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Abstract

A simple acoustic device consisting of two dangling side resonators grafted at two sites on a slender tube is designed possibly 
to obtain transmission stop bands (where the propagation of longitudinal acoustic waves is forbidden). In contrast to all known 
systems of this kind, a spectral transmission gap of nonzero width occurs here even with this simple structure. This is obtained 
by combining appropriately the zeros of transmission of the side resonators. Sharp resonant states inside the gaps can be 
achieved without introducing any defects in the structure. This results from an internal resonance of the structure when such a 
resonance is situated in the vicinity of a zero of transmission or placed between two zeros of transmission, the so-called Fano 
resonances. A general analytical expression for the transmission coefficient is given for various systems of this kind within the 
framework of the Green’s function method. The amplitude and the phase of the transmission are discussed as a function of 
frequency and it is shown that the width of the stop bands is very sensitive to the number of side resonators. These results 
should have important consequences for the suppression of low-frequency noise and for designing filters.

1. Introduction

Low dimensional structures which have a regular distribution

of scattering centers have been seen to possess a distinct

and interesting array of acoustical properties, perhaps most

strikingly frequency band gaps within which acoustic waves

cannot propagate through the structure—a so-called phononic

band gap. In recent years, such phononic crystals have been

the subject of intense theoretical [1] and experimental [2]

investigations. Two-and three-dimensional composite systems

constituted by periodic inclusions of a given material in a

host matrix can exhibit an absolute acoustic band gap where

the propagation of sound waves and ultrasonic vibrations

is inhibited in any direction of space [3]. These acoustic

band gap materials can have many practical applications such

as elastic/acoustic filters [4]. Studies of lower dimensional

4 Author to whom any correspondence should be addressed.

systems such as 1D periodic layered media [5, 6] and

periodic waveguide systems with different geometries [7–13]

are conducted as analogs of 2D and 3D systems and for

applications in their own right. These structures are attractive

since their production is more feasible at any wavelength

scale and they require only simple analytical and numerical

calculations.

In a previous publication [9], some of the authors reported

that the acoustic transmission spectrum of 1D comb structures

exhibits large gaps. These structures, called star wave

guides, are composed of N ′ dangling side branches (DSBs)

periodically grafted at each of the N equidistant sites on

slender tubes. The gaps originate from the periodicity of the

system determined by the distance between two neighboring

sites and from the eigenfrequencies of the DSB, which play

the role of resonators. These theoretical results are confirmed

by experiments using an impulse response technique in the
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interval from 650 to 1100 Hz [12]. Unlike other 1D (e.g. Bragg

lattices), 2D or 3D phononic crystals, in which the contrast

between the constituents is a critical parameter for the stop

band existence, this star waveguide exhibits relatively large

forbidden bands even if the backbone and the resonators are

made of the same material [9].

On the other hand, we have proposed [13] an asymmetric

serial loop structure made of asymmetric slender tube loops

pasted together with slender tubes of finite length; the loops

play the role of resonators. Such a structure exhibits new

features, in comparison with the star waveguide [9]. In the

case of symmetric loops, the system becomes equivalent to a

diameter modulated slender tube [8]. Recently, we have also

investigated theoretically the propagation and localization of

acoustic waves in quasi-periodic [14] slender tubes and these

results have been confirmed experimentally [15]. In addition,

we have shown the existence of transmission zeros in the case

of asymmetric loop structure [14]. These transmission zeros

may lead to a phase drop of π and therefore negative phase

time [14]. A recent experiment by Robertson et al [16] on one

asymmetric loop filter made of two different tubes has shown

clearly the existence of such negative phase time and therefore

negative group velocity.

In the last few years, the low-frequency band gap (called

the locally resonant band gap) of a phononic crystal with

small dimension has attracted much attention [17, 18]. 3D

and 2D systems consisting of rubber-coated lead spheres and

cylinders embedded in epoxy have shown the existence of

such band gaps and their interest for blocking low-frequency

sound [19, 20]. In addition to these gaps, great interest

has been paid to the so-called Fano resonances that may

be introduced in such gaps. Some analytical models have

been proposed to explain the origin and the behavior of such

resonances [18–20]. These resonances were first theoretically

described by Fano [21] when he studied the inelastic auto-

ionizing resonances in atoms. The asymmetry (Fano profile)

was explained as a result of the interference between the

discrete resonance and the smooth continuum background in

which the former is embedded. The symmetric and asymmetric

Fano line shapes have been extensively reported in the

electronic transport in mesoscopic systems [22–24]. Mainly,

the subject of these studies was to use the so-called Aharonov–

Bohm interferometric systems to show the conditions for the

existence and the collapse of Fano resonances as functions of

the applied current voltage and magnetic flux. These studies

are also related to the investigation of the electronic states of

quantum dots [22, 23] as well as to the understanding [25, 26]

of the transmission phase jumps by π between two adjacent

resonances in relation to the experiments of Yacoby et al [27].

The analogy between scattering properties of electrons and

phonons suggests that this type of feature can also appear in

other vibrational systems [28].

The motivation behind the work presented in this paper

is to introduce a design of a simple acoustic filter consisting

of two slender side tubes, which play the role of resonators,

grafted at two sites on an infinite slender tube (see figure 1).

We show analytically and numerically that this simple structure

can exhibit transmission gaps (their widths depend on the

N N’

d1

d2

d3

Figure 1. Schematic illustration of the one-dimensional slender tube
waveguide of length d2 with dangling resonators on both sides. The
whole structure is inserted between two semi-infinite tubes. The
lengths of the dangling resonators are d1 and d3 and their numbers
are N and N ′ , respectively (here N = N ′ = 6). The boundary
conditions at the end of the resonators are rigid.

number of dangling resonators) and Fano-like resonances. In

particular, we show that the transmission amplitude through

such a system can be written following the Fano-like shape

around these resonances. In addition, we give an explicit

expression of the Fano parameter [21] as well as the position

and the width of the Fano resonances [21] as a function of

the geometrical parameters of the system. It is worthwhile to

notice that such stop bands and resonances could be observed

experimentally by using simple slender tubes as in the recent

experiments by Robertson et al [12, 16].

This paper is organized as follows. In section 2, we give

a brief review of the theoretical model used in this work as

well as the analytical results of the structure depicted above.

These results are necessary for an analytical understanding of

the new phenomenon obtained for the structure proposed in this

work. Section 3 is devoted to the transmission gaps and Fano

resonances. The conclusions and some implications for future

experiments are presented in section 4.

2. Method of theoretical and numerical calculation

2.1. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the

interface response theory of continuous media, which allows

calculation of the Green’s function of any composite material.

In what follows, we present the basic concept and the

fundamental equations of this theory [35]. Let us consider

any composite material contained in its space of definition D

and formed out of N different homogeneous pieces located in

their domains Di . Each piece is bounded by an interface Mi ,

adjacent in general to j (1 � j � J ) other pieces through

subinterface domains Mi j . The ensemble of all these interface

spaces Mi will be called the interface space M of the composite

material. The elements of the Green’s function g(DD) of any

composite material can be obtained from [35]

g(DD) = G(DD) − G(DM)G−1(M M)G(M D)

+ G(DM)G−1(M M)g(M M)G−1(M M)G(M D), (1)

where G(DD) is the reference Green’s function formed out

of truncated pieces in Di of the bulk Green’s functions of the

infinite continuous media and g(M M) the interface element of

the Green’s function of the composite system. The knowledge

of the inverse of g(M M) is sufficient to calculate the interface

states of a composite system through the relation [35]

det[g−1(M M)] = 0. (2)
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Moreover, if U(D) represents an eigenvector of the reference

system, equation (1) enables the calculation of the eigenvectors

u(D) of the composite material and

u(D) = U(D) − U(M)G−1(M M)G(M D)

+ U(M)G−1(M M)g(M M)G−1(M M)G(M D). (3)

In equation (3), U(D), U(M), and u(D) are row vectors.

Equation (3) provides a description of all the waves reflected

and transmitted by the interfaces, as well as the reflection and

transmission coefficients of the composite system. In this case,

U(D) is a bulk wave launched in one homogeneous piece of

the composite material [17].

2.2. Inverse surface Green’s functions of the

elementary constituents

For the sake of simplicity, we embark on the simpler one-

dimensional system made of nonviscous fluid tubes. The

calculations at hand simplify because the transverse speed

of sound vt is zero in nonviscous fluids. Nevertheless, the

ordinary wave equation is inapplicable to inhomogeneous

system. The correct wave equation, namely the equation of

motion in the framework of the acoustic approximation, is

ρ
∂2u

∂ t2
= ∇[(ρ/a)v2

∇ · (au)] (4)

where ρ(r) is the mass density, a(r) the cross section and

v(r) the longitudinal speed of sound. In the case of acoustic

approximation, ∇ × (ρu) = 0. Therefore, it is possible to

define a scalar potential �(r, t) such that ρu = ∇�. Then

equation (4) may be cast in the form of a scalar equation

[ρ

a
v2

]−1 ∂2�

∂ t2
= ∇ · [(ρ/a)−1

∇�]. (5)

This is the starting point to be followed by the interface

response theory [29].

In the following we consider a system made of

homogeneous isotropic slender tubes i full of the same fluid

of mass density ρ and velocity of sound v0. Each tube is

characterized by its impedance Z i = ρv0/ai , where ai is the

cross section.

In the case of an infinite homogeneous one-dimensional

slender tube along the x-axis, equation (5) becomes

(ρ

a

)−1
[

∂2�

∂x2
− α2

]

�(x) = 0, (6)

where α2 = −ω2

v2
0

and ω is the angular frequency of the wave.

Then, the corresponding Green’s function is defined by [29]

(ρ

a

)−1
[

∂2�

∂x2
− α2

]

G(x, x ′) = δ(x − x ′), (7)

whose solution is given by

G i (x, x ′) =
−j

2ω
Z i e

−α|x−x′ | (8)

where α = −jk, k = ω/v0 and j =
√

−1.

Before addressing the problem of the simple structure

presented in this work (see figure 1), it is helpful to know the

surface elements of its elementary constituents, namely, the

Green function of a finite slender tube of length di , i = 1, 2, 3,

and of a semi-infinite tube. The finite slender tube of length d2

is bounded by two free surfaces located at x = 0 and x = d2.

These surface elements can be written in the form of a (2 × 2)

matrix g2(M M), within the interface space M = {0,+d2}.
The inverse of this matrix takes the following form [29]:

g−1
2 (M M) =

− ωC2

Z2 S2

ω
Z2 S2

ω
Z2 S2

− ωC2

Z2 S2

)

(9)

C2 = cos(kd2), S2 = sin(kd2). The inverse of the surface

Green’s functions of the dangling resonators grafted at the

sites {0} and {d2} with rigid boundary conditions at their ends

is given by g−1
1 (0, 0) = −NωC1/Z1S1 and g−1

3 (d2, d2) =
−N ′ωC3/Z3S3, where Ci = cos(kdi), Si = sin(kdi), i = 1, 3.

N and N ′ are the number of side branches on both sides of

the finite slender tube of length d2. The inverse of the surface

Green’s functions of the two semi-infinite tubes surrounding

the whole structure is given by g−1
s (0, 0) = g−1

s (d2, d2) =
jω/Zs , where Zs = ρv0/as . In what follows, we suppose

that all the tubes have the same cross section (i.e. a1 =
a2 = a3 = as = a), or equivalently the same impedances

(i.e. Z1 = Z2 = Z3 = Zs = Z = ρv0/a). We report

on results of calculated transmission coefficients and phase

or phase time as a function of frequency. Using the Green’s

function method [29], the expression giving the inverse of the

Green’s function of the whole system given in the inset of

figure 2(c) can be obtained from a linear superposition of the

above inverse Green’s functions of the constituent, namely

g−1(M M) =
−ω

Z

(

C2

S2
+ NC1

S1
− j − 1

S2

− 1
S2

C2

S2
+ N ′C3

S3
− j

)

. (10)

2.3. Transmission coefficient

Let us consider an incident wave U(x) = e−jαx launched

in the left semi-infinite waveguide (figure 1). With the

help of equations (3), (8) and (10), one easily finds

the transmission wave in the right semi-infinite waveguide

(figure 1), namely [28, 29] t = (2jω/Z)g(0, d2), or

equivalently

t =
2S1S3

χ1 − jχ2

(11)

where

χ1 = S2(N S3C1 + N ′ S1C3) + 2C2S1 S3 (12)

and

χ2 = −NC1(S3C2 + N ′S2C3)− N ′C2C3S1 + 2S1S2S3. (13)

From the expression of t (equation (4)), one can deduce

the transmission coefficient

T =
4S2

1 S2
3

χ2
1 + χ2

2

(14)
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Figure 2. Left panel. (a) Transmission coefficient versus the reduced wavevector kd1/π for a structure (depicted in the inset) consisting of an
infinite line with one grafted segment of length d1. The one-dimensional tubes constituting the infinite line and the finite segment are assumed
to be of the same cross section. The boundary conditions at the end of the stubs are rigid. (c) Transmission coefficient versus the reduced
wavevector kd2/2π for the structure depicted in the inset with d2 = 2d3 = 2d1. (e) The same as in (c) but for the structure depicted in the
inset. Right panel. (b), (d), (f) The same as in the left panel but for the variation of the phase.

as well as the phase

ϕ = arctan(χ2/χ1) + π �[S1S3] (15)

where � means the Heaviside function. From equations (4)

and (7) one can notice that the transmission zeros are induced

by the side branches (i.e. S1 = 0 or S3 = 0). When the

expression S1S3 changes sign at some frequencies denoted by

ωn , then the phase (equation (8)) exhibits a jump of π .

Another interesting quantity is the first derivative of ϕ with

respect to the frequency, which is related to the delay time

taken by the phonons to traverse the structure. This quantity,

called phase time, is defined by [30, 31]

τϕ =
dϕ

dω
(16)

and can be written as

τϕ =
d

dω
arctan(χ2/χ1)

+ π
n

sgn

[

d

dω
(S1S3)ω=ωn

]

δ(ω − ωn) (17)
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where sgn means the sign function. Furthermore, the density

of states (DOS) of the present composite system from which

we have subtracted the DOS of the semi-infinite tubes is given

by [31]


n(ω) =
1

π

d

dω
arctan(χ2/χ1). (18)

Because of the second term in the right-hand side of

equation (10), one can deduce that τϕ �= π
n(ω), as τϕ

(equation (10)) may exhibit δ functions at the transmission

zeros that do not exist in the variation of the DOS

(equation (11)). However, if the system does not exhibit

transmission zeros, then �[S1S3] = 0 and τϕ = π
n(ω). Let

us mention that phase time and negative δ functions associated

with the transmission zeros in asymmetric loop structures made

of two different coaxial cables and slender tubes have been

observed, respectively, in recent experiments by El Boudouti

et al [32] and Robertson et al [16].

It should be pointed out again that the validity of our

results is subject to the requirement
√

ai ≪ di , λ, i.e. the

cross section of the slender tubes being negligible compared

to their length and to the propagation wavelength λ. The

assumption of monomode propagation is then satisfied. It

is worthwhile to notice that this model has been applied

successfully to reproduce experimental measurements on band

gaps, defect modes and group velocities in structured acoustic

waveguides [7, 8, 12, 16].

3. Transmission gaps and Fano resonances

Before addressing the problem of the whole structure described

above (figure 1), let us first recall briefly the results of

a particular case necessary for the understanding of wave

propagation in the structures shown in figure 1; namely, if

d2 = 0, N = 1 and N ′ = 0, we obtain the transmission

function of a simple structure consisting of one resonator

grafted on an infinite guide (see the inset of figure 2(a)):

t = S1/(S1 + jC1/2). This expression enables us to deduce

the transmission coefficient T = |t|2 = 4S2
1/(4S2

1 + C2
1 ) and

the phase ϕ = π �(S1) − arctan(C1/2S1).

We can see that the transmission coefficient is equal

to zero when kd1 = l ′π , where l ′ is a positive integer.

The variation of T versus the reduced wavevector kd1 (or

equivalently the reduced frequency ωd1/v0) is reported in

figure 2(a). T is equal to zero for kd1 a multiple of π and

reaches its maximum value of unity for kd1 an odd multiple

of π/2. The frequencies of the transmission zeros given by

fg such as fg = l ′v0/2d1 correspond to the eigenmodes of

the grafted finite branch. This grafted branch behaves as

a resonator and this simple composite system filters out the

modes fg. This phenomenon is related to the resonances

associated with the finite additional path offered to the acoustic

wave propagation. The variation of the phase versus kd1

(figure 2(b)) shows an abrupt change of π at the transmission

zeros and therefore the corresponding phase time is different

from the DOS as mentioned above.

For the structure shown in the inset of figure 2(c),

equation (4) clearly shows that the transmission zeros are due

only to the dangling resonators (i.e. when S1 = 0 or S3 = 0).

Figure 2(c) gives the transmission coefficient in the presence of

two identical dangling resonators (i.e. N = N ′ = 1 and d1 =
d3 = 0.5d2). One can notice that the transmission coefficient

presents well defined dips induced by the grafted branches.

This dip transforms into a large transmission gap when the

number of branches increases, as illustrated in figure 2(e) for

N = N ′ = 2. It is worthwhile to mention that, because of

the existence of two resonators in figure 2(c), one can expect

two phase drops of π (i.e. 2π ) at the transmission zeros given

by S1 = S3 = 0 (i.e. kd2/2π = 1, 2, . . .). However, one

can see in figure 2(d) that the phase presents only a phase

drop of π . This is due to the existence of a resonant state

with zero width at these values of kd2/2π , which induces a

phase jump of +π ; these resonances collapse when d1 = d3 is

taken exactly equal to 0.5d2. These resonances are called ghost

Fano resonances in [33, 34]. To enlarge these resonances, we

have to take d1 and d3 slightly different from 0.5d2. Indeed, at

kd2/2π = 1, 2, . . . the expression of the transmission function

(equation (4)) becomes

t =
2S1 S3

2S1S3 + j sin[k(d1 + d3)]
. (19)

So, if k(d1 + d3) = mπ but kd1 �= m1π and kd2 �= m2π

(m, m1 and m2 are integers), one obtains a resonance that

reaches unity (i.e. t = 1). An example corresponding to this

situation is given in figure 3(a), where d1 = 0.46d2 and d3 =
0.54d2 (with d1 + d3 = d2). One can notice that the resonance

at kd2/2π = 1 is squeezed between two zeros (indicated

by solid circles on the abscissa of figure 3(a)) induced by

the dangling resonators, as also illustrated in the curve of the

variation of the phase (figure 3(b)). The width of this resonance

increases as d1 and d3 deviate from 0.5d2 (see below). In

the particular case where kd1 = m1π and kd2 = m2π ,

the numerator and denominator of t (equation (12)) vanishes

altogether. In this case, the resonance as well as the two zeros

induced by the resonators fall at the same position, so the

resonance collapses, the transmission coefficient vanishes and

the phase drops by π as shown in figure 2(d).

The resonance in figure 3(a) shows the same character-

istics as a Fano resonance but with two zeros of transmis-

sion around the resonance instead of one as is usually the

case [21, 22]. Indeed, one can obtain an approximate ana-

lytical expression for the transmission function (equation (4))

in the vicinity of the resonance. A Taylor expansion around

kd2 = 2π (i.e. kd2 = 2π + ε with ε/2π ≪ 1) enables us to

obtain

t =
ζ ζ ′

2ε2 + ζ ζ ′ + j ε(4 − ζ ζ ′/2)
(20)

where ζ = 2
 + ε(1 + 
/π), ζ ′ = −2
 + ε(1 − 
/π)

and 
 is the detuning of d1 and d3 from 0.5d2 (i.e. 
 =
2π(0.5 − d1/d2) = 2π(−0.5 + d3/d2)).

From equation (12), one can show that the transmission

coefficient T can be written (following the Fano line

shape [21]) in the form

T = A
(ε + q1Ŵ)2(ε − q2Ŵ)2

ε2 + Ŵ2
, (21)
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Figure 3. (a) The same as in figure 2(a), but the lengths of the resonators are taken such that d1 = 0.46d2, d3 = 0.54d2 and N = N ′ = 1.
Solid circles on the abscissa indicate the positions of the transmission zeros induced by the dangling resonators on both sides of the resonance.
(c) The same as in (a) but for the variation of the phase. (b), (d) The approximate results (open circles) around the resonance. (e) The same as
in (a) but the resonators are taken to be of identical lengths d1 = d3 = 0.46d2. (g) The same as in (c) but for the variation of the phase.
(f), (h) The approximate results (open circles) around the resonance.

where A = (1 − 
2/π2)2/(4 + 2
2)2. Ŵ = 2
2/(2 + 
2)

characterizes the width of the resonance falling at ε = 0.

q1 = (2 + 
2)/
(1 + 
/π) and q2 = (2 + 
2)/
(1 −

/π) are the coupling parameters; they give qualitatively

the interference between the bound states and the propagating

continuum states [21–23]. One can notice that when increasing


, Ŵ increases and q decreases. The results of the approximate

expression (equation (14)) are shown in figure 3(b) by open

circles. These results are in accordance with the exact ones

(solid lines) and clearly show that the resonance is of Fano

type with q1 ≃ 7.6, q2 ≃ 8.9 and width 2Ŵ ≃ 0.12. The

commonly studied Fano resonances are asymmetric because of

the presence of only one transmission zero near the resonance

(see below). In addition, in the electronic counterpart studies,

a perturbation is often introduced to the system in order

to create the resonance state [21–24]. However, the above

calculation shows that, without introducing any perturbation

in the structure, one can find a well defined symmetric

6



Fano resonance with a width 2Ŵ and coupling parameters q1

and q2 that can be adjusted by tailoring the lengths of the

resonators (i.e. 
). Equation (13) enables us also to deduce

an approximate expression for the phase as

ϕ = π�(ζ ) + π�(ζ ′) − arctan[ε(4 − ζ ζ ′/2)/(2ε2 + ζ ζ ′)].
(22)

This function is plotted by open circles in figure 3(d) and

clearly shows two abrupt phase changes of π at ζ = 0 and

ζ ′ = 0 (i.e. ε1 = −q1Ŵ and ε2 = q2Ŵ) in accordance with the

exact results (solid line).

One can also create an asymmetric Fano resonance by

adjusting the transmission zeros on only one side of the

resonance; this can be obtained by considering a structure

where the resonators are supposed to be identical with lengths

slightly different from 0.5d2. This is shown in figure 3(e) for

d1 = d3 = 0.46d2 and N = N ′ = 1. Indeed, an analytical

Taylor expansion around kd2 = 2π enables us to write the

transmission function (equation (14)) as

t =
2ξ 2

(ξ + j)(ε + 2ξ − jεξ)
(23)

where ξ = 
 + ε(1 + 
/π)/2 and 
 is the detuning of the

lengths of the two resonators from 0.5d2 (i.e., 
 = 2π(d1/d2−
0.5)).

From the expression of t (equation (16)), one can deduce

the following Fano line shape transmission coefficient:

T = B
1

1 + ξ 2

(ε − εR + qŴ)4

(ε − εR)2 + Ŵ2

≃ B
(ε − εR + qŴ)4

(ε − εR)2 + Ŵ2
(24)

where B = (1 + 
/π)4/16(1 + 
/2π)2.

Ŵ = 
2(1 − 
/2π)/4(1 + 
/2π)2 and εR = −
/(1 +

/2π) characterize the width and the shift of the resonance

respectively, whereas q = 4(1 + 
/2π)/
(1 + 
/π)(1 −

/2π) is the Fano parameter. One can notice that the

resonance shifts slightly from kd2 = 2π and its width is small

as compared to the preceding case; this is in accordance with

the numerical results of figures 3(a) and (e). Also q increases

when 
 decreases and tends to infinity when 
 vanishes. In

this case the resonance falls at εR = 0 and its width 2Ŵ

reduces to zero (figure 2(c)), as expected. The results of

the approximate expression (equation (17)) are sketched (open

circles) in figure 3(f) for 
 = 2π(d1/d2 − 0.5) = −0.08π

(i.e. d1/d2 = 0.46). These results are in accordance with the

exact ones (solid lines) and clearly show that the resonance is

of Fano type with q ≃ 16 and width 2Ŵ ≃ 0.035.

Concerning the evolution of the phase of the phonons

in this structure, one can notice from equation (4) that the

numerator of the transmission function t vanishes when S1 =
S3 = 0 (or equivalently ξ = 0 in the approximate result

(equation (16)) at kd2/2π = d2/2d1 = 1.086 indicated by a

filled circle on the abscissa axis of figure 3(f). The transmission

zeros induced by the two identical resonators fall at the same

frequency; therefore, the phase (figures 3(g) and (h)) shows a

phase drop of 2π at these frequencies. Indeed, as the phase is

defined modulo 2π , the 2π phase change cannot be observed

if the absorption is neglected in the system. The absorption can

be considered by adding for example a small imaginary part ε

to the frequency ω with ε ≈ 0, then the abrupt phase drop can

be observed. The phase drops give rise to negative delta peaks

in the transmission phase time as illustrated in figures 4(c)

and (g) as well as in the corresponding approximative results

shown by open circles in figures 4(d) and (h). A recent similar

work has been performed by Rotter and Sadreev [35] on two

single quantum dots coupled by a wire of finite length and

neglecting the absorption. They found that at the transmission

zeros the phases jump by mostly (but not always) π . However,

our results show that the phase may jump by even 2π if the

absorption is taken into account.

The small absorption in the tubes can also considerably

affect the amplitude of the Fano resonances, which becomes

less than unity as shown in figures 4(a), (b), (e) and (f). It

is worthwhile to notice that recent experiments by Robertson

et al [16] on an asymmetric loop made of slender tubes have

shown the existence of negative phase times and therefore

negative group velocities around the transmission zeros in

analogy with our experiments on photonic crystals made of

coaxial cables [32]. These results show, in accordance with

section 2, that the phase time is different from the density of

states by the occurrence of additional delta peaks [14].

The Green’s function approach enables one also to deduce

the local density of states (LDOS). The details of these

calculations are given in [28]. The LDOS reflects the behavior

of the square modulus of the pressure field inside the structure.

An analysis of the LDOS as a function of the space position

(figure 5) clearly shows that the Fano resonances in figures 3(a)

and (e) are confined inside the slender tube and the resonators

(see figures 5(a) and (b) respectively). In particular, the

pressure is maximum in the middle of the finite tubes and

vanishes at their extremities. Therefore, these resonances could

be classified as local resonances.

As mentioned above, through our analysis we use the

one-dimensional model for the acoustic waveguide network

where the cross section of the slender tubes is negligible as

compared to their length and to the propagation wavelength

λ. However, if the cross section of the slender tubes is of

the same order of magnitude as compared to their length

and to the propagation wavelength λ, then a two-dimensional

model is necessary [10, 36, 37]. Indeed, it was shown

recently [36, 37] that the transmission zeros induced by the

stubs in two-dimensional phononic crystals strongly depend

on the number of stubs grafted at each site as well as on the

distance between the stubs. Similar results to those presented

in this work have been observed in quantum waveguide

nanostructures [38]. In particular, when the cross sections

of the wires are of nonzero width, the multimode effect and

the matching of transverse modes have been considered [39].

In addition to the quantization of the conductance which is

due to the lateral confinement, It has been shown that the

existence of crosses and bends in the structure may also result

in bound states associated with the cross sections of these

contact points [40–43]. One can expect the same phenomena

in acoustic waveguides due to the analogy between electronic

and acoustic excitations in waveguides. Therefore, in such

7



Figure 4. (a), (b), (e), (f) The same as in figures 3(a), (b), (e), (f) but here the absorption is taken into account by adding a small imaginary
part to the frequency. The solid circles indicate the positions of the transmission zeros. (c), (d), (g), (h) The same as in figures 3(c), (d), (g), (h)
but for the phase time.

geometries, the position and the width of the transmission gaps

as well as the position and intensity of the Fano resonances in

the acoustic counterpart systems could be affected.

4. Summary and conclusion

In summary, we have clearly demonstrated that a simple

geometry of a slender tube with dangling side resonators on

both sides can pave the way to the obtention of gaps in the

sound propagation. The existence of the stop bands in the

spectrum is attributed to the zero of transmission associated

with the dangling resonators. The width of the transmission

gaps depends on the number of the side resonators grafted on

both sides of the slender tube. Besides the transmission gaps,

we have shown the existence of asymmetric and symmetric

Fano resonances that may lie near the vicinity of a transmission

zero or be squeezed between two transmission zeros. These

resonances are obtained by tailoring the lengths of the different

branches constituting the structure. A study of the phase of the

transmission function enables us to deduce several properties

of the wave propagation through such structures as the phase

times and therefore the density of states. For the system studied

here, the phase time calculation is different from the density of

states. The resonant modes give rise to well defined peaks in

the phase time.

8



Figure 5. The local density of states (LDOS) (in arbitrary units) as a
function of the space positions x/d2 and y/d2 along the horizontal
waveguide (full curve) and vertical waveguide (dashed curves)
respectively. (a) The LDOS corresponds to the Fano resonance in
figure 3(a); (b) the same as in (a) but for the resonance in figure 3(e).

The advantage of the simple acoustic waveguide model

presented in this work consists in finding simple analytical

expressions that enable us to discuss the existence of Fano

resonances as well as the effect of the different tube lengths

in tailoring these resonances without incorporating a defect in

the structure as is usually the case in the electronic counterpart

studies [21–24].

We believe that this paper brings a new piece of work

in the field of acoustic wave transport in 1D waveguide

structures and we hope that it will stimulate an experimental

observation [12, 16] of the transmission gaps and Fano

resonances exhibited by the simple acoustic waveguide

described in this work.
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