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We study Anderson localization of ultracold atoms in weak, one-dimensional speckle potentials,
using perturbation theory beyond Born approximation. We show the existence of a series of sharp
crossovers (effective mobility edges) between energy regions where localization lengths differ by
orders of magnitude. We also point out that the correction to the Born term explicitly depends
on the sign of the potential. Our results are in agreement with numerical calculations in a regime
relevant for experiments. Finally, we analyze our findings in the light of a diagrammatic approach.

PACS numbers: 03.75.-b,42.25.Dd,72.15.Rn

I. INTRODUCTION

Anderson localization (AL) of single electron wave
functions [1], first proposed to understand certain metal-
insulator transitions, is now considered an ubiquitous
phenomenon, which can happen for any kind of waves
propagating in a medium with random impurities [2, 3].
It can be understood as a coherent interference effect of
waves multiply scattered from random defects, yielding
localized waves with exponential profile, and resulting
in complete suppression of the usual diffusive transport
associated with incoherent wave scattering [4]. So far,
AL has been reported for light waves in diffusive me-
dia [5, 6] and photonic crystals [7, 8], sound waves [9], or
microwaves [10]. Ultracold atoms have allowed studies
of AL in momentum space [11, 12] and recently direct
observation of localized atomic matter waves [13, 14].

In one-dimensional (1D) systems, all states are local-
ized, and the localization length is simply proportional to
the transport mean-free path [15]. However, this strong
property should not hide that long-range correlations
can induce subtle effects in 1D models of disorder, in
particular those whose power spectrum has a finite sup-
port [16, 17]. Examples are random potentials resulting
from laser speckle and used in experiments with ultracold
atoms [13, 18, 19]. Indeed, by construction [20], speckles
have no Fourier component beyond a certain value 2kc,
and the Born approximation predicts no back-scattering
and no localization for atoms with momentum ~k > ~kc.
This defines an effective mobility edge at k = kc [17], clear
evidence of which has been reported [13].

Beyond this analysis –relevant for systems of moderate
size [13, 17]– study of AL in correlated potentials beyond
the effective mobility edge requires more elaborated ap-
proaches. In Ref. [21], disorder with symmetric probabil-
ity distribution was studied, and examples were exhib-
ited, for which exponential localization occurs even for

k > kc although with a much longer localization length
than for k < kc. It was also concluded that for Gaus-
sian disorder, there is a second effective mobility edge
at 2kc, while for non-Gaussian disorder, it is generally
not so. These results do not apply to speckle potentials
whose probability distribution is asymmetric. Moreover,
although speckle potentials are not Gaussian, they de-
rive from the squared modulus of a Gaussian field, and,
as we will show, the conclusions of Ref. [21] must be re-
examined. Hence, considering speckle potentials presents
a twofold interest. First, they form an original class of
non-Gaussian disorder which can inherit properties of an
underlying Gaussian process. Second, they are easily im-
plemented in experiments with ultracold atoms where the
localization length can be directly measured [13].
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Figure 1: (Color online) Lyapunov exponent γ calculated two
orders beyond the Born approximation for particles in 1D
speckle potentials created with a square diffusive plate, versus
the particle momentum ~k and the strength of disorder ǫR =
2mσ2

RVR/~
2 (VR and σR are the amplitude and correlation

length of the disorder). The solid blue lines correspond to
ǫR = 0.1 and ǫR = 0.02.
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In this work, we study AL in speckle potentials beyond
the Born approximation, using perturbation theory [22],
numerical calculations, and diagrammatic methods. We
find that there exist several effective mobility edges at
k(p)

c
= pkc with integer p, such that AL in the successive

intervals k(p−1)
c

< k < k(p)
c

results from scattering pro-
cesses of increasing order. Effective mobility edges are
thus characterized by sharp crossovers in the k depen-
dence of the Lyapunov exponent (see Fig. 1). We prove
this for the first two effective mobility edges by calculat-
ing the three lowest-order terms, and give general argu-
ments for any p. In addition, we discuss the effect of odd
terms that appear in the Born series due to the asym-
metric probability distribution of speckle potentials.

II. SPECKLE POTENTIALS

Let us first recall the main properties of speckle po-
tentials. Optical speckle is obtained by transmission of
a laser beam through a medium with a random phase
profile, such as a ground glass plate [20]. The resulting
complex electric field E is a sum of independent random
variables and forms a Gaussian process. In such a light
field, atoms experience a random potential proportional
to the intensity |E|2. Defining the zero of energies so that
〈V 〉 = 0, the random potential is thus

V (z) = VR ×
(

|a(z/σR)|2 − 〈|a(z/σR)|2〉
)

(1)

where the quantities a(u) are complex Gaussian variables
proportional to the electric field E , and σR and VR fea-
ture characteristic length and strength scales of the ran-
dom potential (The precise definition of VR and σR may
depend on the model of disorder; see below). In con-
trast, V (z) is not a Gaussian variable and its probability
distribution is a decaying exponential, i.e. asymmetric.
The sign of VR is thus relevant and can be either posi-
tive or negative for ”blue”- and ”red”-detuned laser light
respectively. However, the random potential V (z) inher-
its properties of the underlying Gaussian field a(u). For
instance, all potential correlators cn are completely de-
termined by the field correlator ca(u) = 〈a(0)∗a(u)〉 via

〈a∗1...a
∗
p × a1...ap〉 =

∑

Π

〈a∗1aΠ(1)〉...〈a
∗
paΠ(p)〉, (2)

where ap′ = a(zp′/σR) and Π describes the p! permuta-
tions of {1, ..., p}. Hence, c2(u) = |ca(u)|2 and defining

a(u) so that 〈|a(u)|2〉 = 1, we have
√

〈V (z)2〉 = |VR|.
Also, since speckle results from interference between light
waves of wavelength λL coming from a finite-size aperture
of angular width 2α, the Fourier transform of the field
correlator has no component beyond kc = 2π sinα/λL,
and ca has always a finite support:

ĉa(q) = 0 for |q| > kcσR ≡ 1. (3)

As a consequence, the Fourier transform of the potential
correlator also has a finite support: ĉ2(q) = 0 for |q| > 2.

III. PHASE FORMALISM

Consider now a particle of energy E in a 1D random
potential V (z) with zero statistical average [V (z) need
not be a speckle potential here]. The particle wave func-
tion φ can be written in phase-amplitude representation

φ(z) = r(z) sin [θ(z)] ; ∂zφ = kr(z) cos [θ(z)] , (4)

which proves convenient to capture the asymptotic decay
of the wave function (here k =

√

2mE/~2 is the parti-
cle wave vector in the absence of disorder). It is easily
checked that the Schrödinger equation is then equivalent
to the coupled equations

∂zθ(z) = k
[

1 − (V (z)/E) sin2 (θ(z))
]

(5)

ln[r(z)/r(0)] = k

∫ z

0

dz′ (V (z′)/2E) sin (2θ(z′)) .(6)

Since Eq. (5) is a closed equation for the phase θ, it is
straightforward to develop the perturbation series of θ
in increasing powers of V . Reintroducing the solutions
at different orders into Eq. (6) yields the corresponding
series for the amplitude r(z) and the Lyapunov exponent:

γ(k) = lim
|z|→∞

〈ln[r(z)]〉

|z|
=

∑

n≥2

γ(n)(k). (7)

The nth-order term γ(n) is thus expressed as a
function of the n-point correlator Cn(z1, ..., zn−1) =
〈V (0)V (z1)...V (zn−1)〉 of the random potential, which we
write Cn(z1, ..., zn−1) = V n

R
cn (z1/σR, ..., zn−1/σR). Up

order n = 4, we find

γ(n) = σ−1
R

(

ǫR
kσR

)n

fn(kσR) (8)

where ǫR = 2mσ2
R
VR/~

2 and

f2(κ) = +
1

4

∫ 0

−∞

du c2(u) cos(2κu) (9)

f3(κ) = −
1

4

∫ 0

−∞

du

∫ u

−∞

dv c3(u,v) sin(2κv) (10)

f4(κ) = −
1

8

∫ 0

−∞

du

∫ u

−∞

dv

∫ v

−∞

dw c4(u, v, w) (11)

×
{

2 cos(2κw)+cos[2κ(v+w−u)]
}

.

Note that the compact form (11) is valid provided that
oscillating terms, which may appear from terms in c4 that
can be factorized as c2 correlators, are appropriately reg-
ularized at infinity. Note also that in Eq. (8), the coeffi-
cients (ǫR/kσR)n diverge for k → 0, while the exact γ(k)
remains finite for any ǫR [23]. This signals a well-known
breakdown of the perturbative approach. Conversely,
the perturbative expansion is valid when γ(k) ≪ k (for
k → 0), i.e. when the localization length exceeds the par-
ticle wavelength, a physically satisfactory criterion.
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Figure 2: (Color online) Functions fn for n = 2, 3 and 4 for
a speckle potential created with a square diffusive plate [solid
lines; see Eqs. (12) and (13) and the Appendix] and compari-
son with numerical calculations (points with error bars). The
inset is a magnification of function f4 around κ = 2.

IV. ONE-DIMENSIONAL ANDERSON

LOCALIZATION IN SPECKLE POTENTIALS

A. Analytic results

Let us now examine the consequences of the peculiar
properties of speckle potentials in the light of the above
perturbative approach. For clarity, we restrict ourselves
to 1D speckle potentials created by square diffusive plates
as in Refs. [13, 18] for which ca(u) = sin(u)/u and ĉa(q) ∝
Θ(1 − |q|) where Θ is the Heaviside step function [24].
Using Eqs. (9) and (10), we find

f2(κ) =
π

8
Θ(1 − κ)(1 − κ) (12)

f3(κ) = −
π

4
Θ(1 − κ) [(1−κ) ln (1−κ) + κ ln (κ)] (13)

The functions f2 and f3 are simple and vanish for κ ≥ 1
(see Fig. 2). This property is responsible for the existence
of the first effective mobility edge at k = kc [17], such
that γ(k)σR ∼ (ǫR/kσR)2 for k . σ−1

R
while γ(k)σR =

O(ǫR/kσR)4 for k & σ−1
R

. The fact that f3 vanishes in
the same interval (κ ≥ 1) as f2 exemplifies the general
property that odd-n terms cannot be leading terms in
any range of k because γ(k) must be positive whatever
the sign of VR. For κ < 1 however, f3(κ) is not identically
zero owing to the asymmetric probability distribution in
speckle potentials. The term γ(3) can thus be either pos-
itive or negative depending on the sign of VR [22].

The function f4 is found similarly from Eq. (11). While
its expression is quite complicated (see the Appendix),
its behavior is clear when plotted (see Fig. 2). Let us
emphasize some of its important features. First, there
is a discontinuity of the derivative of f4 at κ = 1/2.
Second, we find a very narrow logarithmic divergence,
f4(κ) ∼ −(π/32) ln |1 − κ| at κ = 1, which signals a
singularity of the perturbative approach (note that it
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Figure 3: (Color online) Lyapunov exponent γ(k) versus the
particle momentum k as determined numerically (solid red
lines) and by perturbation theory up to order 4 (dashed blue
lines), for a speckle potential created with a square plate. The
dotted green lines are the Born term. Inset: comparison of
odd and even contributions in the Born series for ǫR = 0.1.

does not appear in Fig. 1 due to finite resolution of
the plot). Finally, the value κ = 2 corresponds to the
boundary of the support of f4, showing explicitly the ex-
istence of a second effective mobility edge at k = 2σ−1

R
.

Hence, while γ(k)σR ∼ (ǫR/kσR)4 for k . 2σ−1
R

, we have
γ(k)σR = O(ǫR/kσR)6 for k & 2σ−1

R
, since f4(κ) as well

as f5(κ) vanish for κ ≥ 2.

B. Numerics

In order to test the validity of the perturbative ap-
proach for experimentally relevant parameters, we have
performed numerical calculations using a transfer matrix
approach. The results are plotted in Fig. 3: ǫR = 0.02
corresponds to VR/~ = 2π × 16Hz in Fig. 3 of Ref. [13]
and ǫR = 0.1 to VR/~ = 2π × 80Hz in Fig. 3 and to
Fig. 4 of Ref. [13]. For ǫR = 0.02, the agreement between
analytical and numerical results is excellent. The effec-
tive mobility edge at k = σ−1

R
is very clear: we find a

sharp step for γ(k) of about 2 orders of magnitude. For
ǫR = 0.1, we find the same trend but with a smoother and
smaller step (about one order of magnitude). In this case,
although the Born term for k . σ−1

R
and the fourth-order

term for k & σ−1
R

provide reasonable estimates (within a
factor of 2), higher-order terms –which may depend on
the sign of VR– contribute significantly.

The contribution of the odd terms can be extracted by
taking γ+ − γ−, where γ± are the Lyapunov exponents
obtained for positive and negative disorder amplitude of
same modulus |VR|, respectively. As shown in the inset
of Fig. 3, the odd terms range from 30% to 70% of the
Born term for 0.6 . kσR . 0.9 and ǫR = 0.1, and are of
the order of γ(3) in weak disorder and away from the di-
vergence at k = σ−1

R
. This shows that the first correction

γ(3) to the Born term can be relevant in experiments.
For completeness, we have calculated the fn(κ) as the
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Figure 4: Relevant fourth-order backscattering contributions.
Contrary to the case of uncorrelated potentials [26, 27], the
sum of diagrams (a)-(c) does not give zero for speckle poten-
tials; only diagrams (b) and (d) contribute for kσR ∈ [1, 2].

coefficients of fits in powers of ǫR/kσR using series of cal-
culations of γ(k) at fixed k and various ǫR. As shown in
Fig. 2, the agreement with the analytic formulas is excel-
lent. In particular, the numerics reproduce the predicted
kink at κ = 1/2. The logarithmic singularity around
κ = 1 being very narrow, we did not attempt to study it.

V. DIAGRAMMATIC ANALYSIS

Let us finally complete our analysis using diagram-
matic methods, which allow us to exhibit momentum ex-
change in scattering processes as compact graphics, and
thus to identify effective mobility edges in a quite gen-
eral way. In 1D, the localization length can be calculated
from the backscattering probability of 〈|ψ|2〉 using quan-
tum transport theory. The irreducible diagrams of ele-
mentary scattering processes in speckle potentials have
been identified in Ref. [25].

To lowest order in ǫR (Born approximation), the aver-
age intensity of a plane wave with wave vector k backscat-
tered by the random potential is described by

U2(k) =

•

•

q + k q − k

k k

k k

=:

⊗

⊗

2k

k k

k k

. (14)

The upper part of the diagram represents ψ (particle) and
the lower part its conjugate ψ∗ (hole). The dotted line

•
q

• = ǫRĉa(q) represents the field correlator; simple
closed loops over field correlations can be written as a
potential correlation ⊗ ⊗. Backscattering requires
diagram (14) to channel a momentum 2k, entering at
the particle, down along the potential correlations to the
hole. Therefore, the diagram vanishes for kσR > 1.

At order ǫ3
R
, the only possible contribution is

U3(k) =

• •

•

p

q + k q − k

k k

k k

+ c.c. (15)

The straight black line stands for the particle propaga-
tor [Ek −Ep + i0]−1 at intermediate momentum p. Dia-
gram (15) features two vertical field correlation lines, just
as diagram (14), and thus vanishes at the same threshold
k = σ−1

R
. Evaluating two-loop diagram (15), we recover

precisely contribution (13).

Many diagrams contribute to order ǫ4
R
. First there are

the usual backscattering contributions with pure inten-
sity correlations [Fig. 4(a)-4(c)]. Both Figs. 4(a) and 4(c)
have a single vertical intensity correlation and vanish for
k > σ−1

R
. In contrast, the crossed diagram [4(b)] has

two vertical intensity correlation lines and can thus ac-
commodate momenta up to k = 2σ−1

R
. Performing the

integration, we find that this diagram reproduces those
contributions to f4(κ) for κ ∈ [1, 2] that contain factor-
ized correlators (see the Appendix). Second, there are
nine more diagrams, all with non-factorizable field corre-
lations [25]. A single one has not two, but four vertical
field correlation lines, shown in Fig. 4(d), and contributes
for kσR ∈ [1, 2]. Carrying out the three-loop integration,
we recover exactly the non-factorizable contributions to
f4(κ) for κ ∈ [1, 2].

VI. CONCLUSION

We have developed perturbative and diagrammatic ap-
proaches beyond the Born approximation, suitable to
study 1D AL in correlated disorder with possibly asym-
metric probability distribution. In speckle potentials, the
k dependence of the Lyapunov exponent exhibits sharp
crossovers (effective mobility edges) separating regions
where AL is due to scattering processes of increasing
order. We have shown it explicitly for k = σ−1

R
and

k = 2σ−1
R

, and we infer that there is a series of effective
mobility edges at k = pσ−1

R
with integer p since, gener-

ically, diagrams with 2p field correlations or p intensity
correlations can contribute up to k = pσ−1

R
. This is be-

cause, although speckles are not Gaussian, they derive
from a Gaussian field. Finally, exact numerics support
our analysis for experimentally relevant parameters, and
indicate the necessity to use higher-order terms in the
Born series, even for k < σ−1

R
. Hence, important fea-

tures that we have pointed out, such as odd terms in the
Born series for k < σ−1

R
and exponential localization for

k > σ−1
R

, should be observable experimentally.
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APPENDIX

Here, we give the explicit formula of the function f4(κ)
for a speckle potential created by a square diffusive
plate, such that the fourth-order term in the Born
expansion of the Lyapunov exponent γ reads γ(4) =

σ−1
R

(

ǫR
kσR

)4

f4(kσR). The function f4(κ) is the sum of
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three terms with different supports,

f4(κ) = f
[0,1/2]
4 (κ) + f

[0,1]
4 (κ) + f

[1,2]
4 (κ),

where f
[α,β]
4 (κ) lives on the interval κ ∈ [α, β], and

f
[0,1/2]
4 (κ) = −

π3

16
(1 − 2κ)

f
[0,1]
4 (κ) =

π

64

{

4 − 6κ−
10π2

3
(1 − 2κ) − (4 − 2κ) ln(κ) −

(

5

κ
− 3κ

)

ln(1 − κ) +

(

1

κ
+ κ

)

ln(1 + κ)

−(4 − 8κ) ln2(κ) + 22(1 − κ) ln2(1 − κ) + (18 + 14κ) ln2(1 + κ)

−16(1 − κ) ln(1 − κ) ln(κ) − 4(1 − κ) ln(1 − κ) ln(1 + κ) − 32(1 + κ) ln(κ) ln(1 + κ)

−24(1 + κ)Li2(κ) + 32(1 + κ)Li2

(

κ

1 + κ

)

−8κLi2

(

2κ

1 + κ

)

− 8(1 − 2κ)Li2

(

2 −
1

κ

)}

f
[1,2]
4 (κ) =

π

32

{

− 2 +

(

1 +
π2

3

)

κ+ 4κLi2(1 − κ) −

(

2

κ
− 2 + κ

)

ln(κ− 1) − 2(κ− 1) ln2(κ− 1) + 4κ ln(κ− 1) ln(κ)

}

where Li2(z) =
∫ 0

z dt ln(1 − t)/t =
∑∞

k=1 z
k/k2 is the

dilogarithm function.
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