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AEROSOL RETROACTION ON THE AIR

IN A TWO-DIMENSIONAL BRANCH ∗

L. Boudin1, 2, A. Devys3, 4, C. Grandmont2, B. Grec5 and D. Yakoubi2

Abstract. In this work, we investigate two different aspects of an aerosol behaviour in the human

airways. After a brief presentation of the model, we first study the impingement of aerosol particles

with respect to their Stokes number and obtain again some well-known results. Then we consider the

effect of an aerosol on the airflow and obtain a range of particles size where the aerosol action on the

air cannot be neglected.

1. Introduction

The aerosols are often used as a medical treatment of respiratory/lung diseases. The aerosol therapy consists
in delivering medication in a mist form the patient must breathe in. There are lots of works about the aerosol
behaviour and deposition in the human airways, most of them dedicated to the upper part of the airways. For
example, one can check [2,7,8,11,16] and the references therein. They often aim to compare experimental data
and numerical results. The human respiratory tract can be classically described by a branched structure, see
for instance [3, 12, 13, 17]. It is relevant to focus on one branch to investigate some properties of the aerosol.
The present work has two main goals. The first one is to recover some results [1, 18] about particle deposition
with respect to the associated Stokes number in a two-dimensional one-generation bifurcation mimicking the
trachea and the first bronchi. The second one is to estimate the influence of the aerosol on the airflow in the
same geometry of the human airways. Indeed, the airflow has an indisputable effect on the aerosol through a
drag (or friction) force. Conversely, it is commonly admitted in the literature that the so-called retroaction of
the aerosol on the air can be neglected. This work is hence an attempt to quantify this statement, noting that,
in [11], for instance, the retroaction is taken into account in the model and the computations.
The airflow can be described by the incompressible Navier-Stokes equations down to the seventh generation of
the respiratory tract. The medical aerosols are constituted of very numerous particles, so that direct numerical
simulations happen to be too expensive. Relying on the kinetic theory of rarefied gases and its statistical
mechanics viewpoint seems to be a good solution to model an aerosol.
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2. Aerosol modelling and simulation

2.1. Model

The situations we deal with in this work are only two-dimensional. The airflow can be described by its velocity
field u(t, x) ∈ R

2 and the pressure p(t, x) ∈ R, where t ≥ 0 is the time and x ∈ R
2 is the space location. Since

the air is assumed to be incompressible, the air density remains constant, denoted by ̺air. Inside the human
body, at temperature 310K, one can take ̺air = 1.11 kg.m−3. Let us also denote ν the air kinematic viscosity
and µ = ̺air ν the dynamic one. A standard value of µ is 1.88 × 10−5 kg.m−1.s−1. The previous values can be
found, for instance, in [1].
As already stated, a kinetic equation seems to be a good mean to model the behaviour of an aerosol [4,11]. The
aerosol itself is described by a probability density function (PDF), which we denote f . The PDF depends not
only on t and x, but also on velocity v ∈ R

2. In fact, f can also depend on the particle radius r (we here assume
that the particles remain spherical). Let us emphasize that we shall not take into account any phenomenon
modifying the aerosol radius distribution (no collision, no abrasion, etc.). This means that the initial radius
distribution is conserved. Therefore, the radius will not appear as a variable in the equations, but only as a
parameter. The dependence of f on r allows to send particles with various radii in the computational domain
Ω.
Dependence on other physical quantities, like temperature, is not discussed here, but one can easily admit that,
for instance, the temperature variation has a negligible influence on the phenomena in the airways, in standard
conditions. In the following, we assume that the aerosol is also an incompressible fluid very similar to the water,
so that its volume mass ̺aero can be chosen as ̺aero = 1000 kg.m−3. Then, for each particle with radius r, we
can use its mass m = 4/3 πr3̺aero.
The quantity f(t, x, v, r) dr dv dx is then the number of particles at time t inside the elementary volume centered
at (x, v, r) in the phase space. Eventually, here is the full system satisfied by f , u and p:

∂tu + ∇x · (u ⊗ u) − ν∆xxu +
∇xp

̺air

=
Faero

̺air

, (1)

∇x · u = 0, (2)

∂tf + ∇x · (vf) + ∇v · (af) = 0, (3)

where a is the particle acceleration, mainly due here to the Stokes force exerted on the aerosol by the fluid, and
is given by

a(t, x, v, r) =
6πµr

m(r)
(u(t, x) − v), (4)

and Faero is the force exerted by the aerosol on the air, that is

Faero(t, x) = −

∫∫
R2×R+

f(t, x, v, r)m(r) a(t, x, v, r) dv dr = 6π µ

∫∫
R2×R+

r f(t, x, v, r) (v − u(t, x)) dv dr. (5)

This system was mathematically investigated in [5] in a periodic in space framework, and without any depen-
dence on r.
The boundary Γ = ∂Ω of the computational domains we shall consider can be divided into three areas, not
necessarily connate: the inlet Γin, the outlet(s) Γout and the wall Γwall. Figure 1 shows the typical domain on
which we perform computations: a branch.
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Figure 1. Standard branch with boundaries

Equations (1)–(5) must then be supplemented with boundary conditions:

u(t, x) = ũ(t, x) if x ∈ Γin, (6)

u(t, x) = 0 if x ∈ Γwall, (7)

ν
∂u

∂n
(t, x) − p(t, x)n(x) = 0 if x ∈ Γout, (8)

f(t, x, v, r) = f̃(t, x, v, r) if x ∈ Γin, (9)

f(t, x, v, r) = 0 if x ∈ Γwall and v · n(x) < 0, (10)

where ũ (resp. f̃) is the profile of the incoming velocity (resp. the incoming particle distribution) in Ω. Condition
10 has been discussed in [6], n(x) being the outgoing normal vector to Γ in x.

2.2. Numerical solving

The airflow is solved by a standard P 1 − P 2 finite element computation, and the aerosol by a particle method.
We do not give any detail on the fluid computation, since (1)–(2), (6)–(7) are solved thanks to a Navier-Stokes
routine using the Freefem++ software [14]. For the particle method, we have to distinguish the physical particles
from the numerical ones. The total number of numerical particles N is almost always much smaller than the
number of real physical particles NP . The PDF f can discretized in the following way

f(t, x, v, r) =

N∑
p=1

ωp(t)δxp(t)(x)δvp(t)(v)δrp(t)(r),

where t 7→ (xp(t), vp(t), rp(t)) is the trajectory of the numerical particle p in the phase space, and ωp(t) its
representativity at time t. A numerical particle p gives an average behaviour of a set of physical particles. The
average value of ωp is approximately of the order NP /N . Note that our numerical code is inspired from an
engineering project performed under B. Maury’s supervision [9].
In the following, we always assume that the incoming velocity boundary condition on Γin has a Poiseuille
parabolic profile, with maximum value equal to 1. We can check on Figure 2 that the air velocity field has the
numerically awaited behaviour (in particular, it remains between 0 and 1).

3. Study of the aerosol flow with respect to the Stokes number

The Stokes number St is classically used to describe the behavior of particles evolving in a fluid flow with
an obstacle. Its primary definition, when the particle is suspended in an ambient fluid, depends on the fluid
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Figure 2. Air velocity field

velocity, the characteristic size of the obstacle and other quantities of the fluid and the aerosol. If St ≫ 1,
the particle hits the obstacle, and if St ≪ 1, the particle still follows the fluid streamlines. In our context, the
obstacle is the wall itself, and the particles have their own velocities. The Stokes number can then be given [1]
(see also [18]) by

St =
4 ̺aero r2 |v|

9 µ D
, (11)

where D is the local diameter of the respiratory tree.
Since we study the branch case, we can choose D as the diameter of the lower part of the tree, that is, in the
2D Weibel model (see [17], for instance), D1 = 0.0141m. This two-dimensional model has the advantage to
conserve the resistance of the three-dimensional airways, but looses other significant quantities, such as the air
Reynolds number. Since v varies for each particle and during the computation, but still satisfies |v| ≤ 1, we
compute the Stokes number with |v| = 1, that ensures to obtain the smallest possible value of St.
We send inside the domain 50 particles sharing the same Stokes number at each computational experiment. For
the highest values of St, we recover that almost every particle hits the angle of the branch (see Fig. 3 obtained
thanks to the visualization software medit [10]).
Figure 4 shows the numerical graph of the number of outgoing particles with respect to the Stokes number.
It is very clear that there is an optimal value near St = 10−4.5 = 3.17 × 10−5, which corresponds to a radius
approximately equal to 100nm. We qualitatively recover the experimental values obtained in [15]. Note that
the particles still deposit even for very small St because St is a mean value, and the real values of St for the
depositing particles are in fact higher.
Most aerosol inhalers generate a lognormal distribution in the variable r. It would be easy to draw the following
conclusion. Since we want to reach an area located in the lower airways, we have to choose the ingoing
distribution centered at the optimal radius obtained with the corresponding optimal Stokes number. Of course,
it is not that simple: the fact that a certain amount of aerosol actually goes out from the upper airways (say,
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Figure 3. Aerosol deposition areas for (a) St = 26.2, and (b) St = 9.42

-8 -6 -4 -2 0 2
log(St)

0

5

10

15

20

25

30

N
um

be
r 

of
 p

ar
tic

le
s 

go
in

g 
ou

t t
he

 lo
w

er
 p

ar
ts

Figure 4. Counting outgoing particles with respect to log10(St)

after the seventh generation) does not imply that it will eventually reach the lower parts (after the seventeenth
generation). Other studies have to be led, since, among other reasons, between the seventh and the seventeenth
generations, the airflow and aerosol models used here may not hold.

4. Retroaction of the aerosol on the fluid

The presence of the term Faero in (1) is the second topic of this work. It does not concern the aerosol itself, but
its influence on the airflow. In fact, it really matters to understand and foresee whether this retroaction force
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Figure 5. Plot of (a) εu and (b) εp, for r = 100 µm and ωp = 104

of the aerosol on the fluid is to be taken into account, depending on various parameters, such as the particle
radius or the total number of particles.
As in Section 3, we study the case of a branch representing the first branch of the airways (its upper diameter
is D0 = 0.018 m). The particles are initially uniformly distributed on the boundary Γin, and injected in Ω at
time t = 0 with a vertical velocity constant equal to v = 2. In each case, 10 000 particles are injected, but
their representativity ωp may vary with regard to each test. The time step is fixed equal to ∆t = 10−4 s. The
computations are relevant as long as there remain some particles in the domain.
We performed computations in four situations. The tests are carried out for two different radii of the particles
(r = 100 µm and r = 1 µm) and two different particle representativities (ωp = 104 or ωp = 102 particles)
independent of t. Note that such values are not necessarily physically relevant for the respiratory aerosols, but
they are used for numerical validations.
In each case, we compute the velocity field u (resp. uref) and the pressure p (resp. pref) with (resp. without)
the retroaction force Faero. We compute a relative difference for the velocity and the pressure at each time step:

εu =
‖u − uref‖L2

‖uref‖L2

, εp =
‖p− pref‖L2

‖pref‖L2

.

The choice of the L2 norm is convenient to be computed. It is also interesting to compute a relative L∞

difference between the two cases. First computational observations indicate that the L∞ norm remains about
ten times bigger than the L2 one, and thus that the retroaction does not generate big variations at some points
in the domain. Therefore, it is relevant to determine whether the retroaction is negligible by computing with
the L2 norm.

4.1. Large representativity of big particles

We first choose r = 100 µm and ωp = 104. In this case, we see on Figure 5 that the aerosol retroaction has a
rather significant effect on the velocity field, and a really significant one on the pressure.
The computation lasts for approximately 600 timesteps, because the aerosol is fully deposited around this time.
In order to follow the evolution of the particles with respect to time, we represent the retroaction force field at
t = 0, t = 200 ∆t, t = 400 ∆t, t = 600 ∆t on Figure 6.
We observe that at time t = 600 ∆t, the particles are deposited on the angle of the branch, where the force
is almost equal to 0. Note that there is a residual component of Faero in the top of the branch, because there
remain some particles with very low velocities near the wall.
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Figure 6. Retroaction force Faero at (a) t = 0, (b) t = 200 ∆t, (c) t = 400 ∆t and (d) t = 600 ∆t

Figure 7 shows the pressure gradient ∇xp for the same times as the retroaction force. We observe that the
pressure force seems to be more significant than the retroaction one. Therefore, in (1), the fluid velocity is
mostly determined by the pressure gradient. Besides, we can compute the relative weight of the retroaction:

εF =
‖Faero‖∞
‖∇p‖∞

.

With the values of Figure 6 and 7, we obtain that εF ≃ 10−3. Actually, this order of magnitude corresponds to
the values obtained for the differences between velocities in the L∞ norm, and thus explains these values.

4.2. Small representativity of big particles

In this second situation, we pick r = 100 µm and ωp = 102. Figure 8 shows that the velocity relative difference
is at most 1.2 × 10−6, which seems quite negligible in most computations. Nevertheless, the pressure relative
difference almost reaches 10−4, with a notable peak at the beginning of the computation. In fact, we can already
find such a peak in Figure 5, but it is not really clear, because the computation has then to be stopped after
the particle deposited. An explanation of this peak would be that the incoming particles generate a shockwave
which mainly appears on the pressure.

4.3. Large representativity of small particles

We here choose r = 1 µm and ωp = 104. The behaviors of both εu and εp in Figure 9 are quite similar to
the ones in Figure 8. The pressure peak is lower than the one of Figure 8, but of the same order, whereas the
velocity difference is ten times smaller. In any case, the retroaction seems to be negligible.
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Figure 7. Pressure gradient ∇xp at (a) t = 0, (b) t = 200 ∆t, (c) t = 400 ∆t and (d) t = 600 ∆t
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Figure 8. Plot of (a) εu and (b) εp, for r = 100 µm and ωp = 102

4.4. Small representativity of small particles

Eventually, we pick r = 1 µm and ωp = 102. The results corresponding to this case are represented in Figure 10.
We recover the fact that if the particle size and the particle number are low, the retroaction of the aerosol has
very little effect on the fluid. In fact, the relative difference between the velocity fields is around 10−7, which is
much smaller than the other cases.
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Figure 9. Plot of (a) εu and (b) εp, for r = 1 µm and ωp = 104
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Figure 10. Plot of (a) εu and (b) εp, for r = 1 µm and ωp = 102.

4.5. Conclusion

Those four tests allow us to state that there is a strong dependence of the retroaction force on the particle radius
and the numerical representativity. Both parameters have an influence on the mass of a numerical particle. It
is then clear that, even if we send small particles inside the branch, and by extension in the upper airways, the
aerosol may have some (weak but not necessarily negligible) influence on the air. Moreover, near the seventh
generation, this retroaction may be more significant too.
Eventually, we have to point out again that our conclusions have been obtained in a two-dimensional framework,
more precisely with the Weibel model. The difference between two- and three-dimensional models, for example,
the fact that the resistance of the tree and the air Reynolds number cannot be simultaneously conserved, imply
that the same question about the aerosol retroaction must be tackled in the three-dimensional case.
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2007.

[10] C. Dobrzynski and P. Frey. Medit, scientific visualization software, http://www.ann.jussieu.fr/∼frey/logiciels/medit.html.
[11] T. Gemci, T. E. Corcoran, and N. Chigier. A numerical and experimental study of spray dynamics in a simple throat model.

Aerosol Sci. Technol., 36:18–38, 2002.
[12] C. Grandmont, Y. Maday, and B. Maury. A multiscale/multimodel approach of the respiration tree. In New trends in continuum

mechanics, volume 3 of Theta Ser. Adv. Math., pages 147–157. Theta, Bucharest, 2005.
[13] C. Grandmont, B. Maury, and A. Soualah. Multiscale modelling of the respiratory track: a theoretical framework. ESAIM

Proc., 23:10–29, 2008.
[14] F. Hecht, A. Le Hyaric, K. Ohtsuka, and O. Pironneau. Freefem++, finite elements software, http://www.freefem.org/ff++/.
[15] J. Löndahl, J. Pagels, E. Swietlicki, J. Zhou, M. Ketzel, A. Massling, and M. Bohgard. A set-up for field studies of respiratory

tract deposition of fine and ultrafine particles in humans. Aerosol Science, 37:1152–1163, 2006.
[16] T. R. Sosnowski, A. Moskai, and L. Gradon. Mechanisms of aerosol particle deposition in the oro-pharynx under non steady

airflow. Ann. Occup. Hyg., 51:19–25, 2007.
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