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Stability analysis of time-varying delay systems in quadratic separation framework

This paper deals with the stability analysis of linear time-delay systems. The time-delay is assumed to be a time-varying C 1 function belonging to an interval and has a bounded derivative. Considering stable delay-free system, the quadratic separation framework is used to assess the maximal allowable value of the delay that preserves stability. To take into account the time-varying nature of the delay, the quadratic separation principle has been extended to cope with the general case of uncertain operators (instead of just uncertain matrices). Then, separation conditions lead to linear matrix inequality (LMI) which can be efficiently solved with Semi Definite Programming solvers in Matlab. The paper concludes with an illustrative academic example.

Introduction

Time-delay systems and their stability have been intensively studied since several decades. In the case of constant delay and unperturbed linear systems, efficient criteria based on roots location [START_REF] Olgac | An exact method for the stability analysis of time-delayed linear time-invariant (lti) systems[END_REF] allow to find the exact region of stability with respect to the value of the delay. For the case of uncertain linear systems, i.e. for proving robust stability, the problem has been partially solved, either by using Lyapunov functionals [START_REF] Gu | Stability of Time-Delay Systems[END_REF] or robustness framework (small gain theory [START_REF] Gu | Stability of Time-Delay Systems[END_REF], IQCs [START_REF] Kao | Robust stability analysis of linear systems with time-varying delays[END_REF] or quadratic separation [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF]). All resulting stability conditions are based on convex optimization (Linear Matrix Inequality framework) and allow to conclude on stability region with respect to the delay and/or the uncertainty. These conditions are conservative, producing inner approximations of the stability regions. To reduce this inherent conservatism, new techniques have been proposed recently [START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF] [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF] by introducing redundant equations and new decision variables in the optimization problem at the expense of increasing the numerical burden.

Nevertheless, the upper cited results with reduced conservatism are up to now limited to constant delays. For time-varying delays, some results based on either Lyapunov-Krasovskii or IQC methodology have been successfully exploited [START_REF] Fridman | Input-output approach to stability and l 2 -gain analysis of systems with time-varying delays[END_REF][10] [START_REF] He | Further improvement of freeweighting matrices technique for systems with time-varying delay[END_REF] but, however, reveal to be very conservative in practice. The objective of the paper is to assess delay dependent stability of time-varying delay systems based on an extension of the quadratic separation principle [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF]. Criteria are derived and expressed in terms of Linear Matrix Inequalities (LMIs) which may be solved efficiently with Semi-Definite Programming (SDP) solvers.

The derivation of results is based on redundant system modeling. Indeed, based on known interactions between delays, their variations and derivatives, redundant equations are introduced to construct a new modeling of the delay systems. To this end, an augmented state is considered which is composed of the original state vector and its derivatives. Then defining relationship between augmented states ẋ, ẍ, the delay h and its derivative ḣ as a set of integral quadratic constraints allows to produce some criteria with less conservatism.

After the introduction, the paper carries on with preliminaries on notations and definitions useful to present a new theorem on quadratic separation principle. In section 3, this latter prior result is exploited to derive a stability condition for time-varying delay systems. A numerical example that shows the effectiveness of the proposed criterion is provided in section 4.

Preliminaries

Notations

This section is devoted to notations and useful definitions considered throughout the paper. However, most of them stand for the mathematical formalism allowing the development of Theorem 1 (in section 2.2) and will not be required for the rest of the study. This latter fundamental theorem constitutes the main result for the design of stability criteria in following sections.

Let L m 2 [0, +∞] = L 2 be the set of all measurable functions f : R + → C m bounded with respect to the following norm

f 2 = ∞ 0 (f * (t)f (t)) 1/2 dt < ∞.
Note that this norm corresponds to the inner product defined as f, g = +∞ 0 f * (t)g(t)dt. Hence, the norm is also defined as f 2 2 = f, f . Introduce as well the truncation operator P T such that:

P T (f ) = f T = f (t), t ≤ T 0, t > T (1) 
Definition 1 The extended space L 2e consists of all measurable functions f : R + → C m such that f T belongs to L 2 for all T ≥ 0.

Definition 2 A mapping H : L 2e → L 2e is said to be causal if P T (Hf ) = P T (Hf T ), ∀T ≥ 0, ∀f ∈ L 2e

A new theorem in quadratic separation framework

Since the delay is time-varying, the previous results [START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF][5] on quadratic separation for time-delay systems analysis cannot be applied. Hence, in this paper the quadratic separation method is extended to handle not only the case of uncertain matrices but more generally uncertain operators. To this end, based on the inner product and the L 2e space a suitable theorem is proposed. This Consider the interconnection defined by figure 1, where E(t) and A(t) are two, real valued, possibly non-square matrices depending on time and ∇ is a linear operator from L 2e to L 2e . For simplicity of notations, we assume in the present paper that E is full column rank. We are interested in looking for conditions that ensure the well-posedness of the interconnection as well as its stability. We first recall the definition of well-posedness: Definition 3 (Well-posedness) The system represented by the figure 1 is wellposed if internal signals are bounded and unique for bounded disturbances:

∃γ > 0, ∀T ≥ 0 ∀( w, z) ∈ L 2e w T z T 2 ≤ γ wT zT 2 . (2) 
Following the ideas developed by [START_REF] Iwasaki | Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations[END_REF] and then by [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF], we propose the following theorem for testing the stability of such interconnection: Theorem 1 The interconnected system of Figure ?? is well-posed if there exists a symmetric matrix Θ = Θ ′ satisfying both conditions

E -A ⊥ ′ Θ E -A ⊥ > 0 (3) ∀u ∈ L 2e , ∀T > 0, 1 P T ∇ u T , Θ 1 P T ∇ u T ≤ 0 (4) 
Proof: Applying the truncation operator, the overall feedback system is described by the equations

w T -wT = P T ∇z, E(z T -zT ) -Aw T = 0,
for all exogenous inputs w and z ∈ L 2e . Since the operator ∇ is supposed to be causal, we get

w T -wT = P T ∇z T , E(z T -zT ) -Aw T = 0. The first inequality (3) implies that ∀T > 0, ∀t ∈ [0, T ] it exists a positive scalar ǫ such that E -A ⊥ ′ (Θ -ǫ1) E -A ⊥ ≥ 0 . (5) 
Furthermore, from the second equation of the feedback system E(z-z)-Aw = 0, there exists y ∈ L 2e such that the vector z -z w can be written

z - z w = E -A ⊥ y. Applying signal y T to relation (5) yields to ∀t ∈ [0, T ] z T -zT w T ′ (Θ -ǫ1) z T -zT w T ≥ 0,
which implies also that, taking the integral from 0 to ∞, there exists

ǫ > 0 such that z T -zT w T , (Θ -ǫ1) z T -zT w T ≥ 0 (6) 
Regarding the second inequality (4), it can be rearranged as

z T w T -wT , Θ z T w T -wT ≤ 0. ( 7 
)
Combining both inequalities ( 6) and ( 7), results in a quadratic constraint on the augmented vector

X = w ′ T z ′ T w′ T z′ T ′ of the form X, ǫ1 T 1 T ′ 1 T 2 X ≤ 0 ,
with appropriate matrices T 1 and T 2 depending on Θ and ǫ. Take any ǫ such that ǫ > ǫ > 0 and take a sufficiently large γ > 0 satisfying

ǫ1 0 0 -γ1 ≤ ǫ1 T 1 T ′ 1 T 2 .
Consequently we get

X, ǫ1 0 0 -γ1 X ≤ 0,
which proves the stability:

∃γ > 0, ∀T > 0, ∀ wT and zT ∈ L 2e , w T z T 2 ≤ γ wT zT 2 .
Remark 1 (boundeness implies unicity) Let suppose that for a given pair wT , zT , there exist two pair w 1T , z 1T and w 2T , z 2T satisfying the interconnected system. Using already defined relations, it implies that

w 2T -w 1T = P T ∇(z 2T -z 1T ) and E(z 2T -z 1T ) = A(w 2T -w 1T )
letting w T = w 2Tw 1T and z T = z 2Tz 1T these relations lead to:

w T = P T ∇z T Ez T = Aw T
As the boundeness property is ensured it implies that w T 2 = z T 2 = 0, which implies the unicity of the signals.

Problem statement

Consider the following time-varying delay system:

ẋ(t) = Ax(t) + A d x(t -h(t)) ∀t ≥ 0, x(t) = φ(t) ∀t ∈ [-h m , 0] (8) 
where x(t) ∈ R n is the state vector, φ is the initial condition and A, A d ∈ R n×n are constant matrices. The delay h is time-varying and the following constraints are assumed

h(t) ∈ [0, h m ] and | ḣ(t)| ≤ d ≤ 1, (9) 
where h m and d are given scalar constants and may be infinite if delay independent condition and fast-varying delay condition are looked for. The key idea is to rewrite the time-varying delay system (8) as an interconnected system described by Figure 1. A first model taking w = ẋ(t)

x(t) and ∇ = ∇ 0 = I D is as follows x(t) x(t -h(t)) = I D ẋ(t) x(t) ( 10 
)
1 0 0 1 ẋ(t) x(t) = A A d 1 0 x(t) x(t -h(t)) , (11) 
where I and D are two operators defined as

I :x(t) → t 0 x(u)du, (12) 
D :x(t) → x(t -h(t)). (13) 
In order to derive LMI conditions, one needs to have finite dimensional conditions for (4). These amounts, with conservatism, to expressions in terms of integral quadratic constraints (IQC) on both operators D and I.

Lemma 1 Integral quadratic constraints for the operators I and D are given by the following inequalities ∀T > 0, ∀x ∈ L 2e (x being truncated:

x(t) = 0, ∀t > T ), ∀P > 0, Q 0 > 0: 1 I x, 0 -P -P 0 1 I x < 0 , 1 D x, -Q 0 0 0 Q 0 (1 -d) 1 D x < 0 Proof 1 Simple calculus shows that if ∀x ∈ L 2e , then 1 I x, 0 -P -P 0 1 I x = -2 +∞ 0 x(t) T P (Ix)dt = -2 T 0 d dt (Ix) T P (Ix)dt = -(Ix) T P (Ix) < 0 1 D x, -Q 0 0 0 Q 0 v 1 D x = - +∞ 0 x T (u)Q 0 x(u)du + ∞ 0 x T d (t)Q 0 x d (t)vdt ≤ - +T 0 x T (t)Q 0 x(t)dt + T -h(T ) -h(0) x T (u)Q 0 x(u)du ≤ - T T -h(T ) x(u) T Q 0 x(u)du < 0, where x d (t) = x(t -h(t)) and v = 1 -d.
Consequently, a conservative choice of separator that fulfils (4) for ∇ 0 is of the type

Θ =    0 0 -P 0 0 -Q 0 0 0 -P 0 0 0 0 0 0 Q 0 (1 -d)    , (14) 
with P and Q 0 two positive definite matrices. The stability of (8) can then be assessed (it provides only a sufficient condition) by the condition (3) with E, A and Θ defined as in ( 11) and ( 14). This latter criterion does not contain any expression on the delay h and provides then with an independent of delay stability condition.

3 Stability Conditions

An classical result

If some bounds on the delay such that ( 9) are known, it may be more interesting to look for delay dependent and rate dependent stability condition. In the quadratic stability framework, the method consists in modeling the original system (8) as an interconnected system by adding some redundant equations to describe as much as possible all the relations between the extra signals. For example take:

     x(t) x(t -h(t)) x(t -h m ) w 1 (t) w 2 (t)      = ∇ 1      ẋ(t) x(t) x(t) ẋ(t) ẋ(t)      , ∇ 1 =    ∇ 0 D m ∇ a ∇ b    , (15) 
with w 1 = x(t)x(th(t)), w 2 = x(t)x(th m ), ∇ 0 , D m , ∇ a , ∇ b are defined in [START_REF] Kao | Robust stability analysis of linear systems with time-varying delays[END_REF], ( 17), ( 18), (19) respectively, and Ez = Aw, is expressed as

1 5n 0 2n×5n (      ẋ(t) x(t) x(t) ẋ(t) ẋ(t)      ) = A      x(t) x(t -h(t)) x(t -h m ) w 1 (t) w 2 (t)      with A =          A A d 0 0 0 1 0 0 0 0 1 0 0 0 0 A A d 0 0 0 A A d 0 0 0 1 -1 0 -1 0 1 0 -1 0 -1          (16)
The new interconnection operators are as follows:

D m : x(t) → x(t -h m ), (17) 
∇ a ≡ (1 -D)I : x(t) → t t-h(t)
x(u)du, (18)

∇ b ≡ (1 -D m )I : x(t) → t t-hm x(u)du. ( 19 
)
Lemma 2 An integral quadratic constraint for the operator D m is given by the following inequality ∀T > 0, ∀x ∈ L 2e (x being truncated: x(t) = 0, ∀t > T ),

∀Q 1 > 0, 1 D m x, -Q 1 0 0 Q 1 1 D m x < 0
Proof 2 Omitted, see [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF].

Then, concerning ∇ b , using previous results on time delay systems characterization with constant delay, we derive the following relations :

Lemma 3 An integral quadratic constraint for the operator ∇ b is given by the following inequality ∀T > 0, ∀x ∈ L 2e (x being truncated:

x(t) = 0, ∀t > T ), ∀Q 3 > 0, 1 ∇ b x, (c 2 -r 2 )h 2 m Q 3 -ch m Q 3 -ch m Q 3 Q 3 1 ∇ b x < 0. ( 20 
)
where (c; r) ∈ R 2 are two appropriate reals. For example, [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF] propose the following values for c and r, (c = 0.25; r = 0.75).

Proof 3 Omitted, see [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF].

Finally, an IQC for ∇ a is constructed using ∇ b allows to link these two operators.

Lemma 4 An integral quadratic constraint for the operator ∇ a is given by the following inequality ∀T > 0, ∀x ∈ L 2e (x being truncated:

x(t) = 0, ∀t > T ), ∀Q 2 > 0,    1 0 0 1 ∇ a 0 0 ∇ b    x, Ω    1 0 0 1 ∇ a 0 0 ∇ b    x < 0 with Ω =    -h 2 m Q 2 0 0 0 0 0 0 0 0 0 2Q 2 -Q 2 0 0 -Q 2 Q 2    (21)
Proof 4 Applying the Cauchy-Schwartz inequality on expression

(∇ b -∇ a )x 2 2 + (∇ a )x 2 2 leads to ∞ 0 t t-h(t) x(u)du 2 + t-h(t) t-hm x(u)du 2 dt ≤ ∞ 0 h(t) t t-h(t) x(u) 2 du + (hm -h(t)) t-h(t) t-hm x(u) 2 dudt ≤ ∞ 0 hm t t-h(t) x(u) 2 du + hm t-h(t) t-hm x(u) 2 dudt ≤ ∞ 0 hm t t-hm x(u) 2 du ≤ h 2 m x 2 2
Thus, the proposed inequality (21) stems from the following inequality:

(∇ b -∇ a )x 2 2 + (∇ a )x 2 2 ≤ h 2 m x 2 2 (22) 
Using all these inequalities, a choice of separator for ∇ 1 that satisfies the relation (4) can then be written as :

Θ = Θ 11 Θ 12 * Θ 22 with Θ 11 =      0 0 0 0 0 0 -Q 0 0 0 0 0 0 -Q 1 0 0 0 0 0 -h 2 m Q 2 0 0 0 0 0 αQ 3      , (23) 
Θ 12 =      -P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 βQ 3      , Θ 22 =      0 0 0 0 0 0 (1 -d)Q 0 0 0 0 0 0 Q 1 0 0 0 0 0 2Q 2 -Q 2 0 0 0 -Q 2 Q 2 + Q 3     
(24) where α and β are equal to (c 2r 2 )h 2 m and -ch m respectively. Based on this IQC, the following delay dependent stability theorem is then proposed: Theorem 2 For given positive scalars d and h m , if there exists positive definite matrices P , Q i for i = {0, 1, 2, 3} ∈ R n×n , then the system (8) with a time varying delay constrained by ( 9) is asymptotically stable if the LMI (3) holds for ḣ(t) = {-d, d} with Θ, E and A defined as ( 23) and ( 16).

Main result

Consider the system (8) and its derivative ẍ

(t) = A ẋ(t)+(1-ḣ(t))A d ẋ(t-h(t)).
A new artificially augmented system can be derived:

E ς(t) = Āς(t) + Ād ( ḣ(t))ς(t -h(t)) (25) with Ā 
=   A 0 0 A 1 0   , Ād ( ḣ) =   (1 -ḣ)A d 0 0 A d 0 0   , E =   1 0 0 1 0 1   , ς(t) = ẋ(t)
x(t) .

(26) The idea is to employ the same methodology as previously to the new timevarying delay system (25). Using the same uncertain transformation (16) with appropriate dimensions w = ∇ 1 z. with w 1 = ς(t)ς(th(t)) and w 2 = ς(t)-ς(t-h m ). Then, relations between signals must be specified:

Ez = A(t)w, such that      ς(t) ς(t -h(t)) ς(t -h m ) w 1 (t) w 2 (t)      = ∇ 1      ς(t) ς(t) ς(t) ς(t) ς(t)      , E =          E 0 0 0 0 0 1 0 0 0 0 0 1 0 0 -1 0 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0          , A( ḣ) =          Ā Ād ( ḣ) 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 -1 0 1 0 -1 0 -1         
.

(27) Adapting the dimensions of (23), this separator can be used to apply the theorem 1 to the interconnection (27). Thus, the delay dependent condition becomes: Theorem 3 For given positive scalars d and h m , if there exists positive definite matrices P , Q i for i = {0, 1, 2, 3} ∈ R 2n×2n , then the system (8) with a time varying delay constrained by ( 9) is asymptotically stable if the LMI (3) holds for ḣ = {-d, d} with E and A defined as ( 27). The separator is of the form (23) with appropriate dimensions. [START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF] Numerical example considering the following numerical example ẋ(t) = -2 0 0 -0.9

[E -A( ḣ)] ⊥ T Θ[E -A( ḣ)] ⊥ > 0 (28)
x(t) + -1 0 -1 -1 x(t -h(t)). (29) 
For various values of d, the maximal allowable delay, h m , is computed performing a line search and solving the LMI at each step. To demonstrate the effectiveness of our criterion, results are compared to those obtained in [START_REF] Fridman | An improved stabilization method for linear time-delay systems[END_REF], [START_REF] Fridman | Input-output approach to stability and l 2 -gain analysis of systems with time-varying delays[END_REF], [START_REF] Wu | Delay-dependent criteria for robust stability of time-varying delay systems[END_REF], [START_REF] He | Delay-range-dependent stability for systems with time-varying delay[END_REF], [START_REF] He | Further improvement of freeweighting matrices technique for systems with time-varying delay[END_REF] and [START_REF] Kao | Robust stability analysis of linear systems with time-varying delays[END_REF]. All these papers, except the last one, use the Lyapunov theory in order to derive some stability analysis criteria for time delay systems.

In [START_REF] Kao | Robust stability analysis of linear systems with time-varying delays[END_REF], the stability problem is solved by a classical robust control approach: the IQC framework. The results are shown in Table 1.

Concerning the processing time, using solver SeDuMi [START_REF] Jos | Sedumi -software for optimization[END_REF] in Yalmip [START_REF] Lfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF] environment, LMI conditions from Theorem 2 and Theorem 3 are solved in less than 1 second. These computations have been performed on a machine with an intel core 2 duo 3.40 GHz processor and 2GB RAM memory.

Numerical experiments show that Theorem 2 is close to [START_REF] He | Delay-range-dependent stability for systems with time-varying delay[END_REF], improvement is due to the choice (c = 0.25; r = 0.75) rather than a more classical choice (c = 0; r = 1) (see lemma 3 and [5]). Results for d ≥ 1 are computed with Theorem 2 choosing Q 0 = 0 in (23) to make the criterion rate-independent. [START_REF] Fridman | Input-output approach to stability and l 2 -gain analysis of systems with time-varying delays[END_REF] gives a rate-independent criterion which may be interesting in certain cases when d is unknown. On the other hand, as no informations are taken into account about ḣ(t), this is conservative for small delay variations. Note that, considering Theorem 2 without operators D m and (1 -D m ) • I provides the same results as [START_REF] Fridman | An improved stabilization method for linear time-delay systems[END_REF].

Then, considering the augmented system (25) composed by the original system [START_REF] He | Further improvement of freeweighting matrices technique for systems with time-varying delay[END_REF] and its derivative, Theorem 3 improves the maximal allowable delays. Indeed, using the same matrix of operator [START_REF] Wu | Delay-dependent criteria for robust stability of time-varying delay systems[END_REF], conservatism is reduced thanks to the derivation of [START_REF] He | Further improvement of freeweighting matrices technique for systems with time-varying delay[END_REF]. As expected, this operation provides more information on the system and thus improves the stability analysis criteria.

Conclusion

In this paper, the problem of the delay dependent stability analysis of a time varying delay system has been studied by means of quadratic separation. Inspired from previous work on time delay systems with constant delay [START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF][5], stability criteria for time varying delay system are provided. Based on this first result, and using an augmented state (this methodology is also based on previous work [START_REF] Ariba | Delay-dependent stability analysis of linear systems with time-varying delay[END_REF]), new modelling of time delay systems are introduced which emphasizes the relation between ḣ and signals ẋ and ẍ. The resulting criteria are then expressed in terms of a convex optimization problem with LMI constraints, allowing the use of efficient solvers. Finally, a numerical example shows that these methods reduced conservatism and improved the maximal allowable delay.
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Table 1 :

 1 The maximal allowable delays h m for system (29) So, it suffices to assess the condition on the bounds of ḣ which are -d and d. We state then the following theorem:

	d	0	0.1	0.2	0.5	0.8	1	∀d > 1
	Fridman et al (2002) [2] 4.472 3.604 3.033 2.008 1.364 0.999 0.999
	Fridman et al (2006) [3] 1.632 1.632 1.632 1.632 1.632 1.632 1.632
	Wu et al (2004) [15]	4.472 3.604 3.033 2.008 1.364	-	-
	Kao et al (2005) [10]	4.472 3.604 3.033 2.008 1.364 0.999	-
	He et al (2007) [7]	4.472 3.605 3.039 2.043 1.492 1.345 1.345
	He et al (2007) [8]	4.472 3.605 3.039 2.043 1.492 1.345 1.345
	Theorem 2	4.568 3.673 3.085 2.043 1.492 1.345 1.345
	Theorem 3	4.568 3.740 3.263 2.536 2.183 2.034	-
	Furtermore, it can be shown (after few algebraic calculus) that (28) is linear
	(thus convex) in ḣ.