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NUMERICAL METHOD FOR THE

2D SIMULATION OF THE RESPIRATION. ∗

A. Devys1, 2, C. Grandmont3, B. Grec4, B. Maury5 and D.Yakoubi3

Abstract. In this article we are interested in the simulation of the air flow in the bronchial tree.
The model we use has already been described in [2] and is based on a three part description of the
respiratory tract. This model leads, after time discretization, to a Stokes system with non standard
dissipative boundary conditions that cannot be easily and directly implemented in most FEM software,
in particular in FreeFEM++ [10]. The objective is here to provide a new numerical method that could
be implemented in any softwares. After describing the method, we illustrate it by two-dimensional
simulations.

Résumé. Dans cet article nous nous intéressons à la simulation du flux d’air dans l’arbre bronchique.
Le modèle que nous utilisons a déjà été décrit dans [2] et consiste en une description selon trois parties de
l’arbre respiratoire. Ce modèle nous conduit, après discrétisation en temps, à un problème de Stokes
avec des conditions au bord dissipatives non usuelles qui ne peuvent être implémentées facilement
et directement dans la plupart des logiciels utilisant la méthode des éléments finis, en particulier
FreeFEM++ [10]. L’objectif ici, est d’apporter une méthode de résolution implémentable dans tout
logiciel EFM. Après une description de la méthode, nous l’illustrerons par des simulations 2D.

Introduction

Breathing involves gas transport through the respiratory tract with its visible ends, nose and mouth. The
bronchial tree which ends in the alveoli is embedded in a viscoelastic tissue, the whole being enclosed below
by the diaphragm and laterally by the chest wall. The air movement is achieved by the displacement of the
diaphragm and of the connective tissue framework of the lung (in the sequel we will talk about the parenchyma).
The respiratory tract has a quite complex geometry: it is a tree composed by 23 generations which should be
implemented (see Fig. 1). At the time being, the distal airways from generation 9 cannot be visualized/segmented
by common medical imaging technologies for instance. Consequently it is necessary to elaborate some simple
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Figure 1. Decomposition of the respiratory tree in three parts.

but realistic mathematical model, in order to provide a better understanding of the different lung pathologies
and to supply to the limit of medical imaging.

The model of the respiratory tract we consider has already been described by C. Grandmont, Y. Maday and
B. Maury in [8] and previously in [2], [9], [17] where similar models are presented. Note that the same kind
of multiscale models arises also for blood flow simulations (see for instance [14], [15] and [7]). The idea is to
decompose the respiratory tract in three parts:

• the upper part (up to the 7th–9th generation), where the incompressible Navier–Stokes equations
hold to describe the fluid;

• the distal part (from the 8th–10th to the 17th generation), where one can assume that the Poiseuille
law is satisfied in each bronchiole;

• the acini, where the oxygen diffusion takes place and which are embedded in an elastic medium,
the parenchyma. We will suppose that the pressure is uniform in the acini, equal to Pa (an average
alveolar pressure), and that they are embedded in a box representing the parenchyma. The motion of
the diaphragm and the parenchyma is described by a simple spring model. Figure 2 illustrates, in a
synthetic way, this multiscale decomposition: in the proximal part Ω we assume that the Navier–Stokes
equations hold true and that they are coupled with Poiseuille flows which are themselves coupled with
a spring motion. This spring describes the motion of the diaphragm muscle that is supposed to move
in only one direction.

The inlet of Ω is denoted by Γ0, and the outlets are denoted by Γi, 1 ≤ i ≤ N . These outlets are coupled
with Poiseuille flows, which are characterized by equivalent resistances Ri that depend on geometrical properties
(length and diameter of the bronchus of each i-th subtree). The constant k represents the stiffness of the spring
(that characterizes the elastic behavior of the parenchyma), and m is the total mass of the lung.

The paper is organized as follows: in a first part, we present the coupled system and its variational formulation.
Then we describe the numerical method we use. After time discretization of the coupled problem, we obtain a
Stokes like system with non standard boundary conditions involving the air flux at the interface. The difficulty
is then to treat these dissipative boundary conditions with, for instance, the FEM software FreeFEM++. The
strategy we chose is to decompose the solution into a linear combination of pre–computed elementary solutions
and into a correction term corresponding to the advance in time of the problem. Each of these quantities
are the solution of a Stokes problem with standard mixed Dirichlet–Neumann boundary conditions. Next, the
coefficients of the linear combination are calculated so that the dissipative boundary conditions are satisfied.
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Figure 2. Multiscale model.

In the last part, we present numerical results, and check that our model, for appropriate parameters, could
reproduce some aspects of respiration.

1. Problem setting

1.1. The coupled model

In the upper part, denoted by Ω (see Fig. 2), we assume that the Navier–Stokes equations hold:











































ρ
∂u

∂t
+ ρ(u · ∇)u − µ△u + ∇p = 0, in Ω ,

∇ · u = 0, in Ω ,

u = 0, on Γℓ ,

µ∇u · n − pn = −Π0n on Γ0 ,

µ∇u · n − pn = −Πin on Γi i = 1, . . . , N,

(1)

where u and p are respectively the fluid velocity and the fluid pressure. On the lateral boundary Γℓ, we impose
no–slip boundary conditions on the velocity, whereas on the artificial boundary Γi, 0 ≤ i ≤ N we consider a
pressure force exerted on the boundary. The pressure Π0 is given equal to P0 the atmospheric pressure, whereas
the pressures Πi are unknown and depend on the downstream parts.

Each of the distal subtrees should be a dyadic tree in which we assume that the flow is laminar. Thus, by
analogy with an electric network (see for instance [3]), we can consider that the flow is characterized by a unique
equivalent resistance of the conducting airways (referred to as lumped model) that depends on each resistance
of the local branches (see for instance [12]). Thus, each of the subtrees is replaced by a cylindrical domain,
where the flow satisfies Poiseuille’s law:

Πi − Pa = Ri

∫

Γi

u · n, Ri ≥ 0. (2)

Thanks to the relation (2), the boundary conditions at the outlets Γi write

µ∇u · n− pn = −Pan− Ri

(
∫

Γi

u · n

)

n on Γi i = 1, . . . , N. (3)
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These are non standard nonlocal boundary conditions that link the fluid stress tensor and its flux that arise
also in blood flow modelling (see [7]). Note that they induce dissipation in the system (see [2]). We will call
this type of boundary conditions the natural dissipative boundary conditions. Next, the lung is enclosed in a
box and one part of this box is connected to a spring that governs the diaphragm and parenchyma motion. The
equation satisfied by the position x of the diaphragm writes

mẍ = −kx + fext + PaS, (4)

where fext is the force developed by the diaphragm during inspiration and expiration. It will be the driven
force of the respiration. In order to couple this simple ODE to the upper part of the model, we have to define
fP that stands for the pressure force applied by the flow on the elastic medium. If we denote by S the surface
of the moving box (corresponding to the diaphragm surface), we have

fP = PaS, (5)

thus

Pa =
m

S
ẍ +

k

S
x −

fext

S
. (6)

Moreover, since we assume that the parenchyma is made of an incompressible medium, the flow volume
variation at the outlets is equal to the volume variation of the parenchyma box, thus we have

Sẋ =

N
∑

i=1

∫

Γi

u · n. (7)

Note that since the flow is incompressible and since u = 0 on Γℓ, then

N
∑

i=1

∫

Γi

u · n = −

∫

Γ0

u · n. (8)

Thus the coupled problem can be written as follows







































































ρ
∂u

∂t
+ ρ(u · ∇)u − µ△u + ∇p = 0 , in (0, T ) × Ω ,

∇ · u = 0 , in (0, T ) × Ω ,
u = 0 , on (0, T )× Γℓ ,

µ∇u · n− pn = −P0n , on (0, T )× Γ0 ,

µ∇u · n− pn = −Pan− Ri

(
∫

Γi

u · n

)

n , on (0, T )× Γi ,

i = 1 , . . . , N ,
mẍ + kx = fext + SPa ,

Sẋ =

N
∑

i=1

∫

Γi

u · n = −

∫

Γ0

u · n.

(9)

This system of equations has to be completed by suitable initial conditions







(u, x, ẋ)|t=0 = (u0, x0, x1), with

∇ · u0 = 0 , u0 = 0 on Γℓ , and Sx1 = −

∫

Γ0

u0 · n.
(10)

One particularity of this system is that all the outlets Γi, 1 ≤ i ≤ N are coupled.
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By setting p = p − Pa , according to (6) and since the total volume is preserved, i.e Sẋ = −

∫

Γ0

u · n, the

coupled system can be simplified as follows







































































ρ
∂u

∂t
+ ρ(u · ∇)u − µ△u + ∇p = 0 , in (0, T ) × Ω ,

∇ · u = 0 , in (0, T ) × Ω ,
u = 0 , on (0, T )× Γℓ ,

µ∇u · n − pn = −P0n −
fext

S
n−

m

S2

d

dt

(
∫

Γ0

u · n

)

n

−
k

S2

(
∫ t

0

∫

Γ0

u · n − Sx0

)

n , on (0, T )× Γ0 ,

µ∇u · n − pn = −Ri

(
∫

Γi

u · n

)

n , on (0, T )× Γi.

(11)

Consequently, the coupled system (9) reduces to the Navier–Stokes equations, with fluid pressure replaced by
the difference between fluid pressure and alveolar pressure, and with generalized natural dissipative boundary
conditions. Note that the incompressibility assumption is essential here.

Remark 1.1. We have used the relation

N
∑

i=1

∫

Γi

u · n = −

∫

Γ0

u · n to simplify system (9), to decouple the

outlets Γi and obtain (11). Nevertheless all what will be done hereafter could also be done without using this
relation.

1.2. Variational formulation

We introduce the following functional space V = {v ∈ H1(Ω)d , ∇ · v = 0,v = 0 on Γℓ}. Assuming that all
the unknowns are regular enough, we multiply the Navier–Stokes equations by a test–field v which vanishes on
Γℓ, and the spring equation by −(1/S)

∫

Γ0

v · n. Using

x = x0 −
1

S

∫ t

0

∫

Γ0

u · n,

we obtain























































ρ

∫

Ω

∂tu · v + ρ

∫

Ω

(u · ∇)u · v + µ

∫

Ω

∇u : ∇v +
N
∑

i=1

Ri

(
∫

Γi

u · n

)(
∫

Γi

v · n

)

+
m

S2

(
∫

Γ0

∂tu · n

)(
∫

Γ0

v · n

)

+
k

S2

(
∫ t

0

∫

Γ0

u · n

)(
∫

Γ0

v · n

)

−

∫

Ω

p∇ · v + Pa

(

N
∑

i=1

∫

Γi

v · n −

∫

Γ0

v · n

)

= −P0

∫

Γ0

v · n −
fext

S

∫

Γ0

v · n +
k

S2
Sx0

(
∫

Γ0

v · n

)

, ∀v ∈ H1(Ω)d with v|Γℓ
= 0.

(12)

Next, considering test functions v that are divergence free (i.e v ∈ V ), we obtain a second variational formulation
of the coupled problem (11)
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ρ

∫

Ω

∂tu · v + ρ

∫

Ω

(u · ∇)u · v + µ

∫

Ω

∇u : ∇v +
N
∑

i=1

Ri

(
∫

Γi

u · n

)(
∫

Γi

v · n

)

+
m

S2

(
∫

Γ0

∂tu · n

)(
∫

Γ0

v · n

)

+
k

S2

(
∫ t

0

∫

Γ0

u · n

)(
∫

Γ0

v · n

)

= −P0

∫

Γ0

v · n −
fext

S

∫

Γ0

v · n +
k

S
x0

(
∫

Γ0

v · n

)

, ∀v ∈ V.

(13)

Note that here, we have expressed all the quantities with the help of the fluid velocity. The velocity of the

spring can be simply recovered thanks to the identity Sẋ = −

∫

Γ0

u · n.

2. Numerical method

In this section we will first present the numerical method on a linear problem obtained by omitting the
convection terms. Then we will explain how it can be adapted to the general case.

2.1. The Stokes system

In this section, we are interested in the following linear coupled system:







































































ρ
∂u

∂t
− µ△u + ∇p = 0 , in (0, T )× Ω ,

∇ · u = 0 , in (0, T )× Ω ,
u = 0 , on (0, T ) × Γℓ ,

µ∇u · n− pn = −P0n−
fext

S
n −

m

S2

d

dt

(
∫

Γ0

u · n

)

n

−
k

S2

(
∫ t

0

∫

Γ0

u · n− Sx0

)

n , on (0, T ) × Γ0 ,

µ∇u · n− pn = −Ri

(
∫

Γi

u · n

)

n , on (0, T ) × Γi.

(14)

First we start to discretize in time the coupled problem. Let δt > 0 be the time step, and tn = nδt, n ∈ N.

We denote by un and pn the approximate solution at time tn. The time-integral term

∫ tn

0

∫

Γ0

u · n is the

following

∫ tn

0

∫

Γ0

u · n ≈
n
∑

j=0

(

δt

∫

Γ0

uj · n

)

. (15)
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The time discretization reads as follows



















































































ρ
un

δt
− µ△un + ∇pn = ρ

un−1

δt
, in Ω ,

∇ · un = 0 , in Ω ,

un = 0, on Γℓ ,

µ∇un · n− pnn = −



P0 +
fn

ext

S
−

kx0

S
+

kδt

S2

n−1
∑

j=0

(
∫

Γ0

uj · n

)

−
m

S2δt

(
∫

Γ0

un−1 · n

)



n

−

(

m

S2δt
−

kδt

S2

)(
∫

Γ0

un · n

)

n , on Γ0 ,

µ∇un · n− pnn = −Ri

(
∫

Γi

un · n

)

n , on Γi i = 1, . . . , N.

(16)
In the sequel, we use the following notations

Fn = P0 +
fn

ext

S
−

kx0

S
+

kδt

S2

n−1
∑

j=0

(
∫

Γ0

uj · n

)

−
m

S2δt

(
∫

Γ0

un−1 · n

)

(17)

and

Rδt
0 =

m

S2δt
−

kδt

S2
. (18)

Note that Fn is known as soon as the velocities at the previous time steps have been computed. The problem
(16) can then be written as



























































ρ
un

δt
− µ△un + ∇pn = ρ

un−1

δt
, in Ω ,

∇ · un = 0 , in Ω ,

un = 0, on Γℓ ,

µ∇un · n− pnn = −Fnn − Rδt
0

(
∫

Γ0

un · n

)

n , on Γ0 ,

µ∇un · n− pnn = −Ri

(
∫

Γi

un · n

)

n , on Γi i = 1, . . . , N.

(19)

Consequently, after time discretization, we obtain a generalized Stokes problem with natural dissipative bound-
ary conditions. These unusual boundary conditions coming from the resistance and the mass–spring time–
discretization modify the standard bilinear forms associated to a Stokes problem with mixed Dirichlet–Neumann
boundary conditions. In particular, if we consider a finite element discretization, they would couple all the de-
gree of freedom at each outlet and change the finite elements matrix pattern associated to the velocity degrees
of freedom. Consequently, they cannot be easily and directly implemented in a any FEM solver, for instance in
FreeFEM++, without going deeply into the code.

To get rid of this difficulty, we use the following method. The objective is to reduce this problem with non
standard boundary conditions to problems with Neumann and Dirichlet boundary conditions. The idea is to
pre–compute a set of solutions with Neumann boundary conditions on each Γi, and then to define the solution
as a linear combination of these solutions and of a correction term. This correction term solves also a Stokes
problem with standard boundary conditions, the coefficients of the linear combination being calculated so that
the solution satisfies the dissipative boundary conditions.
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More precisely, thanks to the linearity of the system at each time step, the solution (un, pn) of (19) can be
decomposed under the shape























un = ũn +
N
∑

i=0

αn
i ui and

pn = p̃n +
N
∑

i=0

αn
i pi,

(20)

where (ui)
N
i=0 and (pi)

N
i=0 do not depend on time, unlike ũn+1 and p̃n+1 that are correction terms calculated at

each time step:

• for all i = 0, . . .N , the solution (ui, pi) is calculated in the pre–processing step (21)











































ρ
ui

δt
− µ△ui + ∇pi = 0 , in Ω ,

∇ · ui = 0 , in Ω ,

ui = 0, onΓℓ ,

µ∇ui · n− pin = 0 , on Γj , for j 6= i ,

µ∇ui · n− pin = −n , on Γi.

(21)

• Then, at each time step, ũn takes in account the unsteady term































ρ
ũn

δt
− µ△ũn + ∇p̃n = ρ

un−1

δt
, in Ω ,

∇ · ũn = 0 , in Ω ,

ũn = 0, on Γℓ ,

µ∇ũn · n− p̃nn = 0 , on Γi i = 0, . . . , N.

(22)

• Finally the coefficients αn
i are chosen such that the boundary conditions on the outlets Γi are satisfied.

This implies that the αn
i , i = 0, . . . , N are solution of a linear system.

Linear system satisfied by (αn
i )0≤i≤N :

• On Γ0, we have (µ∇un − pn)n = −Fn n − Rδt
0

(
∫

Γ0

un · n

)

n. Using the relation (20), we obtain

(µ∇ũn − p̃n)n +

N
∑

i=0

αn
i (µ∇ui − pi)n = −Fn n − Rδt

0

(
∫

Γ0

ũn · n

)

n− Rδt
0

N
∑

i=0

αn
i

(
∫

Γ0

ui · n

)

n.

Thanks to the boundary condition of the problems (21) and (22), we find

αn
0 = Fn + Rδt

0

(
∫

Γ0

ũn · n

)

+ Rδt
0

N
∑

i=0

αn
i

(
∫

Γ0

ui · n

)

. (23)
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• On Γj , j 6= 0, in the same way, we obtain

αn
j = Rj

(

∫

Γj

ũn · n

)

+ Rj

N
∑

i=0

αn
i

(

∫

Γj

ui · n

)

. (24)

Let us denote by bn = (bn
j )0≤j≤N ∈ R

N+1 the vector defined by



















bn
0 = Fn + Rδt

0

(
∫

Γ0

ũn · n

)

, and

bn
j = Rj

(

∫

Γj

ũn · n

)

, for j = 1, . . . , N,
(25)

and by A = (aij)0≤i,j≤N the following matrix

aij = R̃i

(
∫

Γi

uj · n

)

, for i, j = 0, . . . , N, (26)

where R̃0 = Rδt
0 and R̃i = Ri if i 6= 0.

As a consequence, at each time iteration, (αn
i )0≤i≤N is the solution of the linear system

(I − A) · x = bn. (27)

We can prove easily that the matrix (I − A) is invertible, see [6].

Remark 2.1. The method used is based on the linearity of the problem. Nevertheless, it enables us to deal
with these non standard boundary conditions by solving only standard problems.

2.2. Extension to Navier–Stokes problem

We are now interested in the initial problem (11), i.e we add a convection term (u·∇)u in the fluid momentum
equation. The previous method can be used only for linear problems, nevertheless it can be adapted. We use
the same pre-processing step computing the solutions (ui)

N
i=0 of the Stokes problem (14). In order to be able

to apply the same technics as for the Stokes problem, we either treat the nonlinear term explicitly or with the
characteristic method. The first one requires a small time step, this is why we choose the second one. The
discretization of the first line of (19) becomes

ρ
ũn

δt
− µ△ũn + ∇p̃n =

ρ

δt
un−1 ◦ Xn−1 , in Ω, (28)

where un−1 ◦ Xn−1 = un−1(x − un−1(x)δt) and x is the generic point in R
d.

Remark 2.2. Concerning the correction solution ũn+1, the resolution can be made by different methods, for
instance based on a mixed variational formulation or using a projection method.

The projection method of Chorin [4], [5] (see also Temam [18] and Quartapelle [13]) is frequently employed
for the numerical solution of the primitive variable Navier–Stokes equations. This method is based on a time-
discretization of the equations governing viscous incompressible flows, in which the viscosity and the incom-
pressibility of the fluid are treated within two separate steps. This allows to decouple the computation of the
fluid pressure from the one of the fluid velocity.

In this paper, we choose to solve the problem by a mixed method. The mixed formulation is obtained by
multiplying (28) by (v, q) ∈ H1(Ω)d × L2(Ω), where v vanish on Γℓ. Thanks to the incompressibility and the
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boundary conditions, we obtain











ρ

δt

∫

Ω

ũn+1 · v − µ

∫

Ω

∇ũn+1 : ∇v −

∫

Ω

∇ · vp̃n+1 =
ρ

δt

∫

Ω

un−1 ◦ Xn−1 · v,

−

∫

Ω

q∇ · ũn+1 = 0 , ∀q ∈ L2(Ω).
(29)

3. Numerical simulations

The method described before has been implemented in FreeFEM++ (see [10]). We used the mini–element for the
space discretization of Navier–Stokes system, see for instance [1]. We have performed numerical calculations in
a 2D idealized bronchial tree (until 3rd-generation, see for instance Fig. 7). Note that the geometrical quantities
that define this 2D tree are chosen such that the resistance of the 2D tree is equal to the resistance of a realistic
3D tree (see for instance [17]). In order to have this conservation we will also modify the fluid viscosity (see
below). To perform our simulations, we will use the following data

• Mesh Size or geometry: we use a triangulation composed of

– Nvertices = 9996 vertices,

– Ntriang = 17340 triangles and

– Nedges = 2650 edges.

– The tree geometry is included in a box [−0, 22939, 0, 24739]× [−0, 35569, 0].

• Physiological data (Fluid and spring parameters): in order to reproduce experimental curves,
we have used physiological data taken close to those from [3], [11]

– m = 0.3 kg, the total mass of the lung.

– S = 0.011 m2, the surface of the moving boundary box (diaphragm surface).

– E = 3.32 × 105 N · m−5, the lung elastance.

– k0 = E · S2 = 40.172 N · m−1, the stiffness of the spring.

– Rout = 1.33 · 105 Pa · s · m−3, the resistance at each outlet Γi, i ≥ 0.

– Rin = 1.12 × 105 Pa · s · m−3, the resistance at the inlet (trachea).

For the fluid viscosity µ and the fluid density ρ, we do not choose the physical values but instead
choose values such that the global resistance of the 2D tree is equal to the global resistance of the 3D tree,
and the 2D fluid Reynolds number is also equal to the 3D fluid Reynolds number (see [17]). Consequently

– µ = 0.004 Pa · s · m,

– ρ = 50 kg · m−3.
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3.1. The simplest case

We perform calculations in a case when there is no external force. First the resistance at the inlet is equal to
Rin and the resistances Ri at the outlets are all taken equal to Rout. Moreover, the spring stiffness k is equal
to k0. Initially, we suppose that the spring is elongated such that x(0) = 0.1 m. We plot at Fig. 3, the volume
variations V = Sx and the air flow through boundary Γ0 with respect time.
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Figure 3. Volume variation V = Sx (in m3) and air flow (in m3 · s−1) through boundary Γ0

versus time (in s).

In order to visualize the influence of the stiffness on the system we plot the volume variation V = Sx and
the air flow through boundary Γ0 versus time for different values of k, 35 < k < 75 N · m−1 (See Fig. 4).

Figure 4. Volume variation V = Sx (in m3) and air flow (in m3 · s−1) through boundary Γ0

versus time (in s) for different values of k.

We also perform simulations for different values of the resistance Ri at each outlet Γi, with k = k0.



12 englishESAIM: PROCEEDINGS

Figure 5. Volume variation V = Sx (in m3) and air flow (in m3 · s−1) through boundary Γ0

versus time (in s) for different values of R, Ri = R0, for i = 1, . . . , 6 and R7 = R8 = R0 × 10s,
s = −2, 0, 3, 5.

Comments :

• When k is large, the maximal air flux is larger and the spring goes back to its reference position faster
(see Fig. 4).

• We note that the change of the values of the resistances for only two outlets (7th and 8th) does not
seem to modify significantly the spring relaxation (see Fig. 5).

3.2. Forced respiration

Here we present numerical results obtained in the case of forced maneuvers. These maneuvers are usually
performed on patients in order to detect the pathology they suffer. In this case the force fext applied to the
spring is given in Fig. 6.

Figure 6. External force f (in N) versus time (in s).

Note that the first part of the maneuver, for 0 < t < 8 s corresponds to respiration at rest. In order to
simulate experience of a patient performing forced maneuvers and in order to try to reproduce some physiological
data, we choose to use, in our numerical simulations, a stiffness and resistances depending on the volume of the
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lung (and thus on x), see [11]:

k(x) = k +

{

(fmin/xmin − k)x/xmin, if x ≤ 0
(fmax/xmax − k)x/xmax, if x ≥ 0 ,

(30)

where

• x is, as before, the spring displacement relatively to the equilibrium position. At any time, we have

xmin ≤ x ≤ xmax, and we take xmin = −0.25 m and xmax = 0.2 m,

• k0 is, as before, a spring constant, which measures the stiffness related to stretching forces so that the
lung comes back to rest spontaneously,

• the external force fext is a piecewise constant force, with

fmin ≤ fext ≤ fmax , fmin = −11 N and fmax = 13 N (See Fig. 6),

and

Ri(x) =
Ri

1 + θSx/V 0
B

, i = 1, . . . , N, (31)

where

• Ri is the airways resistance of the ith subtree at rest, which measures the resistive forces in the bronchial
subtree.

• The parameter θ describes the distribution of the air volume Sx into the bronchi and the alveoli. The
total variation of volume δV = Sx is the sum of δVA (for the alveoli) and δVB (for the bronchi) with

δVA = (1 − θ)Sx, δVB = θSx.

In what follows, we denote by V 0
A (resp. V 0

B) the air volume in the alveoli (resp. in the bronchi) at rest. See
again [17] for more details on this model.

The distribution parameter default value is around 0.4 for a human lungs. When it is lower it may indicate
an important smooth muscle activity, in fact a smaller value shows a smaller bronchial tree volume variation,
that is to say an important smooth muscle activity.

3.3. A reference case: non pathological data

In the case where the external force fext described at Fig. 6 is applied, we compute the air volume in the
lung variation and the air flow at the mouth (see Fig. 8) for θ = 0.011, Ri = Rout and k = k0. We plot also the
isovalues of air velocity and pressure in the bronchial tree (see Fig. 7) at time t = 20s. The phase portrait (see
Fig. 9) is typically the curve obtained by spirometry that lung specialists are used to read. It provides them
information on the pathologies a patient may suffer.
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Vec Value
0
4.07236e-06
8.14473e-06
1.22171e-05
1.62895e-05
2.03618e-05
2.44342e-05
2.85066e-05
3.25789e-05
3.66513e-05

IsoValue
-0.0454394
-0.0447343
-0.0440293
-0.0433243
-0.0426192
-0.0419142
-0.0412091
-0.0405041
-0.0397991
-0.039094

Figure 7. Air velocity (in m · s−1) and pressure (in Pa) for “average data” in the lung at t = 20s.
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Figure 8. Volume variation (in m3) and air flow (in m3 · s−1) through boundary Γ0 versus
time in forced regime with the physiological data corresponding to a normal patient.

Figure 9. Flow (in m3 · s−1) – Volume (in m3) diagram.

3.4. Study of sensitivity

For a better understanding of different lung pathologies, we want to observe the influence of the stiffness, of
the parameter θ and of the resistance, in particular on the phase portrait. First, we choose to take different
value of the stiffness k (see Fig. 10), with θ = 0.011 and Ri = Rout. Next, we modify θ for Ri = Rout, and
k = k0 fixed. Then, we choose to modify the resistances Ri at the outlets Γi, with k = k0 and θ = 0.011. In
this case, we plot the air flow velocity and pressure isovalues (see Fig. 12) at time t = 20s. These plots have to
be compared to the one in the previous case, where all the resistances were equal (Fig. 7). Fig. 13, shows the
influence of the resistances changes on the phase portrait.
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Figure 10. Flow (in m3 · s−1) – Volume (in m3) diagram for different values of k (see (30)).
k = 40.172 + 10(s − 3), s = 0, 2, 4, 6.

Figure 11. Flow (in m3 · s−1) – Volume (in m3) diagram for different values of θ between
θmin = −0.13636 and θmax = 0.10909 (given by xmin, xmax and formula (31)).

Comments :

• The sensitivity of the phase portrait of the coupled model seems to be more important for spring stiffness
k and the parameter θ than for the resistances Ri.

• Nevertheless, we can see that at the outlets where we have increased the resistances Ri, a reduction of
the flow in the corresponding bronchus is observed.
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Vec Value
0
1.1368e-05
2.2736e-05
3.41041e-05
4.54721e-05
5.68401e-05
6.82081e-05
7.95761e-05
9.09441e-05
0.000102312

IsoValue
-0.110444
-0.108277
-0.10611
-0.103943
-0.101776
-0.0996088
-0.0974417
-0.0952747
-0.0931076
-0.0909405

Figure 12. Air velocity (in m · s−1) and pressure (in Pa) in the lung at t = 20s, for i = 1..6,
Ri = Rout on Γi (see (31)) and on Γ7 and Γ8, Ri = Rout × 106.
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Figure 13. Flow (in m3 · s−1) – Volume (in m3) diagram for different values of Ra (see (31))
the resistances at the outlets on Γ7 and Γ8. For i = 1..6, Ri = Rout on Γi and on Γ7 and Γ8,
Ri = Rout × 102(s−1).

Conclusions and perspectives

From a biological point of view, we note that we obtain some phase portraits that are comparable to the ones
that can be found in [11]. The comparison of the results for different values of θ, k, and Ri are encouraging for a
future better understanding of lung pathologies such as asthma (modification of θ), or emphysema (modification
of k). Moreover, 2D simulations cannot reproduce all the 3D effects and 3D simulations have to be performed
and exploited. Furthermore, note that other non linear spring models should maybe be developed in order to
capture all the complexity of the phenomenon.

Concerning the numerical method, we have developed a method that could be easily implemented in any
solver. There are two main drawbacks of our method. First, we can deal with the convection term only using
an explicit method or a characteristic method (which has been chosen here). Secondly, this method is quite
slow. A way to accelerate would be to choose a suitable resolution method for the Navier–Stokes problem such
as a projection method to accelerate the solver (see [6, 13, 16]).

Acknowledgement. The authors want to thank Matteo Astorino, Laurent Boudin and Mourad Ismail for the very
helpful scientific discussions which took place during Cemracs 2008 and after.
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