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Abstract

This paper is dedicated to the stability analysis of a class of uncer-

tain distributed delay systems. We focus to the case where the kernel

can be modelled as a polynomial function. The results are constructed by

rewriting the system as an uncertain interconnected model and appropri-

ate robust control tools as quadratic separation are then used to address

to stability issue. Furthermore, some relations that highlight features of

the delayed term are added to the interconnected model leading then to

the conservatism reduction. At last, stability conditions are expressed in

terms of LMIs which can be solved efficiently. Finally, some numerical

examples show the effectiveness the proposed method.

1 Introduction

Since several decades, the problem of time delay stability have received a lot of
attention (see the monographs by [11, 21] and references therein) since many dy-
namical processes can be described by functional differential equations including
past values of the state. Distributed delay systems constitutes a particular case
of such systems, modelling cumulative effect of the past values on the dynam-
ics. Practical issues of such models are numerous in the literature. Distributed
delay systems are often use to model the time lag phenomenon in thermody-
namics (dynamics of combustion chambers in a liquid mono propellant rocket
motor with pressure feeding, [5]), in ecology, epidemiology (predator-prey sys-
tems [8]). In all these cases, compared to a pointwise delay system, the use
of a distributed kernel allows a thinner modelling of the interactions between
the different system components. Nevertheless, establishing structural proper-
ties such as stability in the presence of the distributed kernel are much more
difficult than the pointwise delay case. One first possibility is to use frequency
approaches like [19] or [2] but these techniques are restricted to nominal systems
without uncertainties. Another popular way to establish robust stability tests
remains the use of adapted Lyapunov-Krasosvkii functional. However, in the
literature, the main difficulty is generally avoided since a huge number of sta-
bility results has been devoted to a constant distributed kernel. Pioneer works
[16, 15] use Lyapunov-Krasoskii functionals adapted to the distributed delay
case. Extra terms are added to the classical Lyapunov Krasovskii to cope with
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the distributed delay term. It leads generally to Ricatti equations and are often
conservative since the choice of Lyapunov-Krasovskii functional is very con-
strained. Another idea is to use a comparison principle [17, 23], which consists
in replacing the original system by another one, simpler to study with a tradi-
tional Lyapunov-Krasovskii functional. The stability criterion is then expressed
in terms of matrix measures and matrix norms. In that case, many variables
have to be tuned which make the criterion difficult to handle. These techniques
have been enhanced by [6, 7] and the descriptor method. The distributed delay
system is then modelled as a singular system and the derivative of the state is
explicitly taken into account for the construction of the Lyapunov functional.
It leads to less conservative result which is expressed in terms of LMIs. These
techniques have been recently refined by using either different bounding tech-
niques (Moon or Jensen inequalities), [12],[3],[9] or some slack variables [18].
Nevertheless, all these results entail an inherent conservatism due to the con-
strained choice of the Lyapunov-krasovskii functional. An alternative proposed
by Gu et al (see [11] and references therein) is to combine a very general class
of Lyapunov Krasovskii functional proposed by Infante in [14] and a discretiza-
tion scheme to obtain numerically tractable stability conditions. This technique
dealing with piecewise constant delay kernel gives a drastic reduction of the
conservatism at the expense of the numerical burden. Another interesting ap-
proach proposed by [20] dealing with a rational delay kernels relies on the use
a a Lyapunov-Krasovskii approach and is combined with a full block S proce-
dure to cope with the induced parametric LMI. Nevertheless, again stability is
assessed only for a prescribed delay (pointwise delay stability) which does not
provide robust criteria with respect to the delay.

In this paper, we adopt a different point of view to study the stability of
such systems. First of all, we suppose that the distributed kernel is a polyno-
mial function, a wider class of system compared to whose generally studied in
the literature. Furthermore, in order to cope with such systems, we propose
to use the quadratic separation approach. Coming from robust control theory,
such tools study the robust stability of a linear transformation feedback inter-
connected with an uncertain transformation. This methodology have shown its
efficiency to establish some stability conditions for linear time delay systems
with a constant delay [22, 10] or time varying one [1]. Following the method-
ology proposed by [22], we model the distributed delay system as a nominal
transformation connected to an uncertain operator composed of combinations
of integral and some new delay distributed operators. Then, in order to reduce
the conservatism, some relations between the uncertain operators and higher
successive derivatives of the state are exploited to derive some new delay in-
terval stability conditions. The paper is organised as follows. Next section is
devoted to some preliminaries about the distributed delay system and quadratic
separation. Then section 2 formulates a first way to describe the distributed
delay system as an interconnected uncertain system. The following section gives
the central results of the paper. Section 5 presents some numerical simulations.
Notations : The set L

n
2e is the extended set of L

n
2 which consists of all

measurable functions f : R
+ → C

n such that the following norm ‖f‖2 =
(

∞∫

0

(f∗(t)f(t))

)1/2

dt < ∞. 1p represents the p×p identity matrix. 0p×q stands

2



for the p × q zero matrix. diag(A,B,C) stands for the block diagonal matrix:

diag(A,B,C) =





A 0 0

0 B 0

0 0 C



 .

2 Problem statement

In the sequel, we consider a continuous time distributed delay system of the
form : 





ẋ(t) = Ax(t) +
0∫

−h

Ad(θ)x(t + θ)dθ,

x(t) = φ(t),∀t ∈ [−hmax, 0],

(1)

where x(t) ∈ R
n denotes the instantaneous state, the scalar h > 0 is supposed

to be unknown and belongs to the interval [hmin, hmax], A ∈ R
n×n. φ represents

the initial conditions for system (1) and is a continuously differentiable function
on [−hmax, 0]. The function

Ad : [−h, 0] → R
n×n,

θ 7→ Ad(θ),

represents the distributed kernel of the delay system and in this paper, we focus
on the case where the function θ 7→ Ad(θ) is a polynomial function of θ and can
thus be written as:

Ad(θ) =

r∑

i=0

Adiθ
i,

where r is a positive scalar corresponding to the polynomial order. Adi ∈
R

n×n,∀i ∈ {0, . . . , r} are real constant matrices. Hence, the distributed delay
system (1) can be reformulated as:

ẋ(t) = Ax(t) +
r∑

i=0

Adi

0∫

−h

θix(t + θ)dθ. (2)

Remark 1 Taking the distributed kernel as a polynomial function is not so
restrictive since every sufficiently smooth function on a compact interval [−h, 0]
can be approximated by a polynomial function.

In this paper, we aim at finding LMI conditions which ensures the stability of
(2) for all delays in an interval [hmin, hmax] where hmin is possibly set to zero if
delay dependent stability tests are looked for. To this end, we propose to use the
quadratic separation framework developed by [13] and extended to the singular
case by [22]. This latter methodology, inherited from the robust analysis is
recalled in the following. Consider the feedback connection depicted in Figure
1, where:

• E and A are two possibly non-square matrices;

• ∇ is an uncertain constant, complex valued matrix, with appropriate di-
mensions, that belongs to some set ∇∇.
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H2

barw z

+

+
barzw

H1

Figure 1: Feedback system

For simplicity of calculus, we will suppose that E is full column rank. We make
no assumption on the uncertainty set ∇∇.

The following theorem provides a condition for the well-posedness of the
interconnection, as well as its stability.

Theorem 1 [22] The uncertain feedback system of Figure 1 is well-posed and
stable if and only if there exists a Hermitian matrix Θ = Θ∗ satisfying both
conditions

[
E −A

]⊥∗
Θ

[
E −A

]⊥
> 0 (3)

[
I

∇

]∗

Θ

[
I

∇

]

≤ 0 , ∀∇ ∈ ∇∇ . (4)

If E and A are real matrices, the equivalence still holds with Θ restricted to be
a real matrix.

The next section shows how to formulate the distributed delay system (2) as
an interconnected feedback system of the form of Figure (1) in order to use
Theorem 2.

3 Preliminary results

Fist of all, define the integral operator I and the distributed delay operator
∀i ∈ {1, . . . , r}, δi by

δi : L2e → L2e,

x(t) →
0∫

−h

θix(t + θ)dθ
(5)

and
I : L2e → L2e,

x(t) →
t∫

0

x(θ)dθ.
(6)

Hence, using I and δi, the distributed delay system (2) is recast as a feedback
interconnection as Figure (1) with








x(t)
(1nδ0)[x(t)]

...
(1nδr)[x(t)]








︸ ︷︷ ︸

w(t)

=








I1n 0
δ01n

. . .

0 δr1n








︸ ︷︷ ︸

∇








ẋ(t)
x(t)

...
x(t)








︸ ︷︷ ︸

z(t)

, (7)
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and 






ẋ(t)
x(t)

...
x(t)








=








A Ad0 . . . Adr

1 0 . . . 0
...

...
...

I 0 . . . 0








︸ ︷︷ ︸

A








x(t)
(1nδ0)[x(t)]

...
(1nδr)[x(t)]








. (8)

Note that since h is an unknown constant, the operators δi can be conveniently

expressed in the Laplace domain by δi(s) =
0∫

−h

θieθsdθ. Following [13], the

uncertainty set ∇∇ and ∇ get then a more simple form:

∇∇ = {∇(s),∀s ∈ C
+}, (9)

with
∇(s) = diag(s−11n, δ0(s)1n, . . . , δr(s)1n). (10)

This last formulation of ∇∇ allow then to construct some parameterized sep-
arators Θ satisfying the second inequality (4) as stated by the following Lemma.

Lemma 1 Consider the uncertain operator ∇ given by (10), a separator Θ
satisfying (4) is given by

Θ =

[
Θ11 Θ12

Θ∗
12 Θ22

]

, (11)

with
Θ11 = diag(0,−h2

maxQ0, . . . ,−
h2r+2
max

(r+1)2 Qr),

Θ12 = diag(−P, 0, . . . , 0),
Θ22 = diag(0,Q0, . . . ,Qr),

,

and P,Q0, . . . , Qr ∈ R
n×n are positive definite matrices.

Proof 1 The key idea is to construct separators for each uncertainties s−1, δ0, . . . ..., δr

which compose ∇ and finally concatenate all these relations to construct the
whole separator Θ. Noting that ∀s ∈ C

+,

|δi(s)| ≤

n∫

−h

|θieθs|dθ ≤
hi+1

max

i + 1
,

and following [10], a first set of separators for δi, parameterized by Qi > 0 can
be defined using

[
1n

δi1n

]∗
[

−
h2i+2)
max

(i+1)2 Qi 0

0 Qi

] [
1n

δi1n

]

< 0. (12)

Furthermore, following [22], the separator for I is parameterized by a positive
definite matrix P which the following inequality:

[
1n

s−11n

]∗ [
0 −P

−P 0

] [
1n

s−11n

]

< 0. (13)

Consequently, gathering all these inequalities, the separator related to ∇ defined
by (7) can be chosen as (11).
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At this stage, combining this last lemma with Theorem (2), we state the first
delay dependent stability result :

Theorem 2 For given positive scalars hmax and r, if there exists positive defi-
nite matrices P , Qi for i = {0, . . . , r} ∈ R

n×n, then system (2) is asymptotically
stable ∀h ≤ hmax if the LMI condition (3) holds with Θ, E and A defined as
(11) and (7),(8).

Proof 2 In order to prove this theorem, we first model the original system (2)
into an interconnected system (7-8). Then, applying Theorem 1, since Lemma
1 fulfils the second requirement (4), the first inequality (3) gives the condition
to be tested.

4 Main Results

The proposed idea is to introduce new relevant relations between the different
components of the distributed delay system. The previous result can be im-
proved by getting some new relations between δi and δi−1 summarised by the
following lemma.

Lemma 2 Given i ≥ 1,

δi(s) = −
(−h)ie−sh

s
−

i

s
δi−1(s),

with δ0(s) =
1 − e−hs

s
.

Proof 3 Integrating by part δi(s) =
0∫

−h

θieθsdθ, we get :

δi(s) = −
(−h)ie−sh

s
−

i

s

0∫

−h

θi−1esθdθ,

which readily leads to the proposed relation.

This new relation links three different operators δi, δi−1 and s−1 and the delay
operator defined by

D : L2e → L2e,

x(t) → x(t − h).
(14)

and expressed using Laplace transform by e−hs. Applying theses relations to
the system instantaneous state x(t) give us a new set of relations between the
state x(t) and the delayed state x(t − h):







(1nδ0)[ẋ(t)] = x(t) − x(t − h),
(1nδ1)[ẋ(t)] = hx(t − h) − δ0[x(t)],
(1nδ2)[ẋ(t)] = −h2x(t − h) − 2δ1[x(t)],
...
(1nδr)[ẋ(t)] = −(−h)rx(t − h) − rδr−1[x(t)].

(15)
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As it appears that the derivative of x(t) plays a central role in these relations,
we thus propose to consider the original model (2) as well as its derivative to
obtain a new model:







ẋ(t) = Ax(t) +
r∑

i=0

Adi

0∫

−h

θix(t + θ)dθ

ẍ(t) = Aẋ(t) +
r∑

i=0

Adi

0∫

−h

θiẋ(t + θ)dθ

(16)

In order to take into account all these new relations (15) and (16), we choose
to model system (16) by a new interconnected system with an uncertain trans-
formation given by

∇∇ = {∇(s),∀s ∈ C
+}, (17)

with
∇(s) = diag( 12ns

−1, 1ne
−hs,

12nδ0(s), . . . , 12nδr(s)),
(18)

At this stage, following the methodology proposed in the last section, we con-
struct a separator Θ for the uncertain set described by (17).

Lemma 3 Consider the uncertain operator ∇ given by (18), a separator Θ
satisfying (4) is given by

Θ =

[
Θ11 Θ12

ΘT
12 Θ22

]

, (19)

where
Θ11 = diag(0,−R,−h2

maxQ0, . . . ,−
−h2r+2

max

(r+1)2 Qr),

Θ12 = diag(−P, 0, . . . , 0),
Θ22 = diag(0,R,Q0, . . . ,Qr),

with P,Q0, . . . , Qr ∈ R
2n×2n R ∈ R

n×n, r + 3 positive definite matrices.

Proof 4 This proof follows essentially the same idea than the one of Lemma 1,
except that an additional uncertainty e−hs, representing the pointwise delay is
added to ∇. Noting that ∀s ∈ C

+, |e−hs| ≤ 1, we get
[

1n

e−hs1n

]∗ [
−R 0

0 R

] [
1n

e−hs1n

]

< 0. (20)

Gathering the former relations (12), (13), it is straightforward to prove that
separator (19) along with (18) satisfies inequality (4), which concludes the proof.

Having chosen the uncertainty ∇ (17) to model system (2) as an interconnected
system of Figure (1), we define the matrices as well as the internals signals which
compose the linear transformation E(z − z̄) = Aω as:

z(t) =
















ẍ(t)
ẋ(t)
x(t)
ẋ(t)
x(t)

...
ẋ(t)
x(t)
















, w(t) =
















ẋ(t)
x(t)

x(t − h)
(1nδ0)[ẋ(t)]
(1nδ0)[x(t)]

...
(1nδr)[ẋ(t)]
(1nδr)[x(t)]
















. (21)
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Defining ∀i ≥ 0, Ādi
= 12 ⊗ Adi

,

Ā =

[
A 0 0

0 A 0

]

, F1 =







1 0 0

0 1 0

0 1 0

0 0 1







, V =






1
...
1




 ∈ R

(r+2),

and

AL =








0 1 −1 −1 0 . . . . . . . . . . . . . . 0

0 0 h1 0 −1 −1 0 . . . 0
...

...
...

...
. . .

. . .
. . .

. . .
...

0 0 −(−h)r1 0 . . . 0 −r1 −1 0








The matrices defining the linear transformation are then given by :

E =

[
EH

0n(r+1)×n(2r+5)

]

, EH = diag(F1, 12n(r+1)),

A =





Ā Ād0 . . . . . Ādr

V ⊗ 12n 02n(r+2)×n(2r+3)

AL



 ,

(22)

At this stage, we propose a second theorem:

Theorem 3 For given positive scalars h, hmax, r such that 0 ≤ h ≤ hmax, if
there exists positive definite matrices P,Q0, . . . , Qr ∈ R

2n×2n and R ∈ R
n×n,

then system (2) is asymptotically stable for the given h, if the LMI condition
(3) holds with Θ, E and A defined as (19) and (22).

Proof 5 This proof is essentially the same than the proof of theorem 2 and is
thus omitted.

It is worth to note that this result proves that system (2) is only stable for a
prescribed h such that h ≤ hmax and not ∀h ≤ hmax. This drawback can be
eliminating by combining these two expressions:

{

δi(s) = − (−h)ie−sh

s − i
sδi−1(s),

δi−1(s) = − (−h)i−1e−sh

s − i−1
s δi−2(s).

It results that

δi(s) = −(h +
i

s
)δi−1(s) −

h(i − 1)

s
δi−2(s),∀i ≥ 2,

This last equation proves that the relation between δi, δi−1, δi−2 is linear with
respect to h.

Furthermore, some calculations show that:

δi(s) = (−1)ii!(
1

si+1
−

i∑

j=0

hi−je−sh

(i − j)!sj+1
)

This last expression shows that the uncertainty δi(s) can be described on the
combination of e−hs and integrals up to powers i + 1. Hence, in order to take
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into advantage of these new expressions, following the work of [4], we consider
the augmented vector:

y(t) =










xl(t)
xl−1(t)

...
ẋ(t)
x(t)










.

This extended vector and its derivative are linked by the linear function:






0 1
...

. . .

0 1






︸ ︷︷ ︸

E2

ẏ(t) =






1 0

. . .
...

1 0






︸ ︷︷ ︸

E1

y(t) (23)

We propose then to use the following uncertain set:

∇∇ = {∇(s),∀s ∈ C
+}, (24)

with
∇(s) = diag( 1n(l+1)s

−1, 1n(l+1)e
−hs,

12n(l+1)δ0(s), . . . , 12n(l+1)δr(s))
(25)

Lemma 4 Consider the uncertain operator ∇∇ given by (25), a separator Θ
satisfying (4) is of the form (19) with R,P ∈ R

n(l+1)×n(l+1),Q0, . . . , Qr ∈
R

2n(l+1)×2n(l+1) some positive definite matrices.

Proof 6 Omitted.

Choosing the uncertain transformation ∇ by (25), the modelling of system (16)
is described as follows. Firstly, we introduce the internal signals:

z(t) =














ẏ(t)
y(t)
ẏ(t)
y(t)

...
ẏ(t)
y(t)














, w(t) =














y(t)
y(t − h)

(1n(l+1)δ0)[ẏ(t)]
(1n(l+1)δ0)[y(t)]

...
(1n(l+1)δr)[ẏ(t)]
(1n(l+1)δr)[y(t)]














. (26)

Then , we define some intermediate matrices,

W =








1 0 . . . 0
−1 1 . . . 0
...

. . .
...

−1 . . . 1







∈ R

(r+2)×(r+2),
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A3 =




















1 −1 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 h1 0 −1 −1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 −h1 −h1 −21 −1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . . . . . . . . . . . 0 −h(r − 3)1 −h1 −(r − 2)1 −1 0 . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 −h(r − 2)1 −h1 −(r − 1)1 −1 0

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 −h(r − 1)1 −h1 −r

(28)

E1 = W ⊗ 12n(l+1) ∈ R
(2n(r+2)(l+1))×(2n(r+2)(l+1)),

E2 =
[
E2 −E1 0 . . . 0,

]
∈ R

nl×2n(r+2)(l+1),

E3 = 0n(l+1)(r+1)×2n(l+1)(r+2),

E4 = 0nl(r+1)×2n(l+1)(r+2),

which allow to define the matrix E :

E =







E1

E2

E3

E4







(27)

In order to define the matrix A, let introduce

Ā = 1l+1 ⊗ A, Ādi = 1l+1 ⊗ Adi,∀i ≥ 0,

A1 =

[
Ā 0 0 Ād0 0 . . . 0 Ādr

1(l+1)n 0 . . . . . . . . . . . . . . . . . . . 0

]

,

A2 = 0(2n(r+2)(l+1))×(2n(r+1)(l+1)),

A4 =
[
0(r+1)×1 1r+1

]
⊗

[
E2 −E1

]
,

These matrices A1, A2, A3, A4 allow then to construct the matrix A(h),
which depends linearly of h:

A(h) =







A1

A2

A3

A4







. (29)
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Now, a delay-range dependent stability result can be developed:

Theorem 4 For given positive scalars hmin, hmax, r,l such that hmin ≤ hmax,
if there exists positive definite matrices Q0, . . . , Qr ∈ R

2n(l+1)×2n(l+1), P,R ∈
R

n(l+1)×n(l+1) and a matrix X ∈ R
2n(l+1)(5+2r)×(nl(4r+7)+n(3r+5)), such that

{
Θ + XS(hmin) + S(hmin)T XT > 0,

Θ + XS(hmax) + S(hmax)
T XT > 0,

(30)

with
S(hmin) =

[
E −A(hmin)

]
,

S(hmax) =
[
E −A(hmax)

]
,

and Θ, E, A(h) defined as (19) and (27),(29), then system (2) is asymptotically
stable for h, such that hmin ≤ h ≤ hmax.

Proof 7 The proof follows the same lines than the one of Theorem 3. We
use Theorem 2 to the uncertain interconnection defined by equations (25) and
(27),(29). By construction of the separator (19), the second requirement (4) is
fulfilled. Then, the first requirement (3) gives that

[
E −A(h)

]⊥∗
Θ

[
E −A(h)

]⊥
> 0. (31)

This last inequality is not linear in h but using Finsler Lemma, a sufficient
condition for (31) is :

Θ + X
[
E −A(h)

]
+

[
E −A(h)

]T
XT > 0, (32)

with X a matrix of appropriate dimensions. This last inequality is then linear in
h and this inequality has to be assessed on the 2 vertices of the polytop generated
by the interval on h, which concludes the proof.

Remark 2 The system (2) is modeled in a robust framework, the extension
of previous result to the robust case is straightforward and thus will not be ex-
plained.

5 Examples

In this section, two numerical examples are provided to show the effectiveness
of the proposed methodology. The first example is given by:

ẋ(t) = −2x(t) +

0∫

−h

(1 + θ + θ3)x(t + θ)dθ. (33)

Using an analytical method proposed by [2], system (33) is shown to be asymp-
totically stable for all delays less than 1.759. Using theorem (3), we prove that
system (33) is asymptotically stable ∀h < 1.0. Then, choosing hmin = 0 and
using theorem (4), we get the following results summarized in table 1.

In that example, using an augmented vector to model the original system
allows a reduction of conservatism. Nevertheless, for l ≥ 3, increasing l do not
improve anything. Moreover, surprisingly, if the kernel Ad(θ) = 1 + θ + θ3 is
modeled as a polynomial of order greater than r, taking the distributed kernel as

11



Method hmax

Theorem 4,l = 0 1.32
Theorem 4,l = 1 1.58
Theorem 4,l = 2 1.60
Theorem 4,l ≥ 3 1.61

Table 1: hmax for system (33) w.r.t. l

Theorem 4, l = 0 hmax

r = 3 1.32
r = 4 1.43
r = 5 1.432

Table 2: hmax for system (33) w.r.t. r

Ad(θ) =
µ∑

i=0

Adi with Adi = 0,∀i ≥ 3, we introduce therefore fictitious operators

δr+1, δr+2, . . ., which slightly improved results as shown in Table 2. Combining
these two effects, the choice of the polynomial degree and the number of higher
derivatives, we expect an improvement of our results. Hence, using r = 9, l = 9,
we prove that system is stable for h ≤ 1.758.

The second example is a second order distributed system of the form (2):

ẋ(t) =

[
0.2 0.01
0 −2

]

x(t) (34)

+

0∫

−h

[
−1 + 0.3θ 0.1

0 −0.1

]

x(t + θ)dθ (35)

Obviously this system is unstable for h = 0. Furthermore, using the analytical
method proposed by [2] and a gridding technic, this system is stable for 0.195 ≤
h ≤ 1.71. Using Theorem 4 over sliding windows, we obtain the following results
summarized in Table 3. Finally, gathering all these intervals, we prove then that
system (34) is stable ∀h ∈ [0.20, 1.3].

Theorem 4, hmin hmax

l = 1, r = 1 0.23 1
l = 1, r = 2 0.21 1.2
l = 1, r = 3 0.2 1.29
l = 2, r = 1 0.21 1
l = 2, r = 2 0.20 1.2
l = 2, r = 3 0.20 1.3

Table 3: hmin, hmax for system (34) w.r.t. l and r
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6 Conclusion

The paper is dedicated to the stability of distributed delay system. We assume
that the delay kernel is a polynomial function, a wider class than usually used
in the literature. Modelling this system as an interconnected feedback system
allows to perform some new stability by using the quadratic framework. Future
works include the extension of this technique to systems with mixed delays,
neutral, pointwise and distributed delays. Another interesting work is the ex-
tension of this work to more general kernels. Approximating the kernel by a
polynomial and modelling the related error by a bounded uncertainty seems to
be a promising way.
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