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Abstract

This paper provides some new techniques to construct a Lyapunov-

Krasovskii functional for time varying delay systems. The construction is

based on a partitioning scheme of the time-varying delay leading to a new

type of Lyapunov-Krasovskii functional. This functional is depending on

an augmented state and also on an integral quadratic constraint added

to reduce the conservatism of the proposed methodology. This approach

is then extended to the robust case. Finally, some examples support our

approach.

1 INTRODUCTION

Delay systems and especially its asymptotic stability have been thoroughly stud-
ied since several decades [5], [14], [8] and references therein. The study of the
delay phenomenon is motivated by its applied aspect. Indeed, many processes
include dead-time phenomena in their dynamics such as biology, chemistry, eco-
nomics, as well as population dynamics [14]. Moreover, processing time and
propagation time in actuators and sensors generally induce such delays, espe-
cially if some devices are faraway from each other. That is the challenge of the
stability of networked controlled systems [2] as well as networks control [17] [18].

In the case of constant delay, many different techniques lead to efficient
algorithms (mainly based on LMIs) to test the stability of time delay system.
It includes the robust approach (method based on the use of IQCs, separation
approach or small gain like theorems [8]) and Lyapunov approach. In this last
approach, we aim at finding a Lyapunov functional depending on the whole
state of the system xt(θ) which is not an easy task even for a linear time delay
system with one delay. Indeed, for a linear time delay system, some general
functional can be found [8] but is very difficult to handle. That is the reason
why more simple and thus more conservative Lyapunov-Krasovskii functional
(LKF) have been proposed. Generally, all these approach have to deal with
two main difficulties (see [13] and [8]). The first one is the choice of the model
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transformation. The second problem lies on the bound of some cross terms which
appear in the derivative of the Lyapunov functional. Mainly, two techniques
have been proved to be efficient to reduce the conservatism. The first one adopt
a discretizing scheme of the L.K. matrices [8]. At a price of an increasing number
of variables to be optimized, the result tends to become a necessary and sufficient
condition. Another interesting approach, developed in a Lyapunov and robust
frameworks use an augmented state vector formulation to construct some new
L.K.F. for the original system. Hence, in [6], a partitioning delay scheme is
developed in order to construct a L.K.F which depends on a discretizing version
of the whole state xt(θ).

In the case of time varying delay, the results are much more scarce and
the proposed methodologies are often conservative. In this paper, we aim at
developing new type of LKF by fractionning the delay in order to take into
account the whole state of the system. Even if this idea is not so new in the
constant delay case it is much more complicated to elaborate if the delay is time
varying. Indeed, due to the time varying nature of the delay, partitioning the
delay and introducing an augmented state variable do not generally induce a
good description of the original system. More particularly, it is not proved that
using the state augmentation, we recover the original delayed state. That’s the
reason why, in the literature we can find the use of some slack variables to arti-
ficially construct linear relations between the augmented state formulation and
the original state of the system. Here, we propose to cope with this problem by
adding an integral quadratic constraint which take into account the relationship
between the augmented delay state and the original delayed state.

Notations: For two symmetric matrices, A and B, A > (≥) B means that
A−B is (semi-) positive definite. AT denotes the transpose of A. 1n and 0m×n

denote respectively the identity matrix of size n and null matrix of size m × n.
If the context allows it, the dimensions of these matrices are often omitted. For
a given matrix B ∈ R

m×n such that rank(B) = r, we define B⊥ ∈ R
n×(n−r)

the right orthogonal complement of B by BB⊥ = 0. ‖x(t)‖ corresponds to the
Euclidean norm of x(t). We denote by L2 the space of R

n valued functions of

finite energy: ‖f‖2
L2

=
∞
∫

0

|f(t)|2dt. Le
2 the space of R

n valued functions of finite

energy on finite interval. Defining an operator,a mapping from a normed space
to another D : x → D[x], Dn[x] means that the operator D is applied n times
to x. For instance, D2[x] corresponds to D [D[x]]. A causal operator H from

Le
2 to Le

2 is said to be bounded if ‖H‖ = supf∈L2

‖Hf‖
‖f‖ is bounded. xt(.) is the

function such that θ → xt(θ) = x(t + θ) and refers to the time delay system
state. Finally, we denote by Pt the truncation operator Pt[f ](u) = f(u) if u < t
and 0 otherwise.

2 A FIRST STEP TO A DISCRETIZATION

SCHEME

Consider the following linear time delay system

{

ẋ(t) = Ax(t) + Adx(t − h(t)), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−hm, 0],

(1)



where x(t) ∈ R
n is the state vector, A, Ad ∈ R

n×n are known constant matrices
and φ is the initial condition. The delay, h(t), is assumed to be a time-varying
continuous function that satisfies

0 ≤ h(t) ≤ hm (2)

where hm > 0 may be infinite if delay independent conditions are looked for.
Furthermore, we also assume that a bound on the derivative of ḣ(t) is provided
:

|ḣ(t)| ≤ d ≤ 1 (3)

with d a positive scalar.
Previous works on the stability analysis of time delay system with time-

invariant delay have been proposed in [7] and in a quadratic separation [11] and
Lyapunov-Krasovskii [8] frameworks, respectively. In these studies, the key idea
to derive an efficient stability analysis criterion consists in delay fractioning.
Indeed, it is shown that introducing redundant equations shifted in time by
fractions of the delay reduce the conservatism of the stability condition.

The feature of this present contribution is to extend these previous results
to the stability analysis of time-varying delay systems. Of course, the time-
varying nature of the delay makes the task more complicated to deal with.
Indeed, consider a time-invariant delay system,

ẋ(t) = Ax(t) + Adx(t − h) (4)

with h a positive constant scalar.
Applying the constant delay operator, Dh/N : x(t) → x(t − h/N) to the state
vector of (4) N times, the delayed state vector x(t − h) of (4) is recovered.
Then, a suitable choice of a Lyapunov-Krasovskii functional as explained in
[7] leads to an efficient stability condition. This functional depends explicitly
on a discretizing version of the whole state [x(t), x(t − h/2), . . . , x(t − (N −
1)h/N), x(t−h)]′. Considering a time-varying delay system (1), the fundamental
difference is that applying time-varying delay operator, Dh(t)/N : x(t) → x(t −
h(t)/N) do not lead to a appropriate description of the state. For example, in
the case of N = 2, the fractioning scheme lead to the augmented state vector

[x(t), x(t− h(t)
2 ), x(t− h(t)

2 − h(t−h(t)/2)
2 )]′. The last component is deduced when

the operator Dh(t)/2 is applied two times to x(t) (D2
h(t)/2[x(t)]) and is hardly

suitable to describe the delayed instantaneous state x(t−h). In order to describe
properly the proposed methodology, the following is devoted to the case where
the delay is partionned into two parts. Consider the following signals:

x0(t) =x(t −
h(t)

2
), (5)

x1(t) =x(t −
h(t)

2
−

h(t − h(t)/2)

2
). (6)

Given the signal x1(t), there is no apparent relationship with the delayed in-
stantaneous state x(t − h(t)) and in order to clarify the relations between the
two signals, we introduce an additional operator from L2 to L2,

∇ : x(t) →

∫ t−h(t)
2 −h(t−h(t)/2

2

t−h(t)

x(u)du (7)



that highlights the link between signals x1(t) and x(t − h(t). Remarks that for
a constant delay, ∇ is reduced to the null operator. Then, we can prove that

the L2 induced norm of the operator ∇ is bounded by hmd
4

√

(

1
1−d

)

. Indeed,

the L2-norm of the operator ∇ is defined by

‖∇(x)‖2
L2

=

∫ ∞

0







t−h(t)
2 −h(t−h(t)/2

2
∫

t−h(t)

x(u)du







2

dt

=

∫ ∞

0







t−h(t)+ 1
2 δ(t)

∫

t−h(t)

x(u)du







2

dt

with δ(t) = h(t) − h(t − h(t)
2 ) which can be bounded by

δ(t) =

∫ t

t−h(t)
2

ḣ(u)du ≤

∫ t

t−h(t)
2

d du ≤
hmd

2

for all t ∈ R
+. Then, the Cauchy-Schwarz inequality states that

‖∇(x)‖2
L2

≤

∫ ∞

0

hmd

4

t−h(t)+ 1
2 δ(t)

∫

t−h(t)

‖x(u)‖2dudt

≤

∫ ∞

0

hmd

4

hmd/4
∫

0

‖x(u + t − h(t))‖2dudt.

Performing the substitution s = u + t − h(t), we obtain

‖∇(x)‖2
L2

≤
hmd

4

1

1 − d

hmd/4
∫

0

∫ ∞

0

‖x(s)‖2dsdu

≤

(

hmd

4

)2
1

1 − d
‖x‖2

L2
.

(8)

This last inequality concludes the proof.

Remark 1 In order to use this inequality, we shall remark that d is supposed to
be less than one. This technic is then not suitable for large variations of delay
derivative, i.e. fast varying delay systems.

Theorem 1 Given scalars hm > 0 and 0 ≤ d ≤ 1, system (1) is asymptotically
stable for any time-varying delay h(t) satisfying (2) and (3) if there exists n×n
positive definite matrices P , Q0, Q2, R0, R1 and a 2n× 2n matrix Q1 > 0 such
that the following LMI holds:

S⊥T

ΓS⊥ < 0 (9)



where
S =

[

−1 A 0n 0n Ad

]

and (10)

Γ =



























U P 0 0 0

P V 2
hm

R1 0
1

hm
R0

0
2

hm
R1 − 2

hm
R1 0 0

0 0 0 −Q2 Q2

0
1

hm
R0 0 Q2 W



























+





0 0n×2n 0n×2n

02n×n Q1 02n×2n

02n×n 02n×2n 02n×2n





+





02n×2n 02n×2n 02n×n

02n×2n −(1 − d/2)Q1 02n×n

0n×2n 0n×2n 0





(11)

with
U =

(

hmd
4

)2 1
1−dQ2 + hm

2 R1 + hmR0,

V = Q0 − 2
hm

R1 − 1
hm

R0,

W = −(1 − d)Q0 − Q2 − 1
hm

R0.

S⊥ is an right orthogonal complement of S.

Proof 1 The proof is based on the Lyapunov-Krasovskii approach. The LKF
considered is composed of the traditional terms used in the litterature (V1, V3

and V5, see [4] [7] and references therein), some terms that take into account
the delay partitionning (V2 and V4, see [6] for invariant delay case) and an
integral quadratic constraint (Π(t, xt)). Similarly as the input-output stability
approach in time domain, adopted in [8], the IQC is constructed with the help
of the L2-norm of an operator. Let us define the following Lyapunov-Krasovskii
functional candidate:

V (x) = V1(x) + V2(x) + V3(x) + V4(x) + V5(x) (12)



where

V1(x) =xT (t)Px(t), (13)

V2(x) =

t
∫

t−h(t)
2

[

x(s)

x(s − h(s)
2 )

]T

Q1

[

x(s)

x(s − h(s)
2 )

]

ds, (14)

V3(x) =

t
∫

t−h(t)

xT (s)Q0x(s)ds, (15)

V4(x) =

t
∫

t−hm
2

t
∫

s

ẋT (u)R1ẋ(u)duds, (16)

V5(x) =

t
∫

t−hm

t
∫

s

ẋT (u)R0ẋ(u)duds, (17)

and the IQC

Π(t, xt) =
t
∫

0

(

hmd
4

)2 1
1−d ẋT (s)Q2ẋ(s)

−∇[ẋ(s)]T Q2∇[ẋ(s)]ds.

(18)

∇[.] is an operator defined as (7). Since P , R0, R1, Qi for i = {0, 1, 2}
are positive definite matrices, the functional V1(x) + V2(x) + V3(x) + V4(x) +
V5(x) is also positive ∀x ∈ R

n. Let us prove that Π(t, xt) is also a positive
function. For this purpose, following a similar approach as for input-output

stability analysis method in [19], let remark that
t
∫

0

∇[ẋ(s)]T Q2∇[ẋ(s)]ds =

‖Pt[∇[Q
1/2
2 ẋ(t)]]‖2 and as the operator ∇ is causal, this last expression can

be expressed as Pt[∇[Q
1/2
2 ẋ(t)]]‖2 = ‖Pt[∇[Pt[Q

1/2
2 ẋ(t)]]]‖2 using standard ar-

guments [3] [19],

‖Pt[∇[Pt[Q
1/2
2 ẋ(t)]]]‖2 ≤ ‖Pt‖

2‖∇‖2‖Pt[Q
1/2
2 ẋ(t)]‖2.

with ‖Pt‖
2 < 1, ‖∇‖2 ≤

(

hmd
4

)2 1
1−d and ‖Pt[Q

1/2
2 ẋ(t)]‖2 =

t
∫

0

ẋT (s)Q2ẋ(s)ds.

Regrouping all the terms proves that Π(t, xt) is positive definite. The derivative
of the functional (12) along the trajectories of (1) leads to

V̇ (x) = V̇1(x) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x) (19)

where
V̇1(x) =ẋT (t)Px(t) + xT (t)Pẋ(t),

V̇2(x) =

[

x(t)
x0(t)

]T

Q1

[

x(t)
x0(t)

]

− (1 −
d

2
)

[

x0(t)
x1(t)

]T

Q1

[

x0(t)
x1(t)

]

,

V̇3(x) =xT (t)Q0x(t) − (1 − d)xT (t − h(t))Q0x(t − h(t)).

(20)



with x0(t) and x1(t) defined as (5) and (6), respectively. Invoking the Jensen’s
inequality [8], terms V̇4 and V̇5 can be bounded by

V̇4(x) ≤
hm

2
ẋT (t)R1ẋ(t) −

2

h(t)
wT (t)R1w(t)

≤
hm

2
ẋT (t)R1ẋ(t) −

2

hm
wT (t)R1w(t)

V̇5(x) ≤hmẋT (t)R0ẋ(t) −
1

h(t)
vT (t)R0v(t)

≤hmẋT (t)R0ẋ(t) −
1

hm
vT (t)R0v(t)

(21)

with w(t) = x(t) − x(t − h(t)
2 ) and v(t) = x(t) − x(t − h(t)). Invoking now the

scaled small gain theorem presented in [8, p287] and considering the proposed
IQC (18), the stability of (1) will be proved if the functional

W (t, xt) = V̇ (t, xt) +
(

hmd
4

)2 1
1−d ẋT (t)Q2ẋ(t)

−∇(ẋ)T Q2∇(ẋ)
(22)

is negative. In addition, this latter quantity can be expressed as W (t, xt) <
ξT (t)Γξ(t) (gathering (20), (21) and (22)) with Γ defined as (11) and

ξ(t) =













ẋ(t)
x(t)

x(t − h(t)
2 )

x(t − h(t)
2 − h(t−h(t)/2)

2 )
x(t − h(t))













=













ẋ(t)
x(t)
x0(t)
x1(t)

x(t − h(t))













. (23)

Furthermore, using the extended variable ξ(t) (23), system (1) can be rewrit-
ten as Sξ = 0 with S defined as (10). The original system (1) is asymptotically
stable if for all ξ such that Sξ = 0, the inequality ξT Γξ < 0 holds. Using Finsler

lemma [16], this is equivalent to S⊥T

ΓS⊥ < 0, where S⊥ is a right orthogonal
complement of S, which concludes the proof.

3 MAIN RESULT
In the previous section a new condition for the time-varying delay systems

analysis is obtained by means of extension of the state variables introducing a
half delay. This methodology is now generalized by partitioning the interval
[t − h(t), t] into N parts.

Theorem 2 Given scalars hm > 0, 0 ≤ d ≤ 1 and an integer N > 0, system
(1) is asymptotically stable for any time-varying delay h(t) satisfying (2) and
(3) if there exists n × n positive definite matrices P , Q0, Q2, R0, R1 and a
Nn × Nn matrix Q1 > 0 such that the following LMI holds:

S⊥T

ΓS⊥ < 0 (24)

where S =
[

−1 A 0n×Nn Ad

]

and (25)



Γ =

















U P 0

P V N
hm

R1

0
N
hm

R1 − N
hm

R1

0n×Nn

0
1

hm
R0

0n×Nn

0Nn×n

0

1
hm

R0

0Nn×n X

















+





0 0n×Nn 0n×2n

0Nn×n Q1 0Nn×2n

02n×n 02n×Nn 02n×2n





+





02n×2n 02n×Nn 02n×n

0Nn×2n −(1 − d/N)Q1 0Nn×n

0n×2n 0n×Nn 0





(26)

with

U =
(

hmd(N−1)
2N

)2
1

1−dQ2 + hm

N R1 + hmR0,

V = Q0 − N
hm

R1 − 1
hm

R0,

X =





0n(N−2)×n(N−2) 0n(N−2)×n 0n(N−2)×n

0n×n(N−2) −Q2 Q2

0n×n(N−2) Q2 W



 ,

W = −(1 − d)Q0 − Q2 − 1
hm

R0.

S⊥ is an right orthogonal complement of S.

Proof 2 Define the following Lyapunov-Krasovskii functional candidate:

V (x) = V1(x) + V3(x) + V5(x) + V7(x) + V8(x) (27)

where V1(x), V3(x), V5(x) are defined as (13), (15), (17) and

V7(x) =

t
∫

t−h(t)
N















x(s)

x(s − h(s)
N )

x1(t)
...

xN−2(t)















T

Q1















x(s)

x(s − h(s)
N )

x1(t)
...

xN−2(t)















ds, (28)

V8(x) =

t
∫

t−hm
N

t
∫

s

ẋT (u)Rẋ(u)duds (29)

as well as the IQC

ΠN (t, xt) =
t
∫

0

(

hmd(N−1)
2N

)2
1

1−d ẋT (s)Q2ẋ(s)

−∇[ẋ(s)]T Q2∇[ẋ(s)]ds

(30)

with xi(t) and ∇[.] are defined as (31) and (35), respectively. As it has been
stated in section 1, the idea is to provide a LK functional that takes into account



the state between t and t− h(t). Thus, a discretization-like method is employed

considering the state vector shifted by a fraction h(t)
N of the delay. The discretized

extended state is constructed with signals:

xi(t) = D
(i+1)
h(t)/N [x(t)]. (31)

Note that these latter variables can be rewritten as xi(t) = x(ti) where

ti = D
(i+1)
h(t)/N [t] = t − a0(i + 1)h(t) + a1(i + 1)δ(t)

+ a2(i + 1)δ(t + h1(t)) + . . . + ai(i + 1)δ(t + hi−2(t))
(32)

with

h1(t) = −
h(t)

N
, hi(t) = D

(i−1)
h(t)/N [−

h(t)

N
], (33)

δ(t) = h(t) − h(t −
h(t)

N
), aj(i) =

{

i−j
N , if i − j > 0

0, otherwise.
(34)

Then, in order to emphasize the relationship between xN−1(t) and x(t − h(t)),
we redefine the operator ∇[.] as

∇ : x(t) →

∫ tN−1

t−h(t)

x(u)du. (35)

Seeing that

tN−1 − (t − h(t)) = a1(N)δ(t) + a2(N)δ(t + h1(t))

+ . . . + a(N−1)(N)δ(t + hN−3(t)),

≤ [a1(N) + . . . + a(N−1)(N)]
hmd

N
,

≤
hmd(N − 1)

2N

since δ(t) =
∫ t

t−h(t)
N

ḣ(s)ds ≤ hmd
N and by the same way as (8), the following

inequality is derived

‖∇[x]‖2
L2

≤

(

(N − 1)hmd

2N

)2 (

1

1 − d

)

‖x‖2
L2

. (36)

Using the same idea developed in the proof of Theorem 1, it can be easily
proved that V (x) (27) and the IQC (30) are positive functions for all x ∈ R

n

and we have

V̇ (x) = V̇1(x) + V̇3(x) + V̇5(x) + V̇7(x) + V̇8(x) (37)



where V̇1(x), V̇3(x), V̇5(x) are defined as (20) (21) and

V̇7(x) =







x(t)
...

xN−2(t)







T

Q1







x(t)
...

xN−2(t)







− (1 −
d

2
)







x(t − h(s)
N )

...
xN−1(t)







T

Q1







x(t − h(s)
N )

...
xN−1(t)






,

V̇8(x) ≤
hm

N
ẋT (t)R1ẋ(t) −

N

hm
mT (t)R1m(t)

(38)

with m(t) = x(t)−x(t− h(t)
N ). Invoking, as previously, the scaled small gain the-

orem presented in [8, p287] and considering the proposed IQC (30), the stability
of (1) will be proved if the functional

W (t, xt) = V̇ (t, xt) +
(

hmd(N−1)
2N

)2
1

1−d ẋT (t)Q2ẋ(t)

−∇[ẋ]TQ2∇[ẋ]
(39)

is negative. In addition, this latter quantity can be expressed as W (t, xt) <
ξT (t)Γξ(t) with Γ defined as (26) and

ξ(t) =



















ẋ(t)
x(t)

x(t − h(t)
N )

...
xN−1(t)

x(t − h(t))



















. (40)

Then, using the extended variable ξ(t) (40), system (1) can be rewritten as
Sξ = 0 with S defined as (25). As it has been stated in the proof of Theorem
1, the original system (1) is asymptotically stable if for all ξ such that Sξ = 0,
the inequality ξT Γξ < 0 holds. Using Finsler lemma [16], this is equivalent to

S⊥T

ΓS⊥ < 0, which concludes the proof.

It is worthy to note that considering the LKF (12) with Q1, Q2 and R1

set to 0, the classical results of the litterature [4] [20] [12] are recovered (re-
lated to the traditional LKF). Moreover, adding to this latter LKF the term

t
∫

t−hm

xT (s)Q3x(s)ds and performing the separation of the integral to V5(x) (17)

i.e. estimating the derivative of V5(x) as hmẋT (t)R0ẋ(t)−
∫ t

t−h(t)
ẋT (u)R0ẋ(u)du−

∫ t−h(t)

t−hm
ẋT (u)R0ẋ(u)du rather than omitting the last term, lead to the results of

[9]. Consequently, criteria provided in this paper are necessarily less pessimistic
in the sense that results obtained are at least equivalent to the traditional sta-
bility conditions.



4 ROBUSTNESS ISSUES

The proposed approach in Section 3 can be easily extended to the robust case.
Indeed, while affine polytopic uncertain models are considered, the following
system is defined:

ẋ(t) = A(α)x(t) + Ad(α)x(t − h(t)), (41)

with h(t) satisfying conditions (2) (3) and
[

A(α) Ad(α)
]

=
∑η

i=1 αi

[

A[i] A
[i]
d

]

where α =
(

α1 . . . αη

)

belongs to the set Ξ = {αi ≥,
∑η

i=1 αi = 1}. Note

that the matrix S (25) is linear with respect to the model parameters A[i] and

A
[i]
d . Thus, we denote the parameter dependent matrix

S(α) =

η
∑

i=1

αiS
[i] =

η
∑

i=1

αi

[

−1 A[i]
0n×Nn A

[i]
d

]

. (42)

Theorem 3 Given scalars hm > 0, 0 ≤ d ≤ 1 and an integer N > 0, system
(41) is asymptotically robustly stable for any time-varying delay h(t) satisfying

(2) and (3) if there exists n × n positive definite matrices P [i], Q
[i]
0 , Q

[i]
2 , R

[i]
0 ,

R
[i]
1 and Nn×Nn matrices Q

[i]
1 > 0 and a (N +3)n×n matrix Y such that the

following LMI hold for i = {1, 2 . . . η}:

Γ[i] + YS[i] + S[i]T YT < 0

where S[i] are defined as in (42) and Γ[i] are structered as (26) with the according

matrices P [i], Q
[i]
0 , Q

[i]
2 , R

[i]
0 , R

[i]
1 and Q

[i]
1 .

Due to space limitation the proof is omitted. Nevertheless, this latter is very
similar to the one presented in [15] for linear systems.

5 EXAMPLES

Consider the following system,

ẋ(t) =

[

−2 0
0 −0.9

]

x(t) +

[

−1 0
−1 −1

]

x(t − h(t)). (43)

For this academic example, many results were obtained in the literature.
For various d, the maximal allowable delay, hm, is computed. To demonstrate
the effectiveness of our criterion, results are compared against those obtained
in [4], [5], [20], [9], [10] and [12]. All these papers, except the last one, use the
Lyapunov theory in order to derive some stability analysis criteria for time de-
lay systems. In [12], the stability problem is solved by a classical robust control
approach: the IQC framework. Finally, [1] provides a stability criterion based
on a new modelling of time delay systems considering an augmented state com-
posed of the original state and its derivative. Then, a suitable new type of LKF
is derived which reduce the conservatism of the stability condition. The results
are shown in Table 1.



Table 1: The maximal allowable delays hm for system (43)

d 0 0.1 0.2 0.5 0.8
Nb of
var.

[4] 4.472 3.604 3.033 2.008 1.364 35
[5] 1.632 1.632 1.632 1.632 1.632 32
[20] 4.472 3.604 3.033 2.008 1.364 27
[12] 4.472 3.604 3.033 2.008 1.364 6
[9] 4.472 3.605 3.039 2.043 1.492 42
[10] 4.472 3.605 3.039 2.043 1.492 146
[1] 5,120 4,081 3,448 2,528 2,152 313

Theo 2
N = 2

5,717 4,286 3,366 2,008 1,364 22

Theo 2
N = 4

5,967 4,375 3,349 2,008 1,364 48

Theo 2
N = 6

6,120 4,396 3,321 2,008 1,364 90

Table 2: The maximal allowable delays hm for system (44)
d 0 0.05 0.1 0.2 0.3 0.5

[4] ∞ 8.330 5.459 3.255 2.176 0.999
[5] 1.082 1.082 1.082 1.082 1.082 1.082
[20] ∞ 8.330 5.459 3.255 2.176 0.999
[9] ∞ 8.331 5.461 3.264 2.195 1.082

Theo 2 ∞ 10.311 6.095 3.295 2.176 0.999

Then, considering the augmented state vector (40) by delay fractioning, The-
orem 2 improves the maximal allowable delays for slow time-varying delays. In-
deed, conservatism is reduced thanks to the discretization scheme. As expected,
this operation provides more information on the system and thus improves the
stability analysis criterion. Consider now the following system,

ẋ(t) =

[

0 1
−1 −2

]

x(t) +

[

0 0
−1 1

]

x(t − h(t)). (44)

The delay dependent stability analysis of system (44) has been studied and
results are shown in table (2). System (44) is IOD stable (independent of delay)
when the delay is constant. Once again, it is observed that Theorem 2 (with
N = 2) improves the maximal bound on the delay which preserves the stability
of (44) in the case of slow time-varying delays.

6 CONCLUSION

In this paper, a new condition for the stability analysis of time-varying delay sys-
tems is proposed in the Lyapunov-Krasovskii framework. This latter criterion
is formulated in terms of LMI which can be solved efficiently. Inherent conser-
vatism of the Lyapunov-Krasovskii approach is reduced with the use of the delay
fractioning methodology. Then, additional terms for the Lyapunov functional



are required in order to describe as well as possible the system making the links
between the different considered signals. Finally, a numerical example shows
that this method reduced conservatism and improved the maximal allowable
delay for slow time-varying delays.
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