a lower bound lb1 thanks to the

following algorithm.

At each time t, we consider D = {Jj/rj ≤ t ∧ p′j > 0} the set of jobs

available but not completed at t (p′j denotes the remaining processing time

of Jj at time t). Let Ju be the job with the shortest remaining processing

time, and let Jv be the job with the smallest due date. If du = dv, i.e., Ju has

the smallest due date, according to Proposition 2, it is optimal to schedule

one unit of this job. If it is not the case, according to Proposition 3, we

exchange its due date with the one of Jv, the job with the smallest due date.

This new instance has an optimal total tardiness lower than or equal to the

optimal tardiness of the original problem. In this new problem, Ju has now

the smallest due date and the smallest remaining processing time, then it

is optimal to schedule one unit of this job according to Proposition 2. We

increase t and we iterate until all jobs are completed.

At each time t, we build a new problem by exchanging two due dates.

This new problem has an optimal total tardiness lower than or equal to the
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problem before. Hence, at the end of the algorithm, we obtain an optimal

schedule of a problem which has a total tardiness lower than or equal to the

optimal tardiness of the original problem. Therefore, it is a lower bound of

the original problem. Actually, the only relevant time points are when a job

becomes available or when a job is completed. And so there are at most 2n

times t to consider.

We maintain two heaps heapp and heapd which contain respectively, the

uncompleted jobs which are available at time t sorted in non-decreasing order

of remaining processing times, and these jobs sorted in non-decreasing order

of due dates. The insertion, the extraction and the modification of a job of

one heap costs O(log n). Getting the minimum element of one heap costs

O(1). We have at most n insertions (each time a job becomes available), and

at most n extractions (each time a job is completed). At each time t, we have

at most two modifications in heapp and in heapd when we must exchange the

due dates of two jobs. Hence, our algorithm runs in O(n log n).

3.3 Comparison with Chu’s Lower Bound

The schedule built by our algorithm is the same as the one built by Chu. The

algorithms differ from the assignment of the due dates to the jobs. Indeed,

in the algorithm of Chu, the assignment of the due dates is performed at a

“global” level, whereas in our algorithm, the assignment is performed at a

“local” level. We show that lb1 is strictly better than lbChu .

Proposition 4. The lower bound lb1 obtained by our algorithm is stronger

than Chu’s lower bound lbChu .
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Proof. The sets of completion times in the schedules built by our algorithm

and by Chu’s are the same. The difference lies in the assignment of due

dates to the jobs. Let (d1, . . . , dn) be the sequence of due dates sorted in

non-decreasing order. This is the sequence obtained by the algorithm of

Chu. Let (dσ(1), . . . , dσ(n)) be the sequence of due dates obtained by our

algorithm. Let j be the first index such that j 6= σ(j) and let t be the

starting time of the piece of job which is completed at C[j]. This piece is a

piece of the job with the shortest remaining processing time at t. We have

dj ∈ (dσ(j+1), . . . , dσ(n)). Let k be the integer such that σ(k) = j. Note

that dσ(k) ≤ dσ(j). Suppose we exchange the due dates dσ(j) and dσ(k) in the

sequence (dσ(j), . . . , dσ(n)). As a result, the decrease of the total tardiness

is equal to max(0, C[i] − dσ(j)) + max(0, C[k] − dσ(k)) − max(0, C[i] − dσ(k)) −

max(0, C[k] − dσ(j)) which is non-negative as shown in the first part of the

Proposition 3 because C[i] < C[k] and dσ(k) ≤ dσ(j). Now the two sequences

are identical up to index j + 1. We iterate until the sequences are the same.

Hence lbChu ≤ lb1.

We provide an example for an instance with 3 jobs, for which lb1 is equal

to 1 whereas lbChu is equal to 0 (see Table 2 and Figure 6). For this instance,

lb1 is the optimal total tardiness.

3.4 Improving the Lower Bound

To improve our lower bound, we extensively use the Generalized Emmons

Rules as a pre-processing step before the computation of the lower bound.

The lower bound is valid in the preemptive case hence, we can apply the
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Ji ri pi di

J1 0 1 3

J2 1 1 2

J3 1 1 2

Table 2: Example with lb1 > lbChu .

Generalized Emmons Rules. They allow us to tighten the release dates,

which has a dramatic impact on the value of the lower bound.

Recall that, to compute our lower bound, we chronologically build a pre-

emptive schedule (see Section 3.2). We still follow the same algorithm but,

at each time point where a piece of job to schedule next has to be chosen,

we apply the Generalized Emmons Rules on the jobs that are not scheduled

yet.

Since there are O(n) relevant time points and since the propagation of

the Generalized Emmons Rules runs in O(n3), the improved lower bound

can be computed in O(n4). In practice, the propagation of the Generalized

Emmons Rules is much “faster” than O(n3) and the bound is computed in a

reasonable amount of time. In the following we use the notation lb2 to refer

to this bound.
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4 Propagation Rules

4.1 Possible and Impossible Positions

Focacci [11] has recently proposed an original approach based on Constraint

Programming to compute a lower bound of 1|ri|
∑

Ti. In this approach, each

job is associated with a constrained variable identifying all possible positions

(first, second, third, etc.) that the job can assume in a schedule. Following

this idea, we present some rules that deduce that a job cannot be executed

in some positions. This information allows us to adjust the release dates and

to “filter” the sets PF and PL.

From now on, we assume that jobs are sorted in non-decreasing order of

due dates. To simplify the presentation, we also assume that no job has been

sequenced in the right part of the schedule, i.e., P = ∅. If P is not empty, we

can “remove” the jobs of P and apply the rules described below. Of course,

the tardiness of the jobs that were in P has to be added to the lower-bounds

computed below.

As in Section 3.1, [i] denotes the index of the job which is completed in

the ith position in the SRPT schedule. We know that C[i] is a lower bound

of the completion time of the job scheduled in ith position and according to

Proposition 1,
∑n

i=1 max(C[i] − di, 0) is a lower bound of the total tardiness

(each job Ji is assigned to the completion time C[i]).

Suppose now that we want to compute a lower bound of the total tardiness

under the hypothesis that Ji is scheduled in the kth position. We first assign

the completion time C[k] to Ji and we reassign all other completion times to

all other jobs as follows.
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• If k < i the jobs Jk, Jk+1, . . . , Ji−1 are assigned to C[k+1], C[k+2], . . . , C[i]

and the other assignments do not change.

• If k > i the jobs Ji+1, Ji+2, . . . , Jk are assigned to C[i], C[i+1], . . . , C[k−1]

and the other assignments do not change.

Following these new assignments, we have a new lower bound. If it is greater

than T̄ (the upper bound of the objective function, as defined in Section 1),

then Ji cannot be in the kth position.

Now assume that we have shown that positions 1, . . . , k are not possible

for a job Ji then Ji cannot be completed before C[k+1] and cannot start before

C[k]. Hence, the release date ri can be adjusted to max(ri, C[k+1] − pi, C[k]).

Moreover, if k > 1 then i cannot be scheduled first, i.e., Ji can be removed

of PF . Of course, symmetric rules hold when it is known that the last k

positions are not possible for Ji.

To implement this constraint propagation rule, we just have to use the

O(n log n) algorithm of Chu [8], to compute the values C[1], C[2] . . . , C[n].

Then, for each job Ji and for each position k, the lower-bound can be recom-

puted in linear time thanks to the reassignment rules provided above. This

leads to an overall time complexity of O(n3).

Actually, this algorithm can be improved as follows. Assume that we

have computed the lower bound under the assumption that Ji is scheduled

in position k. To compute the lower bound under the assumption that Ji is

scheduled in position k−1, we just have to exchange the assignments of job i

and job [k − 1]. The modification of the lower bound is then max(0, C[k−1] −

di)−max(0, C[k]−di)+max(0, C[k]−d[k−1])−max(0, C[k−1]−d[k−1]). Hence, we

can “try” all possible positions for Ji in linear time. All impossible positions
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can thus be computed in O(n2).

4.2 Look-Ahead

We use a kind of look-ahead technique to test whether a job Ji can be re-

moved of the set of possible first: The job Ji is sequenced immediately after

P and a lower bound of the new scheduling situation (lb2 in the current im-

plementation) is computed. If this lower bound is greater than T̄ then Ji

cannot be first and it is removed from PF . A symmetric rule is used for the

PL set.

5 Experimental Results

All techniques presented in this paper have been incorporated into a Branch-

and-Bound method implemented on top of Ilog Solver and Ilog Sched-

uler. All experimental results have been computed on a PC Dell Latitude

650 MHz running Windows 98.

The instances have been generated with the scheme of Chu [8]. Each

instance is generated randomly from three uniform distributions of ri, pi and

di. The distribution of pi is always between 1 and 10. The distributions of

ri and di depend on 2 parameters: α and β. For each job Ji, ri is generated

from the distribution [0, α
∑

pi] and di − (ri + pi) is generated from the dis-

tribution [0, β
∑

pi]. Four values for α and three values for β were combined

to produce 12 instances sets, each containing 10 instances of n jobs with

n ∈ {10, 20, 30, 40, 50, . . . , 500} jobs.

In Table 3, Chu’s lower bound is compared with the new lower bound lb2

25



Chu’s Lower Bound lb2

Opt. lbChu Gap Bck. CPU lb2 Gap Bck. CPU

34 28 0.21 501340 773.9 34 0.00 0 0.82

111 46 1.41 111 0.00 0 0.06

115 35 2.29 93 0.24 786 0.61

95 47 1.02 603171 1313.33 81 0.17 10361 7.47

32 19 0.68 24913 56.63 31 0.03 172 0.17

12 9 0.33 1 0.06 12 0.00 0 0

79 40 0.98 67 0.18 283 0.33

192 167 0.15 10118 28.18 180 0.07 790 0.6

84 54 0.56 52922 79.8 79 0.06 14 0.05

24 16 0.50 69754 89.36 24 0.00 0 0

Table 3: Comparison Between lbChu and lb2. n = 20 Jobs, α = 0.5, β = 0.5,

no Dominance Property, no Intelligent Backtracking.
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(see Section 3.4). Most times, lb1 = lbChu so, lb1 has been skipped from the

tables to simplify the presentation. To have a fair comparison of the bounds,

the Branch-and-Bound procedure has been run without dominance property

nor Intelligent Backtracking on instances with 20 jobs that are known to be

hard (α = 0.5, β = 0.5) [8]. Each line corresponds to a single instance and we

report the optimal tardiness (Opt.), the value of the lower bound computed

at the root of search tree (lbChu , lb2), the relative gap (Gap) between the

optimum and the two lower bounds, the number of backtracks (Bck.) and

the amount of CPU time in seconds required to solve the instance. A “ ” in

the table indicates that the search was interrupted after 1800 seconds. On

the average, lbChu is at 81% of the optimum value while our lower bound is

much closer (6%).

In Table 4, we show the efficiency of dominance properties, propagation

rules and intelligent backtracking technique presented in this paper. For

that, the Branch-and-Bound procedure has been run with lb2 on instances

with 30 jobs with various combinations of α and β. On each line of Table 4,

the average results obtained over the 10 generated instances are reported.

In columns 3 and 4 (“Chu”), we report the results obtained when the dom-

inance properties of Chu are used [7, 8]. We then add (columns 5 and 6)

the dominance and propagation rules presented in Section 2.1.4 (EQual Pro-

cessing time, EQP), Section 2.2 (Dominance rules relying on Scheduled Jobs,

DSJ) and Section 4.1 (Possible and Impossible Positions, PIP). Intelligent

Backtracking (IB) is then added and results are reported in columns 7 and

8. Finally, the results obtained with the look-ahead (LAH) technique are

described in columns 9 and 10.
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Chu Chu, EQP Chu, EQP Chu, EQP

DSJ, PIP DSJ, PIP DSJ, PIP

IB IB, LAH

α β Bck. CPU Bck. CPU Bck. CPU Bck. CPU

0 0.05 0 0.03 0 0.03 0 0.05 0 0.02

0 0.25 6 0.05 5 0.04 5 0.04 5 0.08

0 0.5 64 0.10 62 0.12 62 0.13 62 0.21

0.5 0.05 91 0.19 23 0.13 20 0.13 5 0.27

0.5 0.25 3990 6.55 188 1.18 172 1.11 58 1.67

0.5 0.5 8468 12.25 349 2.05 297 1.76 107 2.14

1 0.05 188 0.28 29 0.13 23 0.12 9 0.24

1 0.25 698 0.85 47 0.24 30 0.16 12 0.21

1 0.5 0 0.02 0 0.01 0 0.01 0 0.02

1.5 0.05 16 0.03 7 0.05 6 0.04 3 0.04

1.5 0.25 18 0.04 9 0.03 7 0.05 5 0.06

1.5 0.5 1 0.02 1 0.01 1 0.01 1 0.03

Table 4: Efficiency of Dominance Properties, Propagation Rules and Intelli-

gent Backtracking.
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All “ingredients” described in this paper are useful to reduce the search

space. However, the look ahead technique presented in Section 4.2 seems to

be very costly in terms of CPU time compared to the corresponding reduction

of the search tree. This is due to the relatively high complexity of the lower

bound lb2 that is used several times in the look ahead. We tried to use some

weaker lower bound like lb1 but it does not reduce the search space.

The results obtained with the version of the algorithm that incorporates

all ingredients except the look-ahead technique are presented in Table 5.

For each combination of parameters and for each value of n, we provide the

average number of fails and the average computation time in seconds. A

time limit of 3600 seconds has been fixed. All instances are solved within the

time limit for up to 50 jobs. For n = 60, and for (α = 0.5, β = 0.5), most

of the instances cannot be solved. As noticed earlier by Chu [8], instances

generated according to this particular combination seem to be “hard” to

solve in practice.

From this table, we can remark that the “hardness” increases very quickly

with n, especially for (α = 0.5, β = 0.5). For Each combination of parame-

ters, we report the largest size of instance (column “Largest”) for which 80%

of instances are solved within one hour of CPU time. In practice most of

the instances are solved within 30 seconds and our results compare well to

those of [8]. For instance, the average number of fails for the combination

(α = 0.5, β = 0.5) was greater than 36000 in [8], whereas this number is now

lower than 300.
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n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 Largest

α β Bck. CPU Bck. CPU Bck. CPU Bck. CPU Bck. CPU Bck. CPU

0 0.05 0 0.06 0 0.01 0 0.01 1 0.04 2 0.09 0.00 0.08 300

0 0.25 0 0.02 2 0.02 5 0.03 17 0.11 14 0.21 38.90 0.46 120

0 0.5 1 0.00 6 0.02 62 0.11 52 0.25 218 0.95 1205.00 8.62 80

0.5 0.05 2 0.02 14 0.05 20 0.12 71 0.66 104 1.33 335.70 7.20 90

0.5 0.25 3 0.02 30 0.12 172 1.10 621 6.88 2516 45.48 8708.50 227.40 60

0.5 0.5 3 0.02 39 0.14 297 1.76 2824 31.97 12572 203.12 50

1 0.05 1 0.02 10 0.04 23 0.13 49 0.37 95 1.30 122.80 2.90 90

1 0.25 1 0.01 12 0.04 30 0.17 82 0.70 106 1.27 266.00 3.70 500

1 0.5 1 0.01 23 0.08 0 0.01 10 0.07 4 0.06 0.00 0.05 500

1.5 0.05 1 0.03 5 0.02 6 0.04 29 0.24 30 0.34 36.20 0.66 190

1.5 0.25 0 0.00 2 0.01 7 0.03 0 0.02 19 0.12 6.40 0.10 500

1.5 0.5 0 0.01 0 0.02 1 0.01 0 0.03 0 0.04 0.00 0.05 500

Table 5: Results Obtained with up to 60 Jobs.

30



6 Conclusion

We have presented new lower-bounds, new constraint propagation techniques

and new dominance properties for 1|ri|
∑

Ti. Computational results show

that the proposed approach outperforms the best known procedures. We

think that several techniques presented in this paper can be extended to

more complex criteria such as weighted tardiness or weighted flow time.
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Figure 1: A Node of the Search Tree.
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Figure 2: Case where C ′

i < Ci and di ≤ Ci.
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Figure 3: Generalized Emmons Rules.
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Figure 4: An Optimal Non-Preemptive Schedule and an Optimal Preemptive

Schedule.
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Figure 5: An SRPT Schedule of the Instance of Table 1.
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Figure 6: Assignment of Due Dates Obtained by the Algorithm Computing

lb1 (d1, d2, d3) and by Chu’s Algorithm (dσ(1), dσ(2), dσ(3)).
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