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Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene

A universal set of third-nearest neighbour tight-binding (TB) parameters is presented for calculation of the quasiparticle (QP) dispersion of N stacked sp 2 graphene layers (N = 1 . . . ∞) with AB stacking sequence. The QP bands are strongly renormalized by electron-electron interactions which results in a 20% increase of the nearest neighbour in-plane and out-of-plane TB parameters when compared to band structure from density functional theory. With the new set of TB parameters we determine the Fermi surface and evaluate exciton energies, charge carrier plasmon frequencies and the conductivities which are relevant for recent angle-resolved photoemission, optical, electron energy loss and transport measurements. A comparision of these quantitities to experiments yields an excellent agreement. Furthermore we discuss the transition from few layer graphene to graphite and a semimetal to metal transition in a TB framework.

INTRODUCTION

Recently mono-and few-layer graphene (FLG) in an AB (or Bernal) stacking is made with high crystallinity by the following three methods; epitaxial growth on SiC [1], chemical vapour deposition on Ni(111) [2] and by mechanical cleavage on SiO 2 [3]. Graphene is a novel, two-dimensional (2D) and meta stable material which has sparked interest from both basic science and application point of view [4]. A monolayer of graphene allows one to treat basic questions of quantum mechanics such as Dirac Fermions or the Klein paradox [5] in a simple condensed-matter experiment. The existence of a tunable gap in a graphene bilayer was shown by angleresolved photoemission (ARPES) [6], which offers a possibility of using these materials as transistors in future nanoelectronic devices that can be lithographically patterned [7]. Furthermore a graphene layer that is grown epitaxially on a Ni(111) surface is a perfect spin filter device [8] that might find applications in organic spintronics.

It was shown recently by ARPES that the electronic structure of graphene [9] and its 3D parent material, graphite [10,11,12], is strongly renormalized by correlation effects. To date the best agreement between ARPES and ab-initio calculations is obtained for GW (Greens function G of the Coulomb interaction W ) calculations of the QP dispersion. The band structure in the local density approximation (LDA) (bare band disper-sion) is not in good agreement with the ARPES spectra because it does not include long-range correlation effects. The self energy correction of the Coulomb interaction to the bare energy band structure are crucial for determining the transport and optical properties (excitons) and related condensed-matter phenomena. For graphite, a semi metal with a tiny Fermi surface, the number of free electrons to screen the Coulomb interaction is low (∼ 10 19 carriers cm -3 ) and thus the electron-electron correlation is a major contribution to the self-energy correction [10]. Theoretically the bare energy band dispersion is calculated by the local density approximation (LDA) and the interacting QP dispersion is obtained by the GW approximation. The GW calculations are computationally expensive and thus only selected k points have been calculated [10]. Therefore a tight-binding (TB) Hamiltonian with a transferable set of TB parameters that reproduces the QP dispersion in sp 2 stacked graphene sheets is needed for analysis of ARPES, optical spectroscopies and transport properties for pristine and doped graphite and FLGs. So far there are already several sets of TB parameters published for graphene, FLG and graphite. For graphene a third nearest neighbour fit to LDA has been performed [13]. Recently, however it has been shoen by ARPES that the LDA underestimates the slope of the bands and also the trigonal warping effect [10]. For bilayer graphene the parameters of the so-called Slonzcewski-Weiss-McClure (SWMC) Hamiltonian have been fitted to reproduce double resonance Raman data [14]. A direct observation of the quasiparticle (QP) band structure is possible by ARPES. A set of TB parameters has been fitted to the experimental ARPES data of graphene grown on SiC [15]. As a result they obtained a surprisingly large absolute value of the nearest neighbour π hopping parameter of 5.13 eV [15]. This is in stark contrast to the fit to the LDA calculation which gives only about half of this value [13]. Considering the wide range of values reported for the hopping parameters, a reliable and universal set of TB parameters is needed that can be used to calculate the QP dispersion of an arbitrary number of graphene layers. The band structure of FLGs has been calculated [16] using first-nearest neighbour in-plane coupling which provide the correct band structure close to K point. However, as we will show in detail in this paper, the inclusion of third-nearest neighbours (3NN) is essential in describing the experimental band structure in the whole BZ. The fact that the inclusion of 3NN is essential is also proven by the dispersion of a localized state at the zigzag edge of a graphene flake. Only inclusion of 3NN interaction can reproduce a weakly downwards dispersing state which is relevant to superconductivity in graphene nanoribbons [17].

In this paper, we present a tight-binding (TB) formulation of the π bare energy band and QP dispersions of AB stacked FLG and graphite. We have previously compared both, GW and LDA calculations to ARPES experiments and proofed that LDA underestimates the slope of the bands and trigonal warping [16]. Here we list the TB fit parameters of the QP dispersion (TB-GW ) and the bare band dispersion (TB-LDA) and show that the inplane and out-of-plane hopping parameter increase when going from LDA to GW . This new and improved TB-GW parameters is used for direct comparision to experiments are obtained from a fit to QP calculations in the GW approximation. This set of TB parameters works in the whole 2D (3D) BZ of FLG (graphite) and is in agreement to recent experiments. In addition we fit the parameters of the popular SWMC Hamiltonian that is valid close to the KH axis of graphite. This paper is organized as follows: in section 2 we develop the 3NN TB formulation for graphite and FLGs and in section 3 the SWMC Hamiltonian is revised. In section 4 a new set of TB parameters for the calculating the QP dispersion of stacked sp 2 carbon is given. In section 5 we compare the graphite bare energy band (LDA) to the QP (GW ) dispersion. In section 6 we use the TB-GW Hamiltonian and calculate the doping dependent Fermi surface of graphite and estimate effective masses and free charge carrier plasmon frequencies of pristine and doped graphite. In section 7 we show the calculated QP dispersions of FLGs. In section 8 we discuss the present results and estimate the exciton binding energies, transport properties and the low energy plasmon frequencies. In section 9 the conclusions of this work are given. Finally, in the appendices, the analytical forms of the Hamiltonians for FLG are shown.

Natural graphite occurs mainly with AB stacking order and has four atoms in the unit cell (two atoms for each graphene plane) as shown in Fig. 1(a). Each atom contributes one electron to the four π electronic energy bands in the 3D Brillouin zone (BZ) [see Fig. 1(b)]. FLG has N parallel graphene planes stacked in an AB fashion above one another; the unit cell of FLG is 2D and the number of π bands in the 2D BZ equals 2N . For graphite and FLG the TB calculations are carried out with a new 3NN Hamiltonian and in addition with the well-known SWMC Hamiltonian [18] that is valid in the vicinity to the Fermi level (E F ). The TB parameters that enter these two Hamiltonians are γ = (γ 1 0 , γ 2 0 , γ 3 0 , s 0 , s 1 , s 3 , γ 1 . . . , γ 5 , ∆, E 0 ) for the 3NN Hamiltonian [shown in Fig. 1(a)] and γ = (γ 0 , . . . , γ 5 , ∆ , E 0 ) for the SWMC Hamiltonian. The hopping matrix elements for the SWMC Hamiltonian are not shown here but they have a similar meaning with the difference that only one nearest neighbour in-plane coupling constant is considered (see e.g. Ref. [19] for an explanation of SWMC parameters). The hopping matrix elements for the 3NN Hamiltonian are shown in Fig. 1(a). The atoms in the 3D unit cell are labelled A 1 ,B 1 for the first layer and A 2 ,B 2 for the second layer. The A 2 atom lies directly above the A 1 atom in z direction (perpendicular to the layers). Within the xy plane the interaction is described by γ 1 0 (e.g. A 1 B 1 and A 2 B 2 ) for the nearest neighbours, and γ 2 0 and γ 3 0 for second nearest and third nearest neighbours, respectively. A further parameter, γ 1 (A 1 B 2 ), is needed to couple the atoms directly above each other (in z direction). The hopping between adjacent layers of sites that do not lie directly above each other is described by γ 3 (B 1 B 2 ) and γ 4 (A 1 B 2 and B 1 A 2 ). The small coupling of atoms in the next-nearest layer is γ 2 (B 1 B 1 and

B 2 B 2 ) and γ 5 (A 1 A 1 and A 2 A 2 ).
The calculation shown here is valid for both graphite and FLGs with small adjustment as indicated when needed. The lattice vectors for graphite in the xy plane are a 1 and a 2 and the out-of-plane lattice vector perpendicular to the layers is a 3 .

a 1 = ( √ 3a 0 2 , a 0 2 , 0), a 2 = ( √ 3a 0 2 , - a 0 2 , 0), a 3 = (0, 0, 2c 0 ).
(1) The C-C distance a 0 = 1.42 Å and the distance of two graphene layers c 0 = 3.35 Å. For a FLG with N layers and hence 2N atoms only the 2D unit vectors a 1 and a 2 . Similarly the electron wave vectors in graphite k = (k x , k y , k z ) have 3 components and in FLG k = (k x , k y ). A TB method (or linear combination of atomic orbitals, LCAO) is used to calculate the bare energy band and QP dispersion by two different sets of interatomic hopping matrix elements. The electronic eigenfunction Ψ(r, k) is made up from a linear combination of atomic 2p z orbitals φ(r) which form the π electronic bands in the solid. The electron wave function for the band with index  is given by

Ψ  (k, r) = s=A1,B1,...,BN c  s (k)Φ s (k, r), ( = 1 . . . 2N ).
(2) Here  = 1 . . . 2N is the electronic energy band index and s in the sum is taken over all atomic 2p z orbitals from atoms A 1 ,B 1 ,A 2 . . . B N . Note that for 3D graphite we have N = 2. The c  s (k) are wave function coefficients for the Bloch functions Φ s (k, r). The Bloch wave functions are given by a sum over the atomic wave functions φ s for each orbital in the unit cell with index ( , m, m) multiplied by a phase factor. The Bloch function in graphite for the atom with index s is given by

Φ s (r, k) = 1 √ U U ,m,n exp(-iR mn s • k)φ s (r -R mn s ). ( 3 
)
where U is the number of unit cells and φ s denotes atomic wave functions of orbital s. In graphite the atomic orbital φ s in the unit cell with index ( , m, m) is centered at R mn s = a 1 + ma 2 + na 3 + r s and in FLGs at R m s = a 1 + ma 2 + r s .

For the case of FLGs Φ s (r, k) contains only the sum over the 2D in-plane R m s . The 2N × 2N Hamiltonian matrix defined by H ss (k) = Φ s (r, k)|H(r)|Φ s (r, k) and the overlap matrix is defined by S ss (k) = Φ s (r, k)|Φ s (r, k) . For calculation of H and S, up to third nearest neighbour interactions (in the xy plane) and both nearest and next-nearest neighbour planes (in z direction) are included as shown in Fig. 1(a). The energy dispersion relations are given by the eigenvalues E(k) and are calculated by solving

H(k)c(k) = S(k)E(k)c(k). (4) 
In the Appendix, we show the explicit form of H(k) for graphite FLGs with 1-3 layers.

SWMC HAMILTONIAN

The SWMC Hamiltonian has been extensively used in the literature [19]. It considers only first nearest neighbour hopping and is valid close to the KH axis of graphite. For small k measured from the KH axis (up to 0.15 Å-1 ) both, the 3NN and the SWMC Hamiltonians yield identical results. The eight TB parameters for the SWMC Hamiltonian were previously fitted to various optical and transport experiments [19].

For the cross sections of the electron and hole pockets analytical solutions have been obtained and thus it has been used to calculate the electronic transport properties of graphite. Thus, in order to provide a connection to many transport experiments from the past, we also fitted the LDA and GW calculations to the SWMC Hamiltonian.

The TB parameters are directly related to the energy band structure. E.g. γ 0 is proportional to the Fermi velocity in the k x k y plane and 4γ 1 gives the bandwidth in the k z direction. The bandwidth of a weakly dispersive band in k z that crosses E F approximately halfway in between K and H is equal to 2γ 2 , which is responsible for the semi metallic character of graphite. Its sign is of great importance for the location of the electron and hole pockets: a negative sign brings the electron pocket to K while a positive sign brings the electron pocket to H. There has been positive signs of γ 2 reported earlier [20] but it has been found by M.S. Dresselhaus [19,21] that the electron(hole) pockets are located at K(H) which is in agreement with recent DFT calculations [10], tight-binding calculation [22] and experiments [19,23]. The magnitude of γ 2 determines the overlap of electrons and holes and the volume of the Fermi surface. It thus also strongly affects the concentration of carriers and hence the conductivity and free charge carrier plasmon frequency. The effective masses for electrons and holes of the weakly dispersive energy band are denoted by m * ze and m * zh , respectively. Their huge value also results from the small value of γ 2 and causes the low electrical conductivity and low plasmon frequency in the direction perpendicular to the graphene layers since m * ze ( √ m * ze ) enters the denominator in the expression for the Drude conductivity (free carrier plasmon frequency). γ 3 determines the strength of the trigonal warping effect (γ 3 = 0 gives isotropic equi-energy contours) and γ 4 the asymmetry of the effective masses in valence band (VB) d Fit to LDA, J.C. Charlier et al [22] e Fit to double resonance Raman spectra. L.M. Malard et al. [14] f Fit to Korringa-Kohn-Rostocker first principles calculation Tatar and Rabi [18] TABLE II: The SWMC tight-binding parameters for the bare band dispersion (LDA) and the quasiparticle dispersion (GW ). All values are in eV. This parameters are for the SWMC Hamiltonian [16,18,19,25] which is valid close to the KH axis.

and conduction band (CB). The other parameter from next nearest neighbour coupling, γ 5 has less impact on the electronic structure: both the VB and CB at K are shifted with respect to the Fermi level by ∆ + γ 5 causing a small asymmetry [19]. Here ∆ is the difference in the on-site potentials at sites A 1 (B 2 ) and A 2 (B 1 ). ∆ is the value of the gap at the H point [24]. This crystal field effect for nonzero ∆ occurs in AB stacked graphite and FLGs but it does not occur in AA stacked graphite and the graphene monolayer. The small on-site energy difference ∆ appears in the diagonal elements of H(k). It causes an opening of a gap at the H point which results in a breakdown of Dirac Fermions in graphite and FLGs with N > 1. Finally, E 0 is set in such a way that the electron and hole like Fermi surfaces of graphite yield an equal number of free carriers. E 0 is measured from the bottom of the CB to the Fermi level.

NUMERICAL FITTING PROCEDURE

The ab-initio calculations of the electronic dispersion are performed on two levels: bare band dispersion calculation by LDA and QP dispersion calculations within the GW approximation. We calculate the Kohn-Sham band-structure within the LDA to density-functional theory (DFT) [26]. Wave-functions are expanded in plane waves with an energy cutoff at 25 Ha. Core electrons are accounted for by Trouiller-Martins pseudopotentials.

We then employ the G 0 W 0 approximation using a plasmon-pole approximation for the screening [27,28,[START_REF] Louie | Topics in Computational Materials Science[END_REF] to calculate the self-energy corrections to the LDA dispersion. For the calculation of the dielectric function (ω, q) we use a 15×15×5 Monkhorst-Pack k sampling of the first BZ, and conduction band states with energies up to 100 eV above the valence band (80 bands), calculations were performed using the code YAMBO [START_REF] Marini | the Yambo project[END_REF]. The details for the first principles calculations are given elsewhere [START_REF] Attaccalite | [END_REF].

For the fitting of the TB parameters to the ab-initio (LDA and GW ) calculations we used energies of the four π bands of graphite at ∼ 100 k points. The points were distributed inside the whole 3D BZ of graphite. The fitting was performed with the 3NN Hamiltonian. In addition we chose a smaller subset of points inside a volume of 0.15 Å-1 × 0.15 Å-1 × 0.47 Å-1 and fitted the SWMC parameters, which is frequently used in the literature [16,18,19]).

The set of TB parameters were fitted by employing a steepest-descent algorithm that minimizes the sum of denotes LDA calculations and denotes GW calculations that were used for the fitting (taken from Ref. [10]).

squared differences between the TB and the ab-initio calculations. This involves solving Eq. 4 with different sets of TB parameters so as to approach a minimum deviation from the ab-initio calculations. Points close to E F were given additional weight so that the band crossing E F was described with a deviation less than 1 meV. This is important for an accurate description of the Fermi surface.

In Table I we list the parameters for the 3NN Hamilto- nian that can be used to calculate TB-GW bands in the whole 3D BZ of graphite.

The parameters that were fit with the SWMC Hamiltonian are summarized in Table II. These TB parameters reproduce the bare energy band (fit to LDA) and the QP (fit to GW ) calculated dispersions. Hereafter these fits are referred to as TB-LDA and TB-GW , respectively. We also list the values from other groups that were fit to experiments [19] and to LDA [22] and another first-principles calculation [18]. It can be seen that the TB-GW parameters for the nearest neighbour coupling increase by about 20% when compared to TB-LDA. TB-GW is also closer to the experimental TB parameters than the TB-LDA parameters. This indicates that electronic correlation effects play a crucial role in graphite and FLGs for interpreting and understanding experiments that probe the electronic energy band structure.

COMPARISION OF THE BARE ENERGY BAND TO THE QUASIPARTICLE DISPERSION OF GRAPHITE

We now compare the calculated TB-LDA to TB-GW and we also show the result of the first-principles calculations that were used for fitting in order to illustrate the quality of the fit. In Fig. 2 the full k z dispersion from K to H for (a) TB-LDA is compared to (b) TB-GW calculations. It is clear that the bandwidth in k z increases by about 20% or 200 meV when going from TB-LDA to TB-GW, i.e. when long-range electron-electron interaction is taken into account. Such an increase in bandwidth is reflected by the TB parameter γ 1 (in the SWMC model 4γ 1 is the total bandwidth in the out-of-plane direction). It can be seen that the conduction bandwidth increases even more than the valence bandwidth. The VB dispersion was measured directly by ARPES and gave a result in good agreement to the TB-GW [10]. The dispersion parallel to the layers is investigated in Fig. 3 where we show the k y dispersion for k z = 0 (K) and k z = 0.47 Å-1 (H). Here the TB-GW bands also become steeper by about 20% when compared to TB-LDA. This affects γ 0 which is the in-plane nearest-neighbour coupling (see Fig. 1)(a). It determines the in-plane v F and in-plane bandwidth which is proportional to γ 1 0 -γ 3 0 (or proportional to γ 0 in the SWMC Hamiltonian). In Fig. 4 the trigonal warping effect is illustrated by plotting an equi-energy contour for k z = 0 with (a) TB-LDA and (b) TB-GW . The trigonal warping effect is determined by γ 3 which is larger in the TB-GW fit compared to the TB-LDA.

THE THREE DIMENSIONAL QUASIPARTICLE DISPERSION AND DOPING DEPENDENT FERMI SURFACE OF GRAPHITE

In the previous section we have shown that the π bandwidth increases by 20% when going from TB-LDA to TB-GW . This affects especially the optical properties such as the π → π * transition that plays an important role in optical absorption and resonance Raman and thus one has to use TB-GW for proper description of the electronic structure of graphite including electron-electron correlation effects. In Fig. 5 we show the complete inplane QP band structure for (a) k z = 0 (K point) and (b) k z = 0.46 Å-1 (H point) calculated by the 3NN TB Hamiltonian. In the ΓKM plane two valence bands (π 1 and π 2 ) and two conduction bands (π 3 and π 4 ) can be seen and in the whole HAL plane the two valence (conduction) bands are degenerate. The ab-initio GW values are compared to the 3NN TB-GW calculation in Table III. It can be seen that the fit reproduces the abinitio calculations with an accuracy of ∼ 10 meV in the III: Energy values of the GW calculation and the 3NN TB fit (TB-GW ) at high symmetry points in the 3D BZ of graphite (all values in units eV). The symbols π1-π4 denote the four π bands of graphite. The TB-GW have been calculated with the 3NN TB-GW parameters from Table I.

BZ center and an accuracy of 1 meV along the KH axis, close to E F .

Close to E F the 3NN Hamiltonian is identical to the SWMC Hamiltonian. Thus, for evaluation of the Fermi surface and the doping dependence on E F in the dilute limit, we use the SWMC Hamiltonian. The weakly dispersing band that crosses E F is responsible for the Fermi surface and the electron and hole pockets. This energy band is illustrated in Fig. 6(a) where we show that the TB-GW fit has an accuracy of 1 meV. The minority pocket that is a result of the steeply dispersive energy band close to H is shown in Fig. 6(b).

The QP dispersion close to E F is shown in Fig. 7 for (a,b) K,(c,d) H point. The dispersion around the K point is particular complicated: there are four touching points between valence and conduction bands. Three touching points between the valence and conduction bands exist in the close vicinity to K at angles of The fourth touching point is exactly at K point. The touching points arise from the semi metallic character of graphite: there are two parabolas (VB and CB) that overlap by about 20 meV. For example the bottom of the CB is denoted by the point 2 in Fig. 7(a) and (b). At H point shown in Fig. 7(c) and (d) the energy band structure becomes simpler: there are only two non-degenerate energy bands and their dispersion is rather isotropic around H (the trigonal warping effect in the k x k y plane is a minimum in the AHL plane and a maximum in the ΓKM plane). It is clear that the energy bands do not touch each other and the dispersion is not linear but parabolic with a very large curvature (and hence a very small absolute value of the effective mass; see Fig. 8) at H. E F lies 20 meV below the top of the VB and the energy gap ∆ is equal to 5 meV. It is interesting to note that the a larger value of ∆ would bring the top of the VB above E F . The horizontal cuts through the dispersions in Fig. 7 at E = E F (blue area) give cross sectional areas of an electron-like Fermi surface at k z = 0 (K) and a hole-like Fermi surface at k z = 0.47 Å-1 (H point), consistent with a semi-metallic behaviour.

The effective in-plane massses for electrons (m * e ) and holes (m * h ) are evaluated along the parabola indicated in Fig. 7 by the points 1, 2, 3. This parabola lies in the plane spanned by KM and HL and can thus be considered an upper limit for the effective mass since the dispersion is flat in this direction as can be seen in Fig. 7(a). For m * e the center of the parabola is chosen to be the bottom of the CB, i.e. point 2 in Fig. 7(a). Similarly for m * h the center of the parabola is chosen to be the top of the VB, i.e. point 2 in Fig. 7 The k z dependence of m * e and m * h are shown in Fig. 9. For this purpose we evaluated the heavy electron mass of the parabolic sub bands as shown in Fig. 7 and Fig. 8). It is clear that m * e has a weak k z dependence and m * h strongly depends on the value of k z . This is obvious since exactly at H point, the value of m * h has a minimum. For a finite value of the gap ∆, the value of m * h also remains finite.

We now discuss the whole 3D Fermi surface. The volume inside the surface determines the low-energy free carrier plasmon frequencies and the electrical conductivity. The trigonal warping has little effect on the volume inside the electron and hole pocket. When we set γ 3 = 0, then the Fermi surface is isotropic around KH axis. The simplification of γ 3 = 0 results in little change of the volume. For γ 3 = 0, there are touching points of the electron-like and hole-like Fermi surfaces [19]. The touching points (or legs) are important for understanding the period for de-Haas-van Alphen and the large diamagnetism in graphite [25]. However, for the calculation of the number of carriers, they are not crucial and thus the Fermi surface calculated with γ 3 = 0 can be used for the evaluation of the electron density, n e , and the hole density, n h . In this case, the cross section of the Fermi surface A(k z ) has an analytical form. The number of electrons per cm 3 is given by n e = 4 × 10 24 × f u /v uc with f u = v e /v bz where v e is the electron pocket volume and v bz the BZ volume. v uc is the unit cell volume in Å-3 . Similarly, by replacing v e with v h (the volume of the whole pocket) one can obtain n h the number of holes per cm 3 . The critical quantities are v e and v h and they are obtained by integrat-FIG. 7: TB-GW QP band structure around (a,b) K point, (c,d) H point. The points 1,2 and 3 denote the dispersion we use to determine electron and hole masses (see Fig. 9). The points 1,2 and 3 span a parabola. In (a,b) the parabola is along the KM direction with heaviest electron masses and in (c,d) the hole masses are isotropic around H. Note that the parabolas along 1 -3 are used for evaluation of the effective electron and hole masses.

ing the cross section of the Fermi surface, A(k z ) along k z . The analytical expression and their dependence on the TB parameters is given in [21]. This yields plasmon frequencies of ω a = n e e 2 /(m * e 0 a ) = 113 meV for plasmon oscillation parallel to the graphene layers and ω c = n e e 2 /(m * ze 0 c ) = 19 meV for plasmon oscillation perpendicular to the layers. Here a = 5.4 [START_REF] Venghaus | [END_REF] and c = 1.25 [33] are adopted for the dielectric constants parallel and perpendicular to the graphene layers, respectively. We have made two simplifications: first we do not consider a finite value of temperature (ω a and ω c are the plasmon frequencies at 0 K) and second we used an effective mass averaged over the whole k z range of the pockets as shown in Fig. 8 and in Fig. 9.

Next we discuss the doping dependence of the electronic properties in the so-called dilute limit, which refers to a very low ratio of dopant/carbon atoms. Here we use a method described previously [21] employing the TB-GW parameters from Table II. This allows us to calculate the doping dependence of n e and n h . The analytical formula for the E F dependent cross section of the Fermi surface, A(k z ) (given in [21]) is integrated for different values of E F . By integrating dA(k z )/dE F along k z we obtain the carrier density per eV. The ratio of dopant to carbon is given by r = n × v uc /4f where n = n e for electron doping and n = n h for hole doping. Here f is the charge transfer value per dopant atom to Carbon. Although there are some discussions about the value of f , it is was recently found for potassium doping that f = 1 [34]. In Fig. 10(a) we show the doping dependence of the carrier densities. It is clear that at E F = ±25 meV, we have a discontinuity in the carrier density and this is associated to the E F at which the electron or hole pocket is completely filled. Since the density of states decreases suddenly after the pockets are filled, the kink in the density of states appears. This also marks the transition from a two-carrier regime to a single-carrier regime. In larly, at E F = -25 meV we have no more electrons and the a semi metal to metal transition occurs in the other direction to E F . For this metal, the carriers are holes, hence a P-type metal. These semi metal to metal transi-tions are important for ambipolar transport in graphite and graphene: they determine the region for the gate voltage in which ambipolar transport is possible. Finally in Fig. 10(c) we plot the ratio of dopant to carbon atoms as a function of E F .

It is certainly interesting to monitor the doping induced changes in n e and n h also in the shape of the Fermi surface. In Fig. 11 we show the Fermi surfaces for electron doping and hole doping for E F = 0 to ±35 meV in steps of 5 meV. It is clear that at ±25 meV a single carrier regime dominates as indicated by the two different colors (red for electrons and green for holes). This is consistent with Fig. 10 FIG. 11: The Fermi surface of doped graphite in the dilute limit for electron doping and hole doping. The red(green) surfaces are the electron(hole) pockets of the Fermi surface. It is clear that at ±25 meV we have a semi metal to metal transition. .

FEW LAYER GRAPHENE

The 3NN TB-GW set of parameters fits the whole k z range of the 3D graphite BZ. Thus the set can be transferred for the calculation of QP dispersions of stacked sp 2 FLGs with N layers (N = 1, 2, . . . ). The transferability of TB parameters is a result of the fact that the lattice parameters of FLGs and graphite are almost identical [46]. We can use the matrix elements shown in Fig. 1(a) also for FLGa; for N = 1 only γ 1 0 -γ 3 0 , s 0 -s 3 and E 0 are needed and this results in the graphene monolayer case. For N = 2 the parameters γ 2 and γ 5 are not needed since they describe next nearest neighbour interactions which do not exist in a bilayer. We use the set of TB parameters given in Table I and the Hamiltonians given in section 2 and the appendix. In Fig. 12 we show the bilayer (N = 2), the trilayer (N = 3) and the quadlayer (N = 4) calculated with TB-GW . The Fig. 12(a) and (b) shows the electron dispersion of the bilayer. The separation between CB (VB) to the Fermi level is proportional to γ 1 [47] and thus it is clear that the TB-GW also gives an about 20% larger separation between the VB than LDA. Furthermore the slope of all bands becomes steeper for TB-GW since γ 1 0 -γ 3 0 increase with respect to LDA calculations. This is also responsible for the increase in v F of FLGs (similar to the graphite case, when going from LDA to GW ). The same argument is the case for the tri-and the quadlayer. It is interesting that the QP dispersion measured by ARPES [6] are in better agreement with the TB-GW rather than the LDA calculations performed.

The low energy dispersion relation of FLGs are particularly important for describing transport properties. From the calculations, we find that all FLG has a finite density of states at E F . The trilayer has a small overlap at K point between valence and conduction band (i.e. semi-metallic). This property might be useful for devices with ambipolar transport properties. Our results are in qualitative agreement with the LDA calculations [48].

It can be seen that a linear (Dirac-like) band appears for the trilayer (and also for all other odd-numbered multilayers). This observation is in agreement to previous calculations and is relevant to a increase in the orbital contribution to diamagnetism [49].

Since TB allows for rapid calculation of the QP bands, the transition from FLG to bulk graphite can be analyzed. Even in the case of N = 30, the solution of Eq. 4 for the 60 × 60 Hamiltonian and overlap matrices takes only ∼ 10 sec on a Pentium III workstation per k point. In Fig. 13 we show the eigenvalue spectrum for FLG with N = 1, . . . , 30. As we increase N and hence the number of π bands, the bandwidth also increases and approaches that of bulk graphite. It can be seen that for N > 15, the total bandwidth is that of bulk graphite. Interestingly, the energies of the π bands group together and form families of the highest, second highest etc. energy eigenvalue at K. With increasing number of layers, a given family approaches the limit for bulk graphite. Such a family pattern is a direct consequence of the AB stacking sequence in FLG and it might be accessible to optical spectroscopy a To compare different notations, we denote here the absolute value of m * h . b Mass at the H point was measured. Note that this is in excellent agreement to our calculated kz dependence of m * h (see Fig. 9). c The difference between the experimental and the TB-GW value might be a result of excitonic effects.

TABLE IV: Properties of the electronic band structure of graphite calculated from TB-GW and compared to experiment. similar to the fine structure around K point that has been observed in bulk graphite [45].

DISCUSSION

We first discuss the QP band structure and relation to recent ARPES experiments. From several experimental works it is clear that the LDA bands need to be scaled in order to fit the experiments [9,10,11]. Our new set of TB parameters quantitatively describes the QP dispersions of graphite and FLG. The scaling is mainly reflected in an increase of γ 1 0 -γ 3 0 and γ 1 , the in-plane and out-of-plane coupling, respectively. It thus can be used to analyze ARPES of both pristine and doped (dilute limit) graphite and FLG. Most importantly, the correlation effects increase v F , the Fermi velocity when going from LDA to GW . For the TB-GW calculation, v F = 1.01 × 10 6 ms -1 which is in perfect agreement to the values from ARPES that is equal to v F = 1.06 × 10 6 ms -1 [10]. The question why LDA works for some metals but fails to give the correct v F and energy band dispersion in semi metallic graphite arises. In graphite, the contribution of the electron-electron interaction to the self-energy is unusually large. The reason for this is the small number of free carriers to screen efficiently the Coulomb interaction. In most other metals, the density of states at E F has a much larger (∼ 1000 times) value than in graphite and the screening lengths are shorter. Hence the LDA is a good description for such a material but it fails in the case of graphite. Another parameter that illustrates the quality of the TB-GW to reproduce the experimental QP dispersion is δ, the band splitting at K point. For TB-GW , we obtain δ = 0.704 eV and the ARPES gives δ = 0.71 eV [10].

The TB parameters of the SWMC Hamiltonian have been fitted in order to reproduce double-resonance Raman spectra [14]. As a result they obtained that γ 3 (one of the parameters that couples the neighbouring graphene planes) has a value of 0.1 eV while the for graphite that we obtain in this paper is 0.274 eV (see Table II) and the value that was fit to transport experiments is 0.315 eV [19,50] which is also in perfect agreement to ARPES experiments of graphite single crystals [50]. We now discuss a possible reason for this discrepancy. The fitting procedure in Ref [14] depends on the choice of the phonon dispersion relation of graphite. It is important to note that recently a Kohn anomaly has been directly observed by inelastic x-ray scattering experiments using synchrotron radiation [51] which has a steeper slope of the TO phonon branch at K point in contrast to previous measurements [52]. Thus the assumption of the correct phonon dispersion relation is crucial for obtaining the correct band structure parameters.

Next we discuss the present QP electronic energy band structure in relation to optical spectroscopies such as optical absorption spectroscopy (OAS) and resonance Raman spectroscopy. The optical spectroscopies probe the joint density of states (JDOS) weighted with the dipole matrix elements. Peaks in the OAS are redshifted when compared to the JDOS of the QP dispersion if excitons are created. By comparing the QP dispersion with OAS experiments [45,53,54] we now estimate a value for exciton binding energies in graphite. In general many Concerning the value of ∆, the gap at H, several experimental values exist and magneto reflectance experiments suggest ∆=5 meV. This is in disagreement to the calculated values obtained for pristine graphite [10]. However, when the doping level is slightly increased, ∆ becomes smaller and we thus fixed a doping level in the ab-initio calculation that reproduces the experimental ∆ [START_REF] Attaccalite | [END_REF]. While some of the variations may be explained by the sample crystallinity in z direction, it is also conceivable that small impurities are responsible for the discrepancy.

Next we discuss a possibility to measure the free carrier plasmon frequencies of the of pristine and alkalimetal doped graphite by high resolution energy electron loss spectroscopy (HREELS). The electron concentration inside the pockets very sensitively affects the plasmon frequencies. In principle the charge carrier plasmons should also appear as a dip in optical reflectivity measurements but due to the small relative change in intensity they have not been observed so far. Due to the small size of the pockets, the number of charge carriers and hence the conductivity and plasmon frequencies are extremely sensitive to temperature and doping. Experimentally observed plasmon frequencies for oscillations parallel to the graphene layers are ω a =128 meV [43] and for oscillations perpendicular to the layers are ω c =45 -50 meV [33,43,44]. These values for ω a and ω c agree reasonably well with our derived value considering that we make the crude estimation of ω a and ω c at 0 K while experiments where carried out at room temperature. We also used average effective masses of the electron pocket in order to determine the plasmon frequency, while in fact there is a k z dependence (see Fig. 9) . We also note that the experimental literature values for a and c have a rather wide range, e.g. c = 3.4 [55] from reflectivity measurements and c = 5.4 [START_REF] Venghaus | [END_REF] from EELS.

The temperature dependence of ω c was measured by Jensen et al [33] by HREELS and they observed a strong T dependence for ω c which was attributed to changes in the occupation and thus number of free carriers with T. The observed plasmon energy was rising from 40 meV to 100 meV in a temperature range of 100 K to 400 K. A similar effect might be observed by HREELS of doped graphite as a function of doping level. It would be interesting to study the evolution of the plasmon frequency with doping level. With our current understanding of the low-energy band structure we predict a semimetal to metal transition at a Fermi level shift of E F ∼ 25 meV. At this doping level, the hole pocket is completely filled with electrons and disappears and the electron pocket has roughly doubled in size and ω a and ω c should increase by a factor of ∼ √ 2. Such a transition should be observable by HREELS and might be accompied by interesting changes in the band structure (electron-plasmon coupling) which can also be measured simultaneously by ARPES. Many DC transport properties can be understood with a Drude model for the conductivity, which is inversely proportional to the effective carrier mass. From the ratio of m * ze /m * e and m * zh /m * h , we hence expect that the DC electron(hole) conductivity in z direction is ∼ 200(∼ 500) times less than the in-plane conductivity . The experimental value is 3 × 10 3 [19] and considering the large variation in experimental values even for the inplane conductivity [19,56], it is in reasonable agreement. In Table IV we summarize the electronic band structure properties such as v F , δ, the effective masses etc. and compare them to experimental values.

CONCLUSIONS

In conclusion, we have fitted two sets of TB parameters to first principles calculations for the bare band (LDA) and QP (GW ) dispersions of graphite. We have observed a 20% increase of the nearest neighbour in-plane and out-of-plane matrix elements when going from LDA to GW . Comparision to ARPES and transport measurements suggest that LDA is not a good description of the electronic band structure of graphite because of the importance of correlation effects. We have explicitely shown that the accuracy of the TB-GW parameters is sufficient to reproduce the QP band structure with an accuracy of ∼ 10 meV for the higher energy points and ∼ 1 meV for the bands that are relevant for electronic transport. Thus the 3NN TB-GW calculated QP band energy dispersions are sufficiently accurate to be compared to a wide range of optical and transport experiments. The TB-GW parameters from Table I should be used in the future for interpretation of experiments that probe the band structure in graphite and FLG. For transport experiments that only involve electronic states close to the KH axis (in graphite) or the K point in FLG, the SWMC Hamiltonian with parameters from Table II can be used.

With the new set of TB parameters we have calculated the low energy properties of graphite: the Fermi velocity, the Fermi surface, plasmon frequencies and the ratio of conductivities parallel and perpendicular to the graphene layers and effective masses. These values are compared to experiments and we have demonstrated an excellent agreement with almost all values.

We have shown that at ±25 meV, a semi metal to metal transition exists in graphite. Such a transition should be experimentally observable by HREELS or ARPES for electron doped graphite single crystals with very low doping levels (i.e. the dilute limit). Experimentally, the synthesis of such samples is possible by evaporation of potassium onto the sample surface and choosing a sufficiently high equilibration temperature so that no staging compound forms. It would thus be interesting to do a combined ARPES and HREELS experiment on this kind of sample.

We have also discussed the issue of the existence of Dirac Fermions in graphite and FLGs. For pristine graphite it is clear that for a finite value of the gap ∆ at H point, we always have a non-zero value of the effective masses at H. We now discuss some possibilities for ∆ = 0. One way would be to use AA stacked graphite. However, natural single crystal graphite has mainly AB stacking and the preparation of an AA like surface by repeated cleaving is a rather difficult task. Recently, the possibility of reducing ∆ by increasing the doping level has been put forward [START_REF] Attaccalite | [END_REF]34] and this seems a more promising way for experiments. For the case of a fully doped graphite single crystal, the interlayer interaction is negligible because the distance between the graphene sheets is increased and the stacking sequence is change to AA stacking. These two effects would cause the appearance of Dirac Fermions in doped graphite.

With the new set of 3NN TB parameters we have calculated the QP dispersion of FLG in the whole 2D BZ. We have shown the evolution of the energy eigenvalue spectrum at K point as a function of N , the number of layers. An interesting family pattern was observed, where the first,second, third etc. highest transitions form a pattern that approaches the energy band width of bulk graphite with increasing N . For the highest transition, the bulk graphite band width is already reached at N = 15. This family pattern is a direct result of the AB stacking sequence in FLG and it can possibly be observe experimentally. It should be pointed out here, that a very similar fine structure around the K point in bulk graphite has been observed by optical absorption spectroscopy by Misu et al. [45] although the family pattern from Fig. 13 might be observed also by ARPES on high quality FLGs synthesized on Ni(111). We acknowledge M. Knupfer for critical reading of the manuscript. XCrysDen [57] was used to prepare Fig. 10.

Appendix

We made computer programs to automatically generate the 3NN Hamiltonians and overlap matrices for N graphene layers. The method is following the description by Partoens et al. [16] but with the difference that we include 3NN matrix elements that describe the QP dispersion in the whole BZ. It is interesting to note the similarity between the Hamiltonian of a N layer graphene and a stage N graphite intercalation compound [58]. The general form of the Hamiltonian is given by The QP band structure is then given by solving equa-tion Eq. 4. The 3NN TB Hamiltonians can be used with GW parameters from Table I. In the following we give the explicit form for the H(k) and S(k) of a monolayer and an AB stacked bi-and and ABA trilayer which was used in section 7.

H(k) =       

Monolayer graphene

The monolayer 3NN Hamiltonian and overlap matrices are given by .

H(k) = E 0 +γ 2 0 f 2 (k) γ 1 0 f 1 (k)+γ 3 0 f 3 (k) γ 1 0 f 1 (k) * +γ 3 0 f 3 (k) * E 0 +γ 2 0 f 2 (k) *

Bilayer graphene

The bilayer 3NN Hamiltonian and overlap matrices are given by

H(k) =      E 0 + ∆+γ 2 0 f 2 (k) γ 1 0 f 1 (k)+γ 3 0 f 3 (k) γ 1 γ 4 f 1 (k) * γ 1 0 f 1 (k) * +γ 3 0 f 3 (k) * E 0 +γ 2 0 f 2 (k) * γ 4 f 1 (k) * γ 3 f 1 (k) γ 1 γ 4 f 1 (k) E 0 + ∆+γ 2 0 f 2 (k) γ 1 0 f 1 (k) * +γ 3 0 f 3 (k) * γ 4 f 1 (k) γ 3 f 1 (k) * γ 1 0 f 1 (k)+γ 3 0 f 3 (k) E 0 +γ 2 0 f 2 (k)      (5) 
and

S(k) =      1+s 2 0 f 2 (k) s 1 0 f 1 (k)+s 3 0 f 3 (k) 0 0 s 1 0 f 1 (k) * +s 3 0 f 3 (k) * 1+s 2 0 f 2 (k) * 0 0 0 0 1+s 2 0 f 2 (k) s 1 0 f 1 (k) * +s 3 0 f 3 (k) * 0 0 s 1 0 f 1 (k)+s 3 0 f 3 (k) 1+s 2 0 f 2 (k)      . ( 6 
)
Trilayer graphene

The trilayer Hamiltonian and overlap matrices read as

H(k) =          E 0 + ∆+γ 2 0 f 2 (k) f 1 (k)γ 1 0 +γ 3 0 f 3 (k) γ 1 γ 4 f 1 (k) * γ 5 0 γ 1 0 f 1 (k) * +γ 3 0 f 3 (k) * E 0 +γ 2 0 f 2 (k) * γ 4 f 1 (k) * γ 3 f 1 (k) 0 γ 2 γ 1 γ 4 f 1 (k) E 0 + ∆+γ 2 0 f 2 (k) γ 1 0 f 1 (k) * +γ 3 0 f 3 (k) * γ 1 γ 4 f 1 (k) γ 4 f 1 (k) γ 3 f 1 (k) * γ 1 0 f 1 (k)+γ 3 0 f 3 (k) E 0 +γ 2 0 f 2 (k) * γ 4 f 1 (k) γ 3 f 1 (k) * γ 5 0 γ 1 γ 4 f 1 (k) * E 0 + ∆+γ 2 0 f 2 (k) γ 1 0 f 1 (k)+γ 3 0 f 3 (k) 0 γ 2 γ 4 f 1 (k) * γ 3 f 1 (k) γ 1 0 f 1 (k) * +γ 3 0 f 3 (k) * E 0 +γ 2 0 f 2 (k) *          (7) 
and

S(k) =          1+s 2 0 f 2 (k) f 1 (k)s 1 0 +s 3 0 f 3 (k) 0 0 0 0 s 1 0 f 1 (k) * +s 3 0 f 3 (k) * 1+s 2 0 f 2 (k) * 0 0 0 0 0 0 1+s 2 0 f 2 (k) s 1 0 f 1 (k) * +s 3 0 f 3 (k) * 0 0 0 0 s 1 0 f 1 (k)+s 3 0 f 3 (k) 1+s 2 0 f 2 (k) 0 0 0 0 0 0 E 0 + ∆+s 2 0 f 2 (k) * s 1 0 f 1 (k)+s 3 0 f 3 (k) 0 0 0 0 s 1 0 f 1 (k) * +s 3 0 f 3 (k) * 1+s 2 0 f 2 (k) *          . (8) 
The sum of the phase factors for first-,second-and third nearest neighbours are given by f 1 (k), f 2 (k) and f 3 (k), respectively. Note that f 1 (k) and f 3 (k) couple A and B atoms and f 2 (k) describes the AA and BB interactions.

f 1 (k) = exp i k x a 0 2 +2 exp - ik x a 0 2 cos √ 3k y a 0 2 . (9) 
f 2 (k) = 6 =1
exp(ikr 2 ) (10)

f 3 (k) = 3 =1 exp(ikr 3 ) (11) 
Here r 2 and r 3 are the vectors that connect the A 1 atom (see Fig. 1) with the second nearest B atoms (three atoms) and the third nearest A atoms (six atoms), respectively.

FIG. 1 :

 1 FIG. 1: (a) The graphite unit cell consists of four atoms denoted by A1,B1,A2 and B2 (light blue). The red arrows denote the interatomic tight-binding hopping matrix elements γ 1 0 , γ 2 0 , γ 3 0 , γ1, . . . , γ5. The overlap matrix elements s0 -s3 (npot shown) couple the same atoms as γ 1 0 -γ 3 0 . (b) The 3D Brillouin zone of graphite with the high symmetry points and the coordinate system used throughout this work.
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  GW -3.4416 -0.7544 -0.4246 0.2671 0.0494 0.0345 0.3513 -0.0105 0.2973 0.1954 0.0187 -2.2624 0.0540 a 3NN TB-LDA -3.0121 -0.6346 -0.3628 0.2499 0.0390 0.0322 0.3077 -0.0077 0.2583 0.1735 0.0147 -1.9037 0.0214 We adjusted the impurity doping level in order to reproduce the experimental value of ∆.TABLE I: 3NN tight-binding parameters for few-layer graphene and graphite. The parameters of fits to LDA and GW calculations are shown. The 3NN Hamiltonian is valid in the whole two(three) dimensional BZ of graphite(graphene layers).

  a 3.053 0.403 -0.025 0.274 0.143 0.030 -0.025 -0.005 b TB-LDA a 2.553 0.343 -0.018 0.180 0.173 0.018 -0.022 -0.018 EXP c 3.16 0.39 -0.02 0.315 0.044 0.038 -0.024 -0.008 LDA d 2.598 0.364 -0.014 0.319 0.177 0.036 -0.026 -00.27 -0.022 0.15 0.10 0.0063 0.0079 -0.027 a This work bWe adjusted the impurity doping level to reproduce the experimental value of ∆ c Fit to Experiment, M.S. Dresselhaus et al[19] 

FIG. 2 :

 2 FIG. 2: The TB fit along kz direction at kz = ky = 0 (KH axis) for (a) LDA and (b) GW .denotes LDA calculations and denotes GW calculations taken from Ref.[10] that were used for the fitting.

FIG. 3 :

 3 FIG. 3: Upper panel: The TB fits along ky direction at kz = 0 (K point) for (a) LDA and (b) GW . Lower panel: the ky dispersion at kz = 0.47 Å-1 (H point) for (c) LDA and (d) GW .denotes LDA calculations and denotes GW calculations that were used for the fitting (taken from Ref.[10]).

FIG. 4 :

 4 FIG. 4: The TB fits of equi-energy contours at kz=0 for (a) TB-LDA and (b) TB-GW .

FIG. 5 :

 5 FIG. 5: The in-plane quasiparticle dispersion for (a) kz = 0 and (b) kz=0.47 Å-1 calculated by TB-GW . The symbols π1 -π4 denote the four π bands of graphite.

  -9.458 -7.257 12.176 12.541 Γ TB-GW -9.457 -7.258 12.184 12.540 GW -3.232 -2.441 1.655 2.491 M TB-GW -3.216 -2.457 1.656 2.495 GW -0.736 -0.025 -0.025 0.917 K TB-GW -0.728 -0.024 -0.024 0.909 GW 0.020 0.020 0.025 0.025 H TB-GW 0.020 0.020 0.025 0.025 TABLE

FIG. 6 :

 6 FIG. 6: (a) The weakly dispersive band that is responsible for the formation of electron and hole pockets. denotes GW calculations (with the impurity doping level adjusted to reproduce the experimental gap at H point) and the line the TB-GW fits. (b) shows a magnification of the minority hole pocket that is caused by the steeply dispersive band close to H.

  (b). Due to the larger curvature of the hole bands, the absolute value of m * e is larger than m * h . The k z dependence of m * e and m * h is shown in Fig.8(a) and (b), respectively. For the effective mass in the z direction we fit a parabola for the weakly dispersing band in direction perpendicular to the layers and get m * ze = 16m 0 and m * zh = -16m 0 for the effective electron and hole masses perpendicular to the layers, respectively. The Fig.8(c) and Fig.8(d) shows the TB-GW along k z for the electron and hole pocket, respectively. The parabolic fits that were used to determine the effective masses are shown along with the calculation.

Fig. 10 (

 10 FIG. 8: Evaluation of the in-plane (a) electron and (b) hole masses around K and H, respectively. The dispersions along the parabolas depicted by points 1 -2 -3 in Fig. 7 are taken for evaluation of the masses. The effective masses perpendicular to the layers in z direction are shown in (c) for electrons and in (d) for holes. correspond to TB-GW values and the red lines are parabolic fits.

  (b) where the integrated electron (hole) densities disappear at E F = 25 meV (E F = -25 meV).

FIG. 10 :

 10 FIG. 10: Doping dependence of (a) the electron and hole carrier density (b) the number of electrons and holes and (c) the stochiometric dopant to carbon ratio. The red(green) lines represent electron(hole) carriers.

FIG. 12 :

 12 FIG. 12: Band structure around K point of a bi-, tri-and quadlayer calculated by TB-GW .

  resonant states with k contribute to OAS but a fine structure in OAS of bulk graphite measured in reflection geometry was observed by Misu et al.[45] which was assigned to two specific transitions around K: the A 1 transition between the lower VB and states just above E F and the A 2 transition between the upper VB and the upper CB. The experimental energies they found were E exp A1 = 0.669 eV and E exp A2 = 0.847 eV. The TB-GW dispersion yields energies E GW A1 = 0.722 eV and E GW A2 = 0.926 eV [see Fig.2(b)]. Assuming one exci-ton is created for the A1(A2) transition, this yields exciton binding energies of E GW A1 -E exp A1 ∼ 50 meV and E GWA2 -E exp A2 ∼ 80 meV for a K point exciton in bulk graphite. Such a value for the exciton binding energies most probably increases when going from bulk graphite to FLGs due to confinement of the exciton wave function in z direction.

FIG. 13 :

 13 FIG.13: Evolution of the eigenvalue spectrum for FLG from N = 1 . . . 30 graphene layers calculated by TB-GW at the K point. The dashed lines labelled by π1 and π4 denote the lower and upper limits of the total bandwidth at K point in 3D graphite. A pattern that connects the first, second etc. energies of FLG is emerging (see text).

  Acknowledgement A.G. acknowledges a Marie Curie Individual Fellowship (COMTRANS) from the European Union. A.R. and C.A. are supported in part by Spanish MEC (FIS2007-65702-C02-01), Grupos Consolidados UPV/EHU of the Basque Country Government (IT-319 -07) European Community e-I3 ETSF and SANES (NMP4-CT-2006-017310) projects. L.W. acknowledges support from the French national research agency. R.S. acknowledges MEXT grants Nos. 20241023 and 16076201.

f 1 3 0f 1 3 01+f 2

 13132 (k)s 1 0 +f 3 (k)s (k) * s 1 0 +f 3 (k) * s (k) * s 2 0



  H A1A1 H A1B1 H A1A2 . . . H A1B N H B1A1 H B1B1 H B1A2 . . . H B2B N H A2A1 H A2B1 H A2A2 . . . H A2B N B N A1 H B N B1 H B N A2 . . . H B N B N A1A1 S A1B1 S A1A2 . . . S A1B N S B1A1 S B1B1 S B1A2 . . . S B2B N S A2A1 S A2B1 S A2A2 . . . S A2B N B N A1 S B N B1 S B N A2 . . . S B N B N

									
			. . .	. . .	. . .	. . .	. . .		      
	and the overlap matrix is given by				
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