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A universal set of third–nearest neighbour tight–binding (TB) parameters is presented for calcu-
lation of the quasiparticle (QP) dispersion of N stacked sp2 graphene layers (N = 1 . . .∞) with AB
stacking sequence. The QP bands are strongly renormalized by electron–electron interactions which
results in a 20% increase of the nearest neighbour in–plane and out–of–plane TB parameters when
compared to band structure from density functional theory. With the new set of TB parameters
we determine the Fermi surface and evaluate exciton energies, charge carrier plasmon frequencies
and the conductivities which are relevant for recent angle–resolved photoemission, optical, electron
energy loss and transport measurements. A comparision of these quantitities to experiments yields
an excellent agreement. Furthermore we discuss the transition from few layer graphene to graphite
and a semimetal to metal transition in a TB framework.

1. INTRODUCTION

Recently mono– and few–layer graphene (FLG) in an
AB (or Bernal) stacking is made with high crystallinity
by the following three methods; epitaxial growth on
SiC [1], chemical vapour deposition on Ni(111) [2] and
by mechanical cleavage on SiO2 [3]. Graphene is a novel,
two–dimensional (2D) and meta stable material which
has sparked interest from both basic science and appli-
cation point of view [4]. A monolayer of graphene al-
lows one to treat basic questions of quantum mechanics
such as Dirac Fermions or the Klein paradox [5] in a
simple condensed–matter experiment. The existence of
a tunable gap in a graphene bilayer was shown by angle–
resolved photoemission (ARPES) [6], which offers a pos-
sibility of using these materials as transistors in future
nanoelectronic devices that can be lithographically pat-
terned [7]. Furthermore a graphene layer that is grown
epitaxially on a Ni(111) surface is a perfect spin filter
device [8] that might find applications in organic spin-
tronics.

It was shown recently by ARPES that the electronic
structure of graphene [9] and its 3D parent material,
graphite [10, 11, 12], is strongly renormalized by cor-
relation effects. To date the best agreement between
ARPES and ab–initio calculations is obtained for GW
(Greens function G of the Coulomb interaction W ) calcu-
lations of the QP dispersion. The band structure in the
local density approximation (LDA) (bare band disper-
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sion) is not in good agreement with the ARPES spectra
because it does not include long–range correlation effects.
The self energy correction of the Coulomb interaction to
the bare energy band structure are crucial for determin-
ing the transport and optical properties (excitons) and
related condensed–matter phenomena. For graphite, a
semi metal with a tiny Fermi surface, the number of
free electrons to screen the Coulomb interaction is low
(∼ 1019 carriers cm−3) and thus the electron–electron
correlation is a major contribution to the self–energy
correction [10]. Theoretically the bare energy band dis-
persion is calculated by the local density approximation
(LDA) and the interacting QP dispersion is obtained by
the GW approximation. The GW calculations are com-
putationally expensive and thus only selected k points
have been calculated [10]. Therefore a tight–binding
(TB) Hamiltonian with a transferable set of TB param-
eters that reproduces the QP dispersion in sp2 stacked
graphene sheets is needed for analysis of ARPES, optical
spectroscopies and transport properties for pristine and
doped graphite and FLGs. So far there are already sev-
eral sets of TB parameters published for graphene, FLG
and graphite. For graphene a third nearest neighbour fit
to LDA has been performed [13]. Recently, however it
has been shoen by ARPES that the LDA underestimates
the slope of the bands and also the trigonal warping ef-
fect [10]. For bilayer graphene the parameters of the
so–called Slonzcewski–Weiss–McClure (SWMC) Hamil-
tonian have been fitted to reproduce double resonance
Raman data [14]. A direct observation of the quasipar-
ticle (QP) band structure is possible by ARPES. A set
of TB parameters has been fitted to the experimental
ARPES data of graphene grown on SiC [15]. As a result
they obtained a surprisingly large absolute value of the
nearest neighbour π hopping parameter of 5.13 eV [15].
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This is in stark contrast to the fit to the LDA calculation
which gives only about half of this value [13]. Consid-
ering the wide range of values reported for the hopping
parameters, a reliable and universal set of TB parame-
ters is needed that can be used to calculate the QP dis-
persion of an arbitrary number of graphene layers. The
band structure of FLGs has been calculated [16] using
first–nearest neighbour in–plane coupling which provide
the correct band structure close to K point. However,
as we will show in detail in this paper, the inclusion of
third–nearest neighbours (3NN) is essential in describ-
ing the experimental band structure in the whole BZ.
The fact that the inclusion of 3NN is essential is also
proven by the dispersion of a localized state at the zig-
zag edge of a graphene flake. Only inclusion of 3NN in-
teraction can reproduce a weakly downwards dispersing
state which is relevant to superconductivity in graphene
nanoribbons [17].

In this paper, we present a tight–binding (TB) formu-
lation of the π bare energy band and QP dispersions of
AB stacked FLG and graphite. We have previously com-
pared both, GW and LDA calculations to ARPES exper-
iments and proofed that LDA underestimates the slope of
the bands and trigonal warping [16]. Here we list the TB
fit parameters of the QP dispersion (TB-GW ) and the
bare band dispersion (TB-LDA) and show that the in–
plane and out–of–plane hopping parameter increase when
going from LDA to GW . This new and improved TB-
GW parameters is used for direct comparision to exper-
iments are obtained from a fit to QP calculations in the
GW approximation. This set of TB parameters works in
the whole 2D (3D) BZ of FLG (graphite) and is in agree-
ment to recent experiments. In addition we fit the pa-
rameters of the popular SWMC Hamiltonian that is valid
close to the KH axis of graphite. This paper is organized
as follows: in section 2 we develop the 3NN TB formula-
tion for graphite and FLGs and in section 3 the SWMC
Hamiltonian is revised. In section 4 a new set of TB pa-
rameters for the calculating the QP dispersion of stacked
sp2 carbon is given. In section 5 we compare the graphite
bare energy band (LDA) to the QP (GW ) dispersion. In
section 6 we use the TB-GW Hamiltonian and calculate
the doping dependent Fermi surface of graphite and es-
timate effective masses and free charge carrier plasmon
frequencies of pristine and doped graphite. In section 7
we show the calculated QP dispersions of FLGs. In sec-
tion 8 we discuss the present results and estimate the ex-
citon binding energies, transport properties and the low
energy plasmon frequencies. In section 9 the conclusions
of this work are given. Finally, in the appendices, the
analytical forms of the Hamiltonians for FLG are shown.

2. THIRD–NEAREST NEIGHBOUR TIGHT
BINDING FORMULATION

Natural graphite occurs mainly with AB stacking or-
der and has four atoms in the unit cell (two atoms for

FIG. 1: (a) The graphite unit cell consists of four atoms de-
noted by A1,B1,A2 and B2 (light blue). The red arrows de-
note the interatomic tight–binding hopping matrix elements
γ1
0 , γ

2
0 , γ

3
0 , γ1, . . . , γ5. The overlap matrix elements s0 − s3

(npot shown) couple the same atoms as γ1
0 − γ3

0 . (b) The 3D
Brillouin zone of graphite with the high symmetry points and
the coordinate system used throughout this work.

each graphene plane) as shown in Fig. 1(a). Each atom
contributes one electron to the four π electronic energy
bands in the 3D Brillouin zone (BZ) [see Fig. 1(b)].
FLG has N parallel graphene planes stacked in an AB
fashion above one another; the unit cell of FLG is 2D
and the number of π bands in the 2D BZ equals 2N .
For graphite and FLG the TB calculations are carried
out with a new 3NN Hamiltonian and in addition with
the well–known SWMC Hamiltonian [18] that is valid
in the vicinity to the Fermi level (EF ). The TB pa-
rameters that enter these two Hamiltonians are γ =
(γ1

0 , γ
2
0 , γ

3
0 , s0, s1, s3, γ1 . . . , γ5,∆, E0) for the 3NN Hamil-

tonian [shown in Fig. 1(a)] and γ′ = (γ′0, . . . , γ
′
5,∆

′, E′0)
for the SWMC Hamiltonian. The hopping matrix ele-
ments for the SWMC Hamiltonian are not shown here
but they have a similar meaning with the difference that
only one nearest neighbour in–plane coupling constant
is considered (see e.g. Ref. [19] for an explanation of
SWMC parameters). The hopping matrix elements for
the 3NN Hamiltonian are shown in Fig. 1(a). The atoms
in the 3D unit cell are labelled A1,B1 for the first layer
and A2,B2 for the second layer. The A2 atom lies directly
above the A1 atom in z direction (perpendicular to the
layers). Within the xy plane the interaction is described
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by γ1
0 (e.g. A1B1 and A2B2) for the nearest neighbours,

and γ2
0 and γ3

0 for second nearest and third nearest neigh-
bours, respectively. A further parameter, γ1 (A1B2), is
needed to couple the atoms directly above each other
(in z direction). The hopping between adjacent layers of
sites that do not lie directly above each other is described
by γ3 (B1B2) and γ4 (A1B2 and B1A2). The small cou-
pling of atoms in the next–nearest layer is γ2 (B1B1 and
B2B2) and γ5 (A1A1 and A2A2).

The calculation shown here is valid for both graphite
and FLGs with small adjustment as indicated when
needed. The lattice vectors for graphite in the xy plane
are a1 and a2 and the out–of–plane lattice vector per-
pendicular to the layers is a3.

a1 = (
√

3a0

2
,
a0

2
, 0), a2 = (

√
3a0

2
,−a0

2
, 0), a3 = (0, 0, 2c0).

(1)
The C–C distance a0 = 1.42Å and the distance of two
graphene layers c0 = 3.35Å. For a FLG with N layers
and hence 2N atoms only the 2D unit vectors a1 and
a2. Similarly the electron wave vectors in graphite k =
(kx, ky, kz) have 3 components and in FLG k = (kx, ky).
A TB method (or linear combination of atomic orbitals,
LCAO) is used to calculate the bare energy band and QP
dispersion by two different sets of interatomic hopping
matrix elements. The electronic eigenfunction Ψ(r,k) is
made up from a linear combination of atomic 2pz orbitals
φ(r) which form the π electronic bands in the solid. The
electron wave function for the band with index  is given
by

Ψ(k, r) =
∑

s=A1,B1,...,BN

cs(k)Φs(k, r), ( = 1 . . . 2N).

(2)
Here  = 1 . . . 2N is the electronic energy band index and
s in the sum is taken over all atomic 2pz orbitals from
atoms A1,B1,A2 . . . BN . Note that for 3D graphite we
have N = 2. The cs(k) are wave function coefficients for
the Bloch functions Φs(k, r). The Bloch wave functions
are given by a sum over the atomic wave functions φs for
each orbital in the unit cell with index (`,m,m) multi-
plied by a phase factor. The Bloch function in graphite
for the atom with index s is given by

Φs(r,k) =
1√
U

U∑
`,m,n

exp(−iR`mn
s · k)φs(r−R`mn

s ). (3)

where U is the number of unit cells and φs denotes atomic
wave functions of orbital s. In graphite the atomic orbital
φs in the unit cell with index (`,m,m) is centered at
R`mn
s = `a1 + ma2 + na3 + rs and in FLGs at R`m

s =
`a1 +ma2 + rs.

For the case of FLGs Φs(r,k) contains only the sum
over the 2D in–plane R`m

s . The 2N × 2N Hamiltonian
matrix defined by Hss′(k) = 〈Φs(r,k)|H(r)|Φs′(r,k)〉
and the overlap matrix is defined by Sss′(k) =
〈Φs(r,k)|Φs′(r,k)〉. For calculation of H and S, up to

third nearest neighbour interactions (in the xy plane) and
both nearest and next–nearest neighbour planes (in z di-
rection) are included as shown in Fig. 1(a). The energy
dispersion relations are given by the eigenvalues E(k)
and are calculated by solving

H(k)c(k) = S(k)E(k)c(k). (4)

In the Appendix, we show the explicit form of H(k) for
graphite FLGs with 1-3 layers.

3. SWMC HAMILTONIAN

The SWMC Hamiltonian has been extensively used
in the literature [19]. It considers only first nearest
neighbour hopping and is valid close to the KH axis of
graphite. For small k measured from the KH axis (up
to 0.15 Å−1) both, the 3NN and the SWMC Hamiltoni-
ans yield identical results. The eight TB parameters for
the SWMC Hamiltonian were previously fitted to various
optical and transport experiments [19].

For the cross sections of the electron and hole pock-
ets analytical solutions have been obtained and thus it
has been used to calculate the electronic transport prop-
erties of graphite. Thus, in order to provide a connec-
tion to many transport experiments from the past, we
also fitted the LDA and GW calculations to the SWMC
Hamiltonian.

The TB parameters are directly related to the energy
band structure. E.g. γ0 is proportional to the Fermi
velocity in the kxky plane and 4γ1 gives the bandwidth
in the kz direction. The bandwidth of a weakly disper-
sive band in kz that crosses EF approximately halfway
in between K and H is equal to 2γ2, which is responsi-
ble for the semi metallic character of graphite. Its sign
is of great importance for the location of the electron
and hole pockets: a negative sign brings the electron
pocket to K while a positive sign brings the electron
pocket to H. There has been positive signs of γ2 re-
ported earlier [20] but it has been found by M.S. Dressel-
haus [19, 21] that the electron(hole) pockets are located
at K(H) which is in agreement with recent DFT cal-
culations [10], tight–binding calculation [22] and experi-
ments [19, 23]. The magnitude of γ2 determines the over-
lap of electrons and holes and the volume of the Fermi
surface. It thus also strongly affects the concentration
of carriers and hence the conductivity and free charge
carrier plasmon frequency. The effective masses for elec-
trons and holes of the weakly dispersive energy band are
denoted by m∗ze and m∗zh, respectively. Their huge value
also results from the small value of γ2 and causes the
low electrical conductivity and low plasmon frequency in
the direction perpendicular to the graphene layers since
m∗ze(

√
m∗ze) enters the denominator in the expression for

the Drude conductivity (free carrier plasmon frequency).
γ3 determines the strength of the trigonal warping effect
(γ3 = 0 gives isotropic equi–energy contours) and γ4 the
asymmetry of the effective masses in valence band (VB)
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Method γ1
0 γ2

0 γ3
0 s0 s1 s2 γ1 γ2 γ3 γ4 γ5 E0 ∆

3NN TB-GW -3.4416 -0.7544 -0.4246 0.2671 0.0494 0.0345 0.3513 -0.0105 0.2973 0.1954 0.0187 -2.2624 0.0540a

3NN TB-LDA -3.0121 -0.6346 -0.3628 0.2499 0.0390 0.0322 0.3077 -0.0077 0.2583 0.1735 0.0147 -1.9037 0.0214

aWe adjusted the impurity doping level in order to reproduce the
experimental value of ∆.

TABLE I: 3NN tight–binding parameters for few–layer graphene and graphite. The parameters of fits to LDA and GW
calculations are shown. The 3NN Hamiltonian is valid in the whole two(three) dimensional BZ of graphite(graphene layers).

Method γ′
0 γ′

1 γ′
2 γ′

3 γ′
4 γ′

5 E′
0 ∆′

TB-GWa 3.053 0.403 -0.025 0.274 0.143 0.030 -0.025 -0.005b

TB-LDAa 2.553 0.343 -0.018 0.180 0.173 0.018 -0.022 -0.018

EXPc 3.16 0.39 -0.02 0.315 0.044 0.038 -0.024 -0.008

LDAd 2.598 0.364 -0.014 0.319 0.177 0.036 -0.026 -0.013

EXPe 2.9 0.3 - 0.1 0.12 - -

KKRf 2.92 0.27 -0.022 0.15 0.10 0.0063 0.0079 -0.027

aThis work
bWe adjusted the impurity doping level to reproduce the experi-

mental value of ∆′
cFit to Experiment, M.S. Dresselhaus et al [19]
dFit to LDA, J.C. Charlier et al [22]
eFit to double resonance Raman spectra. L.M. Malard et al.[14]
fFit to Korringa-Kohn-Rostocker first principles calculation

Tatar and Rabi [18]

TABLE II: The SWMC tight–binding parameters for the
bare band dispersion (LDA) and the quasiparticle dispersion
(GW ). All values are in eV. This parameters are for the
SWMC Hamiltonian [16, 18, 19, 25] which is valid close to
the KH axis.

and conduction band (CB). The other parameter from
next nearest neighbour coupling, γ5 has less impact on
the electronic structure: both the VB and CB at K are
shifted with respect to the Fermi level by ∆ + γ5 causing
a small asymmetry [19]. Here ∆ is the difference in the
on–site potentials at sites A1(B2) and A2(B1). ∆ is the
value of the gap at the H point [24]. This crystal field
effect for nonzero ∆ occurs in AB stacked graphite and
FLGs but it does not occur in AA stacked graphite and
the graphene monolayer. The small on–site energy dif-
ference ∆ appears in the diagonal elements of H(k). It
causes an opening of a gap at the H point which results
in a breakdown of Dirac Fermions in graphite and FLGs
with N > 1. Finally, E0 is set in such a way that the
electron and hole like Fermi surfaces of graphite yield an
equal number of free carriers. E0 is measured from the
bottom of the CB to the Fermi level.

4. NUMERICAL FITTING PROCEDURE

The ab–initio calculations of the electronic dispersion
are performed on two levels: bare band dispersion cal-
culation by LDA and QP dispersion calculations within
the GW approximation. We calculate the Kohn-Sham
band-structure within the LDA to density-functional the-
ory (DFT) [26]. Wave-functions are expanded in plane

FIG. 2: The TB fit along kz direction at kz = ky = 0 (KH
axis) for (a) LDA and (b) GW . � denotes LDA calculations
and 4 denotes GW calculations taken from Ref. [10] that
were used for the fitting.

waves with an energy cutoff at 25 Ha. Core electrons are
accounted for by Trouiller-Martins pseudopotentials.

We then employ the G0W0 approximation using a
plasmon-pole approximation for the screening [27, 28, 29]
to calculate the self-energy corrections to the LDA dis-
persion. For the calculation of the dielectric function
ε(ω, q) we use a 15×15×5 Monkhorst-Pack k sampling of
the first BZ, and conduction band states with energies
up to 100 eV above the valence band (80 bands), cal-
culations were performed using the code YAMBO [30].
The details for the first principles calculations are given
elsewhere [31].

For the fitting of the TB parameters to the ab–initio
(LDA and GW ) calculations we used energies of the four
π bands of graphite at ∼ 100 k points. The points were
distributed inside the whole 3D BZ of graphite. The
fitting was performed with the 3NN Hamiltonian. In
addition we chose a smaller subset of points inside a
volume of 0.15Å−1 × 0.15Å−1 × 0.47Å−1 and fitted the
SWMC parameters, which is frequently used in the liter-
ature [16, 18, 19]).

The set of TB parameters were fitted by employing
a steepest–descent algorithm that minimizes the sum of



5

FIG. 3: Upper panel: The TB fits along ky direction at kz = 0
(K point) for (a) LDA and (b) GW . Lower panel: the ky dis-
persion at kz = 0.47Å−1 (H point) for (c) LDA and (d) GW .
� denotes LDA calculations and 4 denotes GW calculations
that were used for the fitting (taken from Ref. [10]).

squared differences between the TB and the ab–initio cal-
culations. This involves solving Eq. 4 with different sets
of TB parameters so as to approach a minimum deviation
from the ab–initio calculations. Points close to EF were
given additional weight so that the band crossing EF was
described with a deviation less than 1 meV. This is im-
portant for an accurate description of the Fermi surface.
In Table I we list the parameters for the 3NN Hamilto-

FIG. 4: The TB fits of equi–energy contours at kz=0 for (a)
TB-LDA and (b) TB-GW .

nian that can be used to calculate TB-GW bands in the
whole 3D BZ of graphite.

The parameters that were fit with the SWMC Hamil-
tonian are summarized in Table II. These TB parame-
ters reproduce the bare energy band (fit to LDA) and
the QP (fit to GW ) calculated dispersions. Hereafter
these fits are referred to as TB-LDA and TB-GW , re-
spectively. We also list the values from other groups
that were fit to experiments [19] and to LDA [22] and
another first–principles calculation [18]. It can be seen
that the TB-GW parameters for the nearest neighbour
coupling increase by about 20% when compared to TB-
LDA. TB-GW is also closer to the experimental TB pa-
rameters than the TB-LDA parameters. This indicates
that electronic correlation effects play a crucial role in
graphite and FLGs for interpreting and understanding
experiments that probe the electronic energy band struc-
ture.

5. COMPARISION OF THE BARE ENERGY
BAND TO THE QUASIPARTICLE DISPERSION

OF GRAPHITE

We now compare the calculated TB-LDA to TB-GW
and we also show the result of the first–principles calcu-
lations that were used for fitting in order to illustrate the
quality of the fit. In Fig. 2 the full kz dispersion from K
to H for (a) TB-LDA is compared to (b) TB-GW calcu-
lations. It is clear that the bandwidth in kz increases by
about 20% or 200 meV when going from TB-LDA to TB-
GW, i.e. when long–range electron–electron interaction
is taken into account. Such an increase in bandwidth is
reflected by the TB parameter γ1 (in the SWMC model
4γ1 is the total bandwidth in the out–of–plane direction).
It can be seen that the conduction bandwidth increases
even more than the valence bandwidth. The VB disper-
sion was measured directly by ARPES and gave a result
in good agreement to the TB-GW [10].
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FIG. 5: The in–plane quasiparticle dispersion for (a) kz = 0 and (b) kz=0.47 Å−1 calculated by TB-GW . The symbols π1−π4

denote the four π bands of graphite.

The dispersion parallel to the layers is investigated in
Fig. 3 where we show the ky dispersion for kz = 0 (K)
and kz = 0.47Å−1 (H). Here the TB-GW bands also be-
come steeper by about 20% when compared to TB-LDA.
This affects γ0 which is the in–plane nearest–neighbour
coupling (see Fig. 1)(a). It determines the in–plane vF
and in–plane bandwidth which is proportional to γ1

0 −γ3
0

(or proportional to γ0 in the SWMC Hamiltonian). In
Fig. 4 the trigonal warping effect is illustrated by plotting
an equi–energy contour for kz = 0 with (a) TB-LDA and
(b) TB-GW . The trigonal warping effect is determined
by γ3 which is larger in the TB-GW fit compared to the
TB-LDA.

6. THE THREE DIMENSIONAL
QUASIPARTICLE DISPERSION AND DOPING

DEPENDENT FERMI SURFACE OF GRAPHITE

In the previous section we have shown that the π band-
width increases by 20% when going from TB-LDA to TB-
GW . This affects especially the optical properties such
as the π → π∗ transition that plays an important role
in optical absorption and resonance Raman and thus one
has to use TB-GW for proper description of the elec-
tronic structure of graphite including electron–electron
correlation effects. In Fig. 5 we show the complete in–
plane QP band structure for (a) kz = 0 (K point) and
(b) kz = 0.46 Å−1 (H point) calculated by the 3NN
TB Hamiltonian. In the ΓKM plane two valence bands
(π1 and π2) and two conduction bands (π3 and π4) can
be seen and in the whole HAL plane the two valence
(conduction) bands are degenerate. The ab-initio GW
values are compared to the 3NN TB-GW calculation in
Table III. It can be seen that the fit reproduces the ab–
initio calculations with an accuracy of ∼ 10 meV in the

Point Method π1 π2 π3 π4

GW -9.458 -7.257 12.176 12.541
Γ

TB-GW -9.457 -7.258 12.184 12.540

GW -3.232 -2.441 1.655 2.491
M

TB-GW -3.216 -2.457 1.656 2.495

GW -0.736 -0.025 -0.025 0.917
K

TB-GW -0.728 -0.024 -0.024 0.909

GW 0.020 0.020 0.025 0.025
H

TB-GW 0.020 0.020 0.025 0.025

TABLE III: Energy values of the GW calculation and the
3NN TB fit (TB-GW ) at high symmetry points in the 3D
BZ of graphite (all values in units eV). The symbols π1-π4

denote the four π bands of graphite. The TB-GW have been
calculated with the 3NN TB-GW parameters from Table I.

BZ center and an accuracy of 1 meV along the KH axis,
close to EF .

Close to EF the 3NN Hamiltonian is identical to the
SWMC Hamiltonian. Thus, for evaluation of the Fermi
surface and the doping dependence on EF in the dilute
limit, we use the SWMC Hamiltonian. The weakly dis-
persing band that crosses EF is responsible for the Fermi
surface and the electron and hole pockets. This energy
band is illustrated in Fig.6(a) where we show that the
TB-GW fit has an accuracy of 1 meV. The minority
pocket that is a result of the steeply dispersive energy
band close to H is shown in Fig.6(b).

The QP dispersion close to EF is shown in Fig.7
for (a,b) K, (c,d) H point. The dispersion around
the K point is particular complicated: there are four
touching points between valence and conduction bands.
Three touching points between the valence and conduc-
tion bands exist in the close vicinity to K at angles of
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FIG. 6: (a) The weakly dispersive band that is responsible
for the formation of electron and hole pockets. 4 denotes
GW calculations (with the impurity doping level adjusted to
reproduce the experimental gap at H point) and the line the
TB-GW fits. (b) shows a magnification of the minority hole
pocket that is caused by the steeply dispersive band close to
H.

0o, 120o and 240o away from kx (i.e. the KM direction).
The fourth touching point is exactly at K point. The
touching points arise from the semi metallic character
of graphite: there are two parabolas (VB and CB) that
overlap by about 20 meV. For example the bottom of the
CB is denoted by the point 2 in Fig.7(a) and (b). At H
point shown in Fig.7(c) and (d) the energy band structure
becomes simpler: there are only two non–degenerate en-
ergy bands and their dispersion is rather isotropic around
H (the trigonal warping effect in the kxky plane is a min-
imum in the AHL plane and a maximum in the ΓKM
plane). It is clear that the energy bands do not touch
each other and the dispersion is not linear but parabolic
with a very large curvature (and hence a very small ab-
solute value of the effective mass; see Fig. 8) at H. EF
lies 20 meV below the top of the VB and the energy gap
∆ is equal to 5 meV. It is interesting to note that the a
larger value of ∆ would bring the top of the VB above

EF . The horizontal cuts through the dispersions in Fig.7
at E = EF (blue area) give cross sectional areas of an
electron–like Fermi surface at kz = 0 (K) and a hole–like
Fermi surface at kz = 0.47 Å−1 (H point), consistent
with a semi-metallic behaviour.

The effective in–plane massses for electrons (m∗e) and
holes (m∗h) are evaluated along the parabola indicated in
Fig.7 by the points 1, 2, 3. This parabola lies in the plane
spanned by KM and HL and can thus be considered an
upper limit for the effective mass since the dispersion is
flat in this direction as can be seen in Fig.7(a). For m∗e
the center of the parabola is chosen to be the bottom of
the CB, i.e. point 2 in Fig.7(a). Similarly for m∗h the
center of the parabola is chosen to be the top of the VB,
i.e. point 2 in Fig.7(b). Due to the larger curvature of the
hole bands, the absolute value of m∗e is larger than m∗h.
The kz dependence of m∗e and m∗h is shown in Fig.8(a)
and (b), respectively. For the effective mass in the z
direction we fit a parabola for the weakly dispersing band
in direction perpendicular to the layers and get m∗ze =
16m0 and m∗zh = −16m0 for the effective electron and
hole masses perpendicular to the layers, respectively. The
Fig.8(c) and Fig.8(d) shows the TB-GW along kz for
the electron and hole pocket, respectively. The parabolic
fits that were used to determine the effective masses are
shown along with the calculation.

The kz dependence of m∗e and m∗h are shown in Fig. 9.
For this purpose we evaluated the heavy electron mass of
the parabolic sub bands as shown in Fig. 7 and Fig. 8).
It is clear that m∗e has a weak kz dependence and m∗h
strongly depends on the value of kz. This is obvious since
exactly at H point, the value of m∗h has a minimum. For
a finite value of the gap ∆, the value of m∗h also remains
finite.

We now discuss the whole 3D Fermi surface. The vol-
ume inside the surface determines the low–energy free
carrier plasmon frequencies and the electrical conductiv-
ity. The trigonal warping has little effect on the vol-
ume inside the electron and hole pocket. When we
set γ3 = 0, then the Fermi surface is isotropic around
KH axis. The simplification of γ3 = 0 results in lit-
tle change of the volume. For γ3 6= 0, there are touch-
ing points of the electron–like and hole–like Fermi sur-
faces [19]. The touching points (or legs) are important
for understanding the period for de–Haas–van Alphen
and the large diamagnetism in graphite [25]. However,
for the calculation of the number of carriers, they are
not crucial and thus the Fermi surface calculated with
γ3 = 0 can be used for the evaluation of the electron
density, ne, and the hole density, nh. In this case, the
cross section of the Fermi surface A(kz) has an analyti-
cal form. The number of electrons per cm3 is given by
ne = 4× 1024 × fu/vuc with fu = ve/vbz where ve is the
electron pocket volume and vbz the BZ volume. vuc is
the unit cell volume in Å−3. Similarly, by replacing ve
with vh (the volume of the whole pocket) one can obtain
nh the number of holes per cm3. The critical quanti-
ties are ve and vh and they are obtained by integrat-
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FIG. 7: TB-GW QP band structure around (a,b) K point, (c,d) H point. The points 1,2 and 3 denote the dispersion we use to
determine electron and hole masses (see Fig. 9). The points 1,2 and 3 span a parabola. In (a,b) the parabola is along the KM
direction with heaviest electron masses and in (c,d) the hole masses are isotropic around H. Note that the parabolas along
1− 3 are used for evaluation of the effective electron and hole masses.

ing the cross section of the Fermi surface, A(kz) along
kz. The analytical expression and their dependence on
the TB parameters is given in [21]. This yields plasmon
frequencies of ~ωa = ~

√
nee2/(m∗eε0εa) = 113 meV for

plasmon oscillation parallel to the graphene layers and
~ωc = ~

√
nee2/(m∗zeε0εc) = 19 meV for plasmon oscil-

lation perpendicular to the layers. Here εa = 5.4 [32]
and εc = 1.25 [33] are adopted for the dielectric con-
stants parallel and perpendicular to the graphene layers,
respectively. We have made two simplifications: first we
do not consider a finite value of temperature (ωa and ωc
are the plasmon frequencies at 0 K) and second we used
an effective mass averaged over the whole kz range of the
pockets as shown in Fig.8 and in Fig.9.

Next we discuss the doping dependence of the elec-
tronic properties in the so–called dilute limit, which refers
to a very low ratio of dopant/carbon atoms. Here we use
a method described previously [21] employing the TB-
GW parameters from Table II. This allows us to calcu-
late the doping dependence of ne and nh. The analytical
formula for the EF dependent cross section of the Fermi

surface, A(kz) (given in [21]) is integrated for different
values of EF . By integrating dA(kz)/dEF along kz we
obtain the carrier density per eV. The ratio of dopant
to carbon is given by r = n × vuc/4f where n = ne for
electron doping and n = nh for hole doping. Here f is
the charge transfer value per dopant atom to Carbon.
Although there are some discussions about the value of
f , it is was recently found for potassium doping that
f = 1 [34]. In Fig. 10(a) we show the doping dependence
of the carrier densities. It is clear that at EF = ±25 meV,
we have a discontinuity in the carrier density and this is
associated to the EF at which the electron or hole pocket
is completely filled. Since the density of states decreases
suddenly after the pockets are filled, the kink in the den-
sity of states appears. This also marks the transition
from a two–carrier regime to a single–carrier regime. In
Fig. 10(b) we show ne and nh. It is clear that at EF = 0
the number of holes equals the number of electrons. At
EF = 25 meV, we have no more holes and thus a transi-
tion from a semi metal to a metal occurs. In such a metal,
the carriers are electrons, hence an N–type metal. Simi-
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FIG. 8: Evaluation of the in–plane (a) electron and (b) hole masses around K and H, respectively. The dispersions along the
parabolas depicted by points 1− 2− 3 in Fig. 7 are taken for evaluation of the masses. The effective masses perpendicular to
the layers in z direction are shown in (c) for electrons and in (d) for holes. � correspond to TB-GW values and the red lines
are parabolic fits.

FIG. 9: The kz dependence of the in–plane electron mass
(m∗e) and hole mass (m∗h) calculated by TB-GW . The masses
are evaluated along the parabolas as shown in Fig. 8.

larly, at EF = −25 meV we have no more electrons and
the a semi metal to metal transition occurs in the other
direction to EF . For this metal, the carriers are holes,
hence a P–type metal. These semi metal to metal transi-

tions are important for ambipolar transport in graphite
and graphene: they determine the region for the gate
voltage in which ambipolar transport is possible. Finally
in Fig. 10(c) we plot the ratio of dopant to carbon atoms
as a function of EF .

It is certainly interesting to monitor the doping in-
duced changes in ne and nh also in the shape of the Fermi
surface. In Fig.11 we show the Fermi surfaces for electron
doping and hole doping for EF = 0 to ±35 meV in steps
of 5 meV. It is clear that at ±25 meV a single carrier
regime dominates as indicated by the two different colors
(red for electrons and green for holes). This is consis-
tent with Fig. 10(b) where the integrated electron (hole)
densities disappear at EF = 25 meV (EF = −25 meV).
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FIG. 10: Doping dependence of (a) the electron and hole carrier density (b) the number of electrons and holes and (c) the
stochiometric dopant to carbon ratio. The red(green) lines represent electron(hole) carriers.

FIG. 11: The Fermi surface of doped graphite in the dilute limit for electron doping and hole doping. The red(green) surfaces
are the electron(hole) pockets of the Fermi surface. It is clear that at ±25 meV we have a semi metal to metal transition.

.

7. FEW LAYER GRAPHENE

The 3NN TB-GW set of parameters fits the whole kz
range of the 3D graphite BZ. Thus the set can be trans-
ferred for the calculation of QP dispersions of stacked sp2

FLGs with N layers (N = 1, 2, . . . ). The transferability
of TB parameters is a result of the fact that the lattice pa-
rameters of FLGs and graphite are almost identical [46].
We can use the matrix elements shown in Fig. 1(a) also
for FLGa; for N = 1 only γ1

0 − γ3
0 , s0 − s3 and E0 are

needed and this results in the graphene monolayer case.
For N = 2 the parameters γ2 and γ5 are not needed
since they describe next nearest neighbour interactions
which do not exist in a bilayer. We use the set of TB
parameters given in Table I and the Hamiltonians given
in section 2 and the appendix. In Fig. 12 we show the
bilayer (N = 2), the trilayer (N = 3) and the quad-
layer (N = 4) calculated with TB-GW . The Fig. 12(a)
and (b) shows the electron dispersion of the bilayer. The
separation between CB (VB) to the Fermi level is pro-
portional to γ1 [47] and thus it is clear that the TB-GW
also gives an about 20% larger separation between the
VB than LDA. Furthermore the slope of all bands be-
comes steeper for TB-GW since γ1

0 − γ3
0 increase with

respect to LDA calculations. This is also responsible for
the increase in vF of FLGs (similar to the graphite case,
when going from LDA to GW ). The same argument is
the case for the tri– and the quadlayer. It is interesting
that the QP dispersion measured by ARPES [6] are in
better agreement with the TB-GW rather than the LDA

calculations performed.
The low energy dispersion relation of FLGs are par-

ticularly important for describing transport properties.
From the calculations, we find that all FLG has a finite
density of states at EF . The trilayer has a small over-
lap at K point between valence and conduction band (i.e.
semi–metallic). This property might be useful for devices
with ambipolar transport properties. Our results are in
qualitative agreement with the LDA calculations [48].

It can be seen that a linear (Dirac–like) band appears
for the trilayer (and also for all other odd-numbered mul-
tilayers). This observation is in agreement to previous
calculations and is relevant to a increase in the orbital
contribution to diamagnetism [49].

Since TB allows for rapid calculation of the QP bands,
the transition from FLG to bulk graphite can be ana-
lyzed. Even in the case of N = 30, the solution of Eq. 4
for the 60 × 60 Hamiltonian and overlap matrices takes
only ∼ 10 sec on a Pentium III workstation per k point.
In Fig. 13 we show the eigenvalue spectrum for FLG with
N = 1, . . . , 30. As we increase N and hence the number
of π bands, the bandwidth also increases and approaches
that of bulk graphite. It can be seen that for N > 15, the
total bandwidth is that of bulk graphite. Interestingly,
the energies of the π bands group together and form fam-
ilies of the highest, second highest etc. energy eigenvalue
at K. With increasing number of layers, a given family
approaches the limit for bulk graphite. Such a family pat-
tern is a direct consequence of the AB stacking sequence
in FLG and it might be accessible to optical spectroscopy
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Parameter Symbol TB-GW Experimental value(s)

Fermi velocity at H [106ms−1] vF 1.01 0.91 [35], 1.06 [10], 1.07 [36], 1.02 [37]

Splitting of π bands at K [eV] δ 0.704 0.71 [10]

Bottom of π band at A point [eV] E(A) 7.6 8 [38], 8 [39]

in–plane electron mass [m0] m∗e 0.1 (kz averaged) 0.084 [40], 0.42 [35],0.028 [36]

in–plane hole mass [m0]a m∗h 0.06 (kz averaged) 0.069 [35], 0.03 [41]b, 0.028 [36]

out–of–plane electron mass [m0] m∗ze 16 -

out–of–plane hole mass [m0] m∗zh -16 -

number of electrons at EF =0 [1018 cm−3] ne 5.0 8.0 [35], 3.1 [42]

number of holes at EF =0 [1018 cm−3] nh 5.0 3.1 [35], 2.7 [42], 9.2 [38]

Gap at H point [meV] ∆ 5 5-8 [24, 37]

in–plane plasmon frequency [meV] ~ωa 113 128 [43]

out–of–plane plasmon frequency [meV] ~ωc 19 45-50 [33, 43, 44]

A1 optical transition energy [eV] EA1 0.669 0.722 [45]c

A2 optical transition energy [eV] EA2 0.847 0.926 [45]b

aTo compare different notations, we denote here the absolute value
of m∗h.
bMass at the H point was measured. Note that this is in excellent

agreement to our calculated kz dependence of m∗h (see Fig. 9).
cThe difference between the experimental and the TB-GW value

might be a result of excitonic effects.

TABLE IV: Properties of the electronic band structure of graphite calculated from TB-GW and compared to experiment.

similar to the fine structure aroundK point that has been
observed in bulk graphite [45].

8. DISCUSSION

We first discuss the QP band structure and relation to
recent ARPES experiments. From several experimental
works it is clear that the LDA bands need to be scaled in
order to fit the experiments [9, 10, 11]. Our new set of TB
parameters quantitatively describes the QP dispersions
of graphite and FLG. The scaling is mainly reflected in an
increase of γ1

0−γ3
0 and γ1, the in–plane and out–of–plane

coupling, respectively. It thus can be used to analyze
ARPES of both pristine and doped (dilute limit) graphite
and FLG. Most importantly, the correlation effects in-
crease vF , the Fermi velocity when going from LDA to
GW . For the TB-GW calculation, vF = 1.01× 106ms−1

which is in perfect agreement to the values from ARPES
that is equal to vF = 1.06× 106ms−1 [10]. The question
why LDA works for some metals but fails to give the
correct vF and energy band dispersion in semi metal-
lic graphite arises. In graphite, the contribution of the
electron–electron interaction to the self–energy is unusu-
ally large. The reason for this is the small number of
free carriers to screen efficiently the Coulomb interac-
tion. In most other metals, the density of states at EF
has a much larger (∼ 1000 times) value than in graphite
and the screening lengths are shorter. Hence the LDA
is a good description for such a material but it fails in
the case of graphite. Another parameter that illustrates
the quality of the TB-GW to reproduce the experimental

QP dispersion is δ, the band splitting at K point. For
TB-GW , we obtain δ = 0.704 eV and the ARPES gives
δ = 0.71 eV [10].

The TB parameters of the SWMC Hamiltonian have
been fitted in order to reproduce double–resonance Ra-
man spectra [14]. As a result they obtained that γ3

(one of the parameters that couples the neighbouring
graphene planes) has a value of 0.1 eV while the for
graphite that we obtain in this paper is 0.274 eV (see Ta-
ble II) and the value that was fit to transport experiments
is 0.315 eV [19, 50] which is also in perfect agreement to
ARPES experiments of graphite single crystals [50]. We
now discuss a possible reason for this discrepancy. The
fitting procedure in Ref [14] depends on the choice of the
phonon dispersion relation of graphite. It is important
to note that recently a Kohn anomaly has been directly
observed by inelastic x–ray scattering experiments using
synchrotron radiation [51] which has a steeper slope of
the TO phonon branch at K point in contrast to pre-
vious measurements [52]. Thus the assumption of the
correct phonon dispersion relation is crucial for obtain-
ing the correct band structure parameters.

Next we discuss the present QP electronic energy band
structure in relation to optical spectroscopies such as op-
tical absorption spectroscopy (OAS) and resonance Ra-
man spectroscopy. The optical spectroscopies probe the
joint density of states (JDOS) weighted with the dipole
matrix elements. Peaks in the OAS are redshifted when
compared to the JDOS of the QP dispersion if excitons
are created. By comparing the QP dispersion with OAS
experiments [45, 53, 54] we now estimate a value for
exciton binding energies in graphite. In general many
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FIG. 12: Band structure around K point of a bi-, tri- and quadlayer calculated by TB-GW .

resonant states with k contribute to OAS but a fine
structure in OAS of bulk graphite measured in reflection
geometry was observed by Misu et al. [45] which was
assigned to two specific transitions around K: the A1

transition between the lower VB and states just above
EF and the A2 transition between the upper VB and
the upper CB. The experimental energies they found
were EexpA1 = 0.669 eV and EexpA2 = 0.847 eV. The TB-
GW dispersion yields energies EGWA1 = 0.722 eV and
EGWA2 = 0.926 eV [see Fig.2(b)]. Assuming one exci-

ton is created for the A1(A2) transition, this yields ex-
citon binding energies of EGWA1 − EexpA1 ∼ 50 meV and
EGWA2 − E

exp
A2 ∼ 80 meV for a K point exciton in bulk

graphite. Such a value for the exciton binding energies
most probably increases when going from bulk graphite
to FLGs due to confinement of the exciton wave function
in z direction.

Concerning the value of ∆, the gap at H, several ex-
perimental values exist and magneto reflectance exper-
iments suggest ∆=5 meV. This is in disagreement to
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FIG. 13: Evolution of the eigenvalue spectrum for FLG from
N = 1 . . . 30 graphene layers calculated by TB-GW at the
K point. The dashed lines labelled by π1 and π4 denote the
lower and upper limits of the total bandwidth at K point in
3D graphite. A pattern that connects the first, second etc.
energies of FLG is emerging (see text).

the calculated values obtained for pristine graphite [10].
However, when the doping level is slightly increased, ∆
becomes smaller and we thus fixed a doping level in the
ab–initio calculation that reproduces the experimental
∆ [31]. While some of the variations may be explained
by the sample crystallinity in z direction, it is also con-
ceivable that small impurities are responsible for the dis-
crepancy.

Next we discuss a possibility to measure the free car-
rier plasmon frequencies of the of pristine and alkali–
metal doped graphite by high resolution energy electron
loss spectroscopy (HREELS). The electron concentration
inside the pockets very sensitively affects the plasmon
frequencies. In principle the charge carrier plasmons
should also appear as a dip in optical reflectivity mea-
surements but due to the small relative change in in-
tensity they have not been observed so far. Due to the
small size of the pockets, the number of charge carriers
and hence the conductivity and plasmon frequencies are
extremely sensitive to temperature and doping. Exper-
imentally observed plasmon frequencies for oscillations
parallel to the graphene layers are ~ωa=128 meV [43] and
for oscillations perpendicular to the layers are ~ωc=45−
50 meV [33, 43, 44]. These values for ~ωa and ~ωc agree
reasonably well with our derived value considering that
we make the crude estimation of ~ωa and ~ωc at 0 K while
experiments where carried out at room temperature. We
also used average effective masses of the electron pocket
in order to determine the plasmon frequency, while in
fact there is a kz dependence (see Fig.9) . We also note
that the experimental literature values for εa and εc have
a rather wide range, e.g. εc = 3.4 [55] from reflectivity

measurements and εc = 5.4 [32] from EELS.
The temperature dependence of ωc was measured by

Jensen et al [33] by HREELS and they observed a strong
T dependence for ωc which was attributed to changes in
the occupation and thus number of free carriers with T.
The observed plasmon energy was rising from 40 meV to
100 meV in a temperature range of 100 K to 400 K. A
similar effect might be observed by HREELS of doped
graphite as a function of doping level. It would be inter-
esting to study the evolution of the plasmon frequency
with doping level. With our current understanding of
the low–energy band structure we predict a semimetal to
metal transition at a Fermi level shift of EF ∼ 25 meV.
At this doping level, the hole pocket is completely filled
with electrons and disappears and the electron pocket
has roughly doubled in size and ωa and ωc should in-
crease by a factor of ∼

√
2. Such a transition should be

observable by HREELS and might be accompied by inter-
esting changes in the band structure (electron–plasmon
coupling) which can also be measured simultaneously by
ARPES. Many DC transport properties can be under-
stood with a Drude model for the conductivity, which
is inversely proportional to the effective carrier mass.
From the ratio of m∗ze/m

∗
e and m∗zh/m

∗
h, we hence expect

that the DC electron(hole) conductivity in z direction is
∼ 200(∼ 500) times less than the in–plane conductivity
. The experimental value is 3 × 103[19] and considering
the large variation in experimental values even for the in–
plane conductivity [19, 56], it is in reasonable agreement.
In Table IV we summarize the electronic band structure
properties such as vF , δ, the effective masses etc. and
compare them to experimental values.

9. CONCLUSIONS

In conclusion, we have fitted two sets of TB parameters
to first principles calculations for the bare band (LDA)
and QP (GW ) dispersions of graphite. We have observed
a 20% increase of the nearest neighbour in–plane and
out–of–plane matrix elements when going from LDA to
GW . Comparision to ARPES and transport measure-
ments suggest that LDA is not a good description of the
electronic band structure of graphite because of the im-
portance of correlation effects. We have explicitely shown
that the accuracy of the TB-GW parameters is sufficient
to reproduce the QP band structure with an accuracy
of ∼ 10 meV for the higher energy points and ∼ 1 meV
for the bands that are relevant for electronic transport.
Thus the 3NN TB-GW calculated QP band energy dis-
persions are sufficiently accurate to be compared to a
wide range of optical and transport experiments. The
TB-GW parameters from Table I should be used in the
future for interpretation of experiments that probe the
band structure in graphite and FLG. For transport ex-
periments that only involve electronic states close to the
KH axis (in graphite) or the K point in FLG, the SWMC
Hamiltonian with parameters from Table II can be used.
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With the new set of TB parameters we have calculated
the low energy properties of graphite: the Fermi velocity,
the Fermi surface, plasmon frequencies and the ratio of
conductivities parallel and perpendicular to the graphene
layers and effective masses. These values are compared
to experiments and we have demonstrated an excellent
agreement with almost all values.

We have shown that at±25 meV, a semi metal to metal
transition exists in graphite. Such a transition should
be experimentally observable by HREELS or ARPES for
electron doped graphite single crystals with very low dop-
ing levels (i.e. the dilute limit). Experimentally, the
synthesis of such samples is possible by evaporation of
potassium onto the sample surface and choosing a suffi-
ciently high equilibration temperature so that no staging
compound forms. It would thus be interesting to do a
combined ARPES and HREELS experiment on this kind
of sample.

We have also discussed the issue of the existence of
Dirac Fermions in graphite and FLGs. For pristine
graphite it is clear that for a finite value of the gap ∆ at
H point, we always have a non–zero value of the effec-
tive masses at H. We now discuss some possibilities for
∆ = 0. One way would be to use AA stacked graphite.
However, natural single crystal graphite has mainly AB
stacking and the preparation of an AA like surface by
repeated cleaving is a rather difficult task. Recently, the
possibility of reducing ∆ by increasing the doping level
has been put forward [31, 34] and this seems a more
promising way for experiments. For the case of a fully
doped graphite single crystal, the interlayer interaction
is negligible because the distance between the graphene
sheets is increased and the stacking sequence is change
to AA stacking. These two effects would cause the ap-
pearance of Dirac Fermions in doped graphite.

With the new set of 3NN TB parameters we have calcu-
lated the QP dispersion of FLG in the whole 2D BZ. We
have shown the evolution of the energy eigenvalue spec-
trum at K point as a function of N , the number of layers.
An interesting family pattern was observed, where the
first,second, third etc. highest transitions form a pattern
that approaches the energy band width of bulk graphite
with increasing N . For the highest transition, the bulk
graphite band width is already reached at N = 15. This
family pattern is a direct result of the AB stacking se-
quence in FLG and it can possibly be observe experi-
mentally. It should be pointed out here, that a very sim-
ilar fine structure around the K point in bulk graphite
has been observed by optical absorption spectroscopy by
Misu et al. [45] although the family pattern from Fig. 13
might be observed also by ARPES on high quality FLGs
synthesized on Ni(111).
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Appendix

We made computer programs to automatically gener-
ate the 3NN Hamiltonians and overlap matrices for N
graphene layers. The method is following the descrip-
tion by Partoens et al. [16] but with the difference that
we include 3NN matrix elements that describe the QP
dispersion in the whole BZ. It is interesting to note the
similarity between the Hamiltonian of a N layer graphene
and a stage N graphite intercalation compound [58]. The
general form of the Hamiltonian is given by

H(k) =


HA1A1 HA1B1 HA1A2 . . . HA1BN

HB1A1 HB1B1 HB1A2 . . . HB2BN

HA2A1 HA2B1 HA2A2 . . . HA2BN

...
...

...
...

...
HBNA1 HBNB1 HBNA2 . . . HBNBN


and the overlap matrix is given by

S(k) =


SA1A1 SA1B1 SA1A2 . . . SA1BN

SB1A1 SB1B1 SB1A2 . . . SB2BN

SA2A1 SA2B1 SA2A2 . . . SA2BN

...
...

...
...

...
SBNA1 SBNB1 SBNA2 . . . SBNBN

 .

The QP band structure is then given by solving equa-

tion Eq. 4. The 3NN TB Hamiltonians can be used with
GW parameters from Table I. In the following we give
the explicit form for the H(k) and S(k) of a monolayer
and an AB stacked bi– and and ABA trilayer which was
used in section 7.

Monolayer graphene

The monolayer 3NN Hamiltonian and overlap matrices
are given by

H(k) =

(
E0+γ2

0f2(k) γ1
0f1(k)+γ3

0f3(k)
γ1

0f1(k)∗+γ3
0f3(k)∗ E0+γ2

0f2(k)∗

)

and

S(k) =

(
1+f2(k)s2

0 f1(k)s1
0+f3(k)s3

0

f1(k)∗s1
0+f3(k)∗s3

0 1+f2(k)∗s2
0

)
.

Bilayer graphene

The bilayer 3NN Hamiltonian and overlap matrices are
given by

H(k) =
E0 + ∆+γ2

0f2(k) γ1
0f1(k)+γ3

0f3(k) γ1 γ4f1(k)∗

γ1
0f1(k)∗+γ3

0f3(k)∗ E0+γ2
0f2(k)∗ γ4f1(k)∗ γ3f1(k)

γ1 γ4f1(k) E0 + ∆+γ2
0f2(k) γ1

0f1(k)∗+γ3
0f3(k)∗

γ4f1(k) γ3f1(k)∗ γ1
0f1(k)+γ3

0f3(k) E0+γ2
0f2(k)

 (5)

and

S(k) =
1+s2

0f2(k) s1
0f1(k)+s3

0f3(k) 0 0
s1

0f1(k)∗+s3
0f3(k)∗ 1+s2

0f2(k)∗ 0 0
0 0 1+s2

0f2(k) s1
0f1(k)∗+s3

0f3(k)∗

0 0 s1
0f1(k)+s3

0f3(k) 1+s2
0f2(k)

. (6)
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The trilayer Hamiltonian and overlap matrices read as

H(k) =

E0 + ∆+γ2
0f2(k) f1(k)γ1

0+γ3
0f3(k) γ1 γ4f1(k)∗ γ5 0

γ1
0f1(k)∗+γ3

0f3(k)∗ E0+γ2
0f2(k)∗ γ4f1(k)∗ γ3f1(k) 0 γ2

γ1 γ4f1(k) E0 + ∆+γ2
0f2(k) γ1

0f1(k)∗+γ3
0f3(k)∗ γ1 γ4f1(k)

γ4f1(k) γ3f1(k)∗ γ1
0f1(k)+γ3

0f3(k) E0+γ2
0f2(k)∗ γ4f1(k) γ3f1(k)∗

γ5 0 γ1 γ4f1(k)∗ E0 + ∆+γ2
0f2(k) γ1

0f1(k)+γ3
0f3(k)

0 γ2 γ4f1(k)∗ γ3f1(k) γ1
0f1(k)∗+γ3

0f3(k)∗ E0+γ2
0f2(k)∗


(7)

and

S(k) =

1+s2
0f2(k) f1(k)s1

0+s3
0f3(k) 0 0 0 0

s1
0f1(k)∗+s3

0f3(k)∗ 1+s2
0f2(k)∗ 0 0 0 0

0 0 1+s2
0f2(k) s1

0f1(k)∗+s3
0f3(k)∗ 0 0

0 0 s1
0f1(k)+s3

0f3(k) 1+s2
0f2(k) 0 0

0 0 0 0 E0 + ∆+s2
0f2(k)∗ s1

0f1(k)+s3
0f3(k)

0 0 0 0 s1
0f1(k)∗+s3

0f3(k)∗ 1+s2
0f2(k)∗


. (8)

The sum of the phase factors for first–,second– and
third nearest neighbours are given by f1(k), f2(k) and
f3(k), respectively. Note that f1(k) and f3(k) couple
A and B atoms and f2(k) describes the AA and BB
interactions.

f1(k) = exp
(
i
kxa0

2

)
+2 exp

(
− ikxa0

2

)
cos

(√
3kya0

2

)
.

(9)

f2(k) =
6∑
`=1

exp(ikr2
`) (10)

f3(k) =
3∑
`=1

exp(ikr3
`) (11)

Here r2
` and r3

` are the vectors that connect the A1

atom (see Fig. 1) with the second nearest B atoms (three
atoms) and the third nearest A atoms (six atoms), re-
spectively.
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