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Abstract

Recent research has shown the link between congestion control in communi-
cation networks and feedback control system. In this paper,the design of an active
queue management (AQM) which can be viewed as a controller, is considered.
Based on a state space representation of a linearized fluid flow model of TCP, the
AQM design is converted to a state feedback synthesis problem for time delay
systems. Finally, an example extracted from the literatureand simulations via a
network simulator NS (under cross traffic conditions) support our study.

1 Introduction

Congestion control is a very active research area in networkcommunity. In order to
supply the well known transmission control protocol (TCP),active queue management
mechanisms have been developed. AQM regulates the queue length of a router by ac-
tively dropping packets. Various mechanisms have been proposed in the literature such
as Random Early Detection (RED) [4], Random Early Marking (REM) [1], Adaptive
Virtual Queue (AVQ) [10] and many others [19]. Their performances have been evalu-
ated in [19] and empirical studies have shown their effectiveness (see [12]). Recently,
significant studies proposed by [7] have redesigned the AQMsusing control theory and
P , PI have been developed in order to cope with the packet droppingproblem. Then,
using dynamical model developed by [16], many research havebeen devoted to deal
with congestion problem in a control theory framework (for example see [22]). Never-
theless, most of these papers do not take into account the delay and ensure the stability
in closed-loop for all possible delays which could be conservative in practice.
Modeling the congestion control using time delay is not new and global stability anal-
ysis has been studied by [15] and [17] via Lyapunov-Krasovskii theory. Also, in [9],
a delay dependent state feedback controller is provided by compensation of the delay
with a memory feedback control. This latter methodology is interesting in theory but
hardly suitable in practice.
Based on a recently developed Lyapunov-Krasovskii functional, an AQM stabilizing
the TCP model is designed. This synthesis problem is carriedout as state feedback
synthesis for time delay systems. Then, this method is applied on an augmented sys-
tem in order to vanish the steady state error in spite of disturbance.
The paper is organized as follows. The second part presents the model of a network
supporting TCP and the time delay system representation. Section 3 is dedicated to the

∗Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France.
†LAAS; CNRS; 7, avenue du Colonel Roche, F-31077 Toulouse, France. Email: {yariba,

ylabit, fgouaisb}@laas.fr



Figure 1: Network configuration

design of the AQM ensuring the stabilization of TCP. Section4 presents application of
the exposed theory and simulation results using NS-2 (see [3]) before concluding this
work.

2 Problem statement

2.1 The linearized TCP fluid-flow model

In this paper, we consider the network topology consisting of N homogeneous TCP
sources (i.e with the same propagation delay) connected to adestination node through a
router (see figure 1). The bottleneck link is shared byN flows and TCP applies the well
known congestion avoidance algorithm to cope with the phenomenon of congestion
collapse [8]. Many studies have been dedicated to the modeling of TCP and its AIMD
(additive-increase multiplicative-deacrease) behavior[13], [21], [22] and references
therein. We consider in this note the model (1) developed by [16]. This latter may not
capture with high accuracy the dynamic behavior of TCP but its simplicity allows us to
apply our methodology. Let consider the following model

{

Ẇ (t) = 1
R(t) −

W (t)W (t−R(t))
2R(t−R(t)) p(t − R(t))

q̇(t) = W (t)
R(t) N − C + d(t)

(1)

whereW is the TCP window size,q is the queue length of the router buffer,R is the
round trip time (RTT) and can be expressed asR = q/C + Tp. C, Tp andN are pa-
rameters related to the network configuration and representthe transmission capacity
of the router, the propagation delay and the number of TCP sessions respectively. The
variablep is the marking/dropping probability of a packet (that depends whether the
ECN option, explicit congestion notification, is enabled, see [18]). In the mathematical
model (1), we have introduced an additional signald(t) which models cross traffics
through the router and filling the buffer. These traffics are not TCP based flows (not
modeled in TCP dynamic) and can be viewed as perturbations since they are not reac-
tive to packets dropping (for example, UDP based traffic). A linearization and some
simplifications of (1) was carried out in [7] to allow the use of traditional control theory
approach. The linearized fluid-flow model of TCP is as follow,















δẆ (t) = − N
R2

0
C

(

δW (t) + δW (t − h(t))
)

− 1
R2

0
C

(

δq(t) − δq(t − h(t))
)

− R0C2

2N2 δp(t − h(t))

δq̇(t) = N
R0

δW (t) − 1
R0

δq(t) + d(t)

(2)

whereδW
.
= W − W0, δq

.
= q − q0 andδp

.
= p − p0 are the perturbated variables

about the operating point. The operating point(W0, q0, p0) is defined by
{

Ẇ = 0 ⇒ W 2
0 p0 = 2

q̇ = 0 ⇒ W0 = R0C
N

, R0 = q0

C
+ Tp
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Figure 2: Design of an AQM as a state feedback

The input of the model (2) corresponds to the drop probability of a packet. This proba-
bility is fixed by the AQM. This latter has for objective to regulate the queue size of the
router buffer. In this paper, this regulation problem is addressed in Section 3 with the
design of a stabilizing state feedback for time delay systems. Indeed, an AQM acts as a
controller (see figure 2) and in order to design it, we have to solve a synthesis problem.
Considering a state feedback, the queue management strategy of the drop probability
will be expressed as

p(t) = p0 + k1δW (t) + k2δq(t). (3)

wherek1 andk2 are the components of the matrix gainK which we have to design.
Note that the inputp(t) = u(t) + p0 of the system (4) is delayed.

2.2 Time delay system approach

In this paper, we choose to model the dynamics of the queue andthe congestion window
as a time delay system. Indeed, the delay is an intrinsic phenomenon in networks and
taking into account its characteristic should improve the precision of our model with
respect to the TCP behavior.
The linearized TCP fluid model (2) can be rewritten as the following time delay system:

{

ẋ(t) = Ax(t) + Adx(t − h) + Bu(t − h) + Bdd(t)
x0(θ) = φ(θ), with θ ∈ [−h, 0]

(4)

with

A=

[

− N

R2

0
C

− 1
CR2

0
N

R0

− 1
R0

]

, Ad =

[

− N

R2

0
C

1
R2

0
C

0 0

]

,B=

[

−C
2
R0

2N2

0

]

(5)

Bd = [0 1]T , x(t) = [δW (t) δq(t)]T is the state vector andu(t) = δp(t) the input.
φ(θ) is the initial condition.
There are mainly three methods to study time delay system stability: analysis of the
characteristic roots, robust approach and Lyapunov theory. The latter will be consid-
ered because it is an effective and practical method which provides LMI and BMI
(Linear/Bilinear Matrix Inequalities, [2]) criteria. To analyze and control the system
(4), the Lyapunov-Krasovskii approach (see [6]) is used which is an extension of the
traditional Lyapunov theory.

3 Stabilization: design of an AQM

In Section 2, the model of TCP/AQM has been addressed as time delay system. The
congestion problem needs the construction of a controller which regulates the buffer
queue length. In this section, we are first going to present a delay dependent stability
analysis condition for time delay systems. Then, based on this criterion, a synthesis
method to derive a stabilizing state feedback is deduced.



3.1 Stability analysis of time delay systems

In this subsection, our goal is to derived a condition which takes into account an up-
perbound of the delay. The delay dependent case starts from asystem stable without
delays and looks for the maximal delay that preserves stability.
Usually, all methods involve a Lyapunov functional, and more or less tight techniques
to bound some cross terms and to transform system [6]. These choices of specific Lya-
punov functionals and overbounding techniques are the origin of conservatism. In the
present paper, we choose a recently developed Lyapunov-Krasovskii functional (6) [5]:

V (xt) = xT (t)Px(t) +
t
∫
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ẋT (s)Rẋ(s)dsdθ
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(6)

whereP ∈ Sn is a positive definite matrix,Q ∈ Srn andR ∈ Sn are two positive
definite matrices.r ≥ 1 is an integer corresponding to the discretization step. Using
this functional, Let us introduce the following proposition.

Proposition 1 If there exist symmetric positive definite matricesP , R ∈ Rn×n, Q ∈
Rrn×rn, a scalarhm > 0 and an integerr ≥ 1 such that

S⊥
T

ΓS⊥ < 0 (7)
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and
S =

[

−1 A 0n×(r−1)n Ad

]

(9)

then, system (4) (withu(t) = 0 andd(t) = 0) is stable for allh ≤ hm.

Proof: It is always possible to rewrite (4) asSξ = 0 where

ξ =
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andS is defined as (9). Using the extended variableξ(t) (10), the derivative ofV
along the trajectories of system (4) leads to:
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s.t. [ −1 A 0 · · · 0 Ad ] ξ = 0

(11)

⇔

{

V̇ (xt) = ξT Γξ < 0

s.t. [ −1 A 0 · · · 0 Ad ] ξ = 0
(12)

whereΓ ∈ S(r+2)n depends onP , R, Q and the delayh.
Using projection lemma [20], expression (12) is equivalentto (7).
Remark 1:

• There exists another equivalent form of this LMI provided in[5] and based on
quadratic separation.

• In the same paper, it is shown that forr = 1, this proposed function (6) is
equivalent to the main classical results of the literature.Moreover, it is also
proved that forr > 1 conservatism is reduced.

3.2 A first result on synthesis

Given the analysis condition (7) and applying the delayed state feedback (3) on sys-
tem (4) (in this subsection, the disturbance is not taken into account), the following
proposition is obtained.

Proposition 2 If there exist symmetric positive definite matricesP , R ∈ Rn×n, Q ∈
R

rn×rn, a matrixX ∈ R
(r+2)n×n, a scalarhm > 0, an integerr ≥ 1 and a matrix

K ∈ Rm×n such that
Γ + XS + STXT < 0 (13)

whereΓ is defined as (8) and

S =
[

−1 A 0n×(r−1)n Ad + BK
]

(14)

then, system (4) can be stabilized for allh ≤ hm for the control lawu(t) = Kx(t)
(and ford(t) = 0).

Proof: Considering the system (4) with the state feedback (3), thefollowing intercon-
nected system is deduced

ẋ(t) = Ax(t) + Ādx(t − h), (15)

whereĀd = Ad + BK andA, Ad andB are defined as (5). Then, we can apply
the analysis condition (7) on (15). Using Finsler lemma [20], there exists a matrix
X ∈ R(r+2)n×n such that if (13) is satisfied then (7) is true. MatrixX is called “slack
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Figure 3: Design of an AQM as a dynamic state feedback

variables”which can reduced conservatism and may be interesting for synthesis pur-
pose as well as robust control purpose.
Remark 2:

• To solve the synthesis criterion (13), one has to use a BMI solver.

• In [11], a relaxation algorithm is provided with LMI condition to find a stabiliz-
ing state feedback.

3.3 Delay dependent state feedback with an integral action

In the previous section, the design of a state feedback control for time delay systems
has been exposed. The use of a such controller has been carried out in [11]. However, it
appears that in some cases, the queue size is no longer regulated at the desired level (this
phenomenon is only observed on the network simulator NS). Itthus appears a slight
steady state error which can be explain by an inaccuracy of the model. Futhermore, the
introduction of non responsive flows like UDP (user datagramprotocol) traffics which
appear as a disturbance affects the queue size equilibrium and changes the steady state.
In order to overcome these problems, the AQM is supplementedwith an integral action.
The idea is to apply the previously exposed synthesis methodover an augmented time
delay system composed of the original system (4) and an integrator (see figure 3). The
augmented system has the following form

ż =





A
0
0

0 1 0



 z(t) +





Ad
0
0

0 0 0



 z(t − h) (16)

+

[

B
0

]

δp(t − h)

with zT = [δW δq u]T is the extended state variable. Then, the global control which
correspond to our AQM, is a dynamic state feedback

δp(t) = K

[

δW (t)
δq(t)
u(t)

]

= k1δW (t) + k2δq(t) + k3

∫ t

0

δq(t)dt. (17)

In our problem, non modelled crossing trafficsd(t) such as UDP based applica-
tions are introduced as exogenous signals (see figures 2 and 3). The queue dynamic is
modified as

q̇(t) =
W (t)

R(t)
N − C + d(t) (18)



Considering equations (17), the first equation of (2) and (18), we obtain the transfer
functionT (s) from the disturbanceD(s) to the queue size (about the operating point)
∆Q(s):

T (s) =
b(s)s

(s + 1
R0

)sb(s) + N

R0

h

s

R2

0
C

(1 − e−hs) + a(s)sk2 + a(s)k3

i , (19)

with a(s) = −R0C2

2N2 e−hs andb(s) = s + N
R2

0
C

(1 + e−hs) + a(s)k1. It can be easily
shown that for a step type disturbance, the queue size still converges to its equilibrium.

3.4 Estimation of the congestion window

In these last two parts, a state feedback synthesis has been performed for the conges-
tion control of TCP flows and the management of the router buffer. So far we have
considered that the whole state was accessible. However, although the congestion win-
dow can be measured in NS (few lines have to be added in the TCP code), it is not the
case in reality. That’s why, in this paper it is proposed to estimate this latter variable
using the aggregate flow incoming to the router buffer. The sending rate of single TCP
source can be approximated by

xi(t) =
W (t)

R(t)
. (20)

The above approximation is valid as long as the model does notdescribe the commu-
nication at a finer time scale than few round trip time (see [13]). Consequently, the
whole incoming rate observed by the router isx(t) = NW (t)/R(t). The measure of
the aggregate flow has already been proposed and successfully exploited in [10] and
[9] for the realization of the AVQ and a PID type AQM respectively. It is worth noting
that queue-based AQMs like RED or PI can be assimilated as output feedbacks accord-
ing to the queue length. Conversely, AVQ can be viewed as an output feedback with
respect to the aggregate flow, belonging thus to the rate-based AQM class.

4 NS-2 simulations

As a widely adopted numerical illustration extracted from [7] (see figure 1 for the
network topology), consider the case whereq0 = 175 packets,Tp = 0.2 second and
C = 3750 packets/s (corresponds to a15 Mb/s link with average packet size500 bytes).
Then, for a load ofN = 60 TCP sessions, we haveW0 = 15 packets,p0 = 0.008,
R0 = 0.246 seconds. According to the synthesis criteria presented in Section 3, the
state feedback matrices

KSF = 10−3

[

−0.2372
0.0429

]

andKSFI = 10−4

[

0.9385
0.5717
0.3559

]

(21)

are calculated for the construction of the control laws (3) and (17) respectively.
We aim at proving the effectiveness of our method using NS-2 [3], a network simulator
widely used in the communication networks community. Taking values from the previ-
ous numerical example, we apply the new AQM based on a state feedback. The target
queue lengthq0 is 175 packets while buffer size is800. The average packet length is
500 bytes. The default transport protocol is TCP-New Reno without ECN marking.
For the convenience of comparison, we adopt the same values and network configura-
tion than [7] who design a PI controller (Proportional-Integral). This PI is configured



as follow, the coefficientsa andb are fixed at1.822e− 5 and1.816e− 5 respectively,
the sampling frequency is160Hz. The RED has been also tested using the parametric
configuration recommended in [7]. In figure 4, simulations are performed under an ex-
ternal perturbation. This latter is composed of 7 additional sources (CBR applications
over UDP protocol) sending 1000 bytes packet length with a 1Mbytes/s throughput
betweent = 40s andt = 100s. The two DSF (see figure 4 for the DSF based on
the congestion window and the aggregate flow) regulate faster than others and are able
to reject the disturbance swiftly. Conversely, figure 4 shows the time response of the
queue length with a simple state feedbackKSF (3) as an AQM. One can note that the
queue is stabilized slightly above the desired level (around 200 pkts). Futhermore, the
non reponsive cross traffic affects the steady state. The table 1 summarizes the benefits
of the twoKSFI AQMs (according to simulations with UDP cross traffics). Classical
statistical characteristics are calculated during the whole simulation, then only during
the UDP cross traffic and finally after the UDP cross traffic (come back to steady state).
These characteristics are mean, standard deviation (Sdt) and the square of the variation
coefficient (CV 2 = (Std/mean)2). This latter calculation assess the relative disper-
sion of the queue length around its mean. The mean points out the control precision
and the standard deviation shows the ability of the AQM to keep the queue size close
to its equilibrium. In table 1, we can observe thatKSFI(cwnd) maintains a very good
control on the buffer queue during the whole simulation. Even thoughKSFI(aggfl)
is slightly slower than the previous one, statistics (Std and CV2) show again a good
regulation. Although PI reject the perturbation quite fast, extensive fluctuations appear
during the steady state. To conclude, the two DSF are efficient AQMs which provide
the best precision and are able to regulate faster and closerto the mean compared to oth-
ers AQMs. To complete our simulation, we propose another NS-2 simulation between

AQMs RED PI KSF

KSF I

(cwnd)
KSF I

(aggfl)
Mean 235.7 176.7 263.9 175.9 175.5 B
Sdt 112.40 71.19 78.59 54.57 63.64 B

CV2 0.227 0.162 0.088 0.096 0.131 B
Mean 270.3 178.3 338.0 173.4 175.6 D
Sdt 57.39 40.42 41.21 35.08 28.32 D

CV2 0.045 0.051 0.014 0.040 0.026 D
Mean 201.4 177.8 236.0 176.2 174.8 A
Sdt 22.24 36.64 30.48 30.22 32.64 A

CV2 0.012 0.042 0.016 0.029 0.034 A

Table 1: Statistical characteristics for different AQMs (units are pkts) at different peri-
ods (B, D and A: before, during and after CBR applications)

different AQMs: REM, AVQ, RED, PI, KSFI(cwnd) and KSFI(aggfl). We consider
different levels of CBR cross traffics (13 sources, 1Mb). RED, REM, PI and AVQ are
fixed to same values as in [14], which is a performance analysis of AQM under DoS
attacks. The additional sources are sending 1000 bytes packet length with a 1Mbytes/s
throughput betweent = 60s andt = 180s. The simulation is illustrated in the fig-
ure 5. In these last two cases, one can imagine that AQMs coulddetect cross traffics
or traffic anomalies. Moreover,AQM = {KSFI(cwnd), KSFI(Aggfl)} still have well
behaviours under cross traffic conditions.
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Figure 4: Time evolution of the queue length, AQM =
{RED, PI, KSF , KSFI(cwnd), KSFI(Aggfl)} under UDP crossing traffic

5 Conclusion

In this preliminary work, we have proposed the design of an AQM for the congestion
control in communications networks. The developed AQM has been constructed using
a dynamic state feedback control law. An integral action hasbeen added to reject the
steady state error in spite of disturbance,d(t) (cross traffic). Finally, the AQM has been
validated using NS simulator. Future work consist in the improvement about control
laws (theoritical part) extended to a greater network usinga decentralized approach to
reduce the weakness of this method on one side and validationon emulation platform
(experimental part) on the other side.
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