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We investigate Anderson localization of ultracold atoms in weak 1D correlated random potentials
resulting from laser speckles. We show the existence of effective mobility edges corresponding to
sharp crossovers between regions where localization lengths differ by orders of magnitude. Using
perturbation theory, we derive analytical formulas up to two orders beyond Born approximation
and find them in excellent agreement with exact numerical calculations. Finally, we analyze our
findings in the light of a diagrammatic approach.

PACS numbers: 03.75.-b,42.25.Dd,72.15.Rn

Anderson localization (AL) of single electron wave
functions [1], first proposed to understand certain metal-
insulator transitions, is now considered a ubiquitous phe-
nomenon, which can happen for any kind of waves prop-
agating in a medium with random impurities [2, 3]. It
can be understood as a coherent interference effect in
multiple scattered waves from random defects, yielding
localized waves with an exponential profile, and resulting
into complete suppression of the usual diffusive transport
associated with incoherent wave scattering [4].

So far, AL has been reported for light waves in diffusive
media [5, 6] or photonic crystals [7, 8], sound waves [9],
microwaves [10]. Ultracold atoms have allowed study
of AL in momentum space [11, 12], and recently it has
been possible to directly observe localized atomic matter
waves [13, 14]. In the latter case, random potentials can
be controlled [15, 16, 17], offering unprecedented possi-
bilities to explore the role of finite-range correlations.

Systems in 1D are peculiar as regards AL compared
to higher dimensions. In 3D, there is a metal-insulator
transition (mobility edge) given approximately by the
Ioffe-Regel criterion, kl∗ ∼ 1 [18], i.e. only states with a
wavenumber k smaller than the inverse transport mean-
free path l∗ are localized. In 2D, all states are localized
but the localization length Lloc diverges exponentially
with kl∗ for kl∗ > 1. In contrast, there is no localiza-
tion threshold in 1D and Lloc is proportional to l∗ [19].
However, long-range correlations can induce anomalous
diffusion and non-standard localization properties [20].

Important examples are random potentials resulting
from laser speckles [21] and used in experiments with ul-
tracold atoms [13]. Their power spectrum have a finite
support so that there is no Fourier component beyond a
certain value 2kc. Then, the Born approximation –which
is expected to be relevant for weak disorder [22]– pre-

dicts that the random potential does not provide back-
scattering and thus no localization for k > kc. This
property defines an effective mobility edge in 1D [23] at
k = kc, evidences of which have been reported [13, 24].
In this context, questions have raised about the true na-
ture of the effective mobility edge and localization proper-
ties beyond it. Related questions have been addressed in
different contexts [25] but speckle potentials have non-
standard properties: (i) They are non-Gaussian disor-
ders [26] and (ii) their probability distribution is not sym-
metric. These make them an original class of disorder
with odd terms in the Born expansion (see below).

In this Letter, we address these questions for speckle
potentials using perturbation theory beyond the Born ap-
proximation and exact numerical calculations [27]. We
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Figure 1: (color online) Lyapunov exponent γ calculated two
orders beyond Born approximation versus the particle mo-
mentum k and the strength of disorder ǫR for particles in 1D
speckle potentials created with a square diffusive plate. The
red lines correspond to ǫR = 0.1 and ǫR = 0.02 respectively
(same curves as in Fig. 3).
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find that AL occurs even beyond the effective mobility
edge at k = kc. In fact, there exist several effective
mobility edges located at k(p)

c
= pkc with p an integer

such that AL in the successive regions k(p−1)
c

< k < k(p)
c

is dominated by higher and higher order scattering pro-
cesses. Effective mobility edges are thus characterized by
sharp crossovers in the k-dependence of the Lyapunov ex-
ponent (see Fig. 1). We prove it for the first two effective
mobility edges by calculating explicitly the three lowest
orders in the Born expansion. Our analytic calculations
are in excellent agreement with numerics. Finally, we
analyze our findings using diagrammatic methods.

Phase formalism – Consider a particle of energy E in
a 1D random potential V (z) of statistical average zero
(〈V 〉 = 0). We use the phase formalism [22]:

φ(z) = r(z) sin [θ(z)] ; ∂zφ = kr(z) cos [θ(z)] , (1)

with k =
√

2mE/~2 the particle wavenumber in the ab-
sence of disorder, for which the Schrödinger equation in
1D is equivalent to the coupled equations

∂zθ(z) = k
[

1 − (V (z)/E) sin2 (θ(z))
]

(2)

ln[r(z)/r(0)] = k

∫ z

0

dz′ (V (z′)/2E) sin (2θ(z′)) .(3)

The phase formalism allows us to solve Eq. (2) perturba-
tively in powers of V , and to reintroduce the solutions at
different orders into Eq. (3). This yields the correspond-
ing perturbation orders of the Lyapunov exponent:

γ(k) = lim
|z|→∞

〈ln(r(z))/|z|〉 =
∑

n≥2

γ(n)(k). (4)

The n-th order term, γ(n), is thus expressed as a
function of the n-point correlator Cn(z1, ..., zn−1) =
〈V (0)V (z1)...V (zn−1)〉 of the random potential. Up to
second order beyond the Born term (n = 4), we find

γ(n) = σ−1
R

(

ǫR
kσR

)n

fn(kσR) (5)

where ǫR = 2mσ2
R
VR/~

2 and

f2(κ) = +
1

4

∫ 0

−∞

du c2(u) cos(2κu) (6)

f3(κ) = −
1

4

∫ 0

−∞

du

∫ u

−∞

dv c3(u,v) sin(2κv) (7)

f4(κ) = −
1

8

∫ 0

−∞

du

∫ u

−∞

dv

∫ v

−∞

dw c4(u, v, w) (8)

×
{

2 cos(2κw)+cos[2κ(v+w−u)]
}

.

Reduced correlators, cn, are defined using amplitude
VR and correlation length σR of the disorder (pre-
cisely defined below) as unit scales: Cn(z1, ..., zn−1) =
V n

R
cn (z1/σR, ..., zn−1/σR). Notice that the compact form

of Eq. (8) is valid provided that oscillating terms, which
may appear from contributions of c4 that can be factor-
ized as correlators c2, are appropriately regularized at
infinity. In Eq. (5), the coefficients (ǫR/kσR)n diverge in
the low-momentum limit k → 0 while it is known that
the exact γ(k) remains finite for any finite ǫR [28]. This
indicates a breakdown of the perturbative Born expan-
sion, which is known to be valid when γ(k) ≪ k, that
is when the localization length is much larger than the
particle wavelength, a physically satisfactory criterion.

For zero-range correlations, i.e. for c2(u) ∝ δ(u), the
Born term, γ(2)(k), does not vanish and is thus the lead-
ing order for any k ≫ γ(2)(k). In random potentials with
long-range correlations, such as speckle potentials, the
situation happens to be richer.

Speckle potentials – Speckle patterns are obtained by
transmission of a laser beam through a medium with a
random phase profile, such as a ground glass plate. The
resulting complex electric field, E , is a sum of indepen-
dent random variables, and is thus a Gaussian process.
In such a light field, atoms experience a random poten-
tial proportional to the light intensity, |E|2. Defining the
zero of energies so that 〈V 〉 = 0, the random potential is

V (z) = VR ×
(

|a(z/σR)|2 − 〈|a(z/σR)|2〉
)

. (9)

Depending on the detuning of the laser with respect to
the atomic resonance, the sign of VR can be either posi-
tive (‘blue detuning’) or negative (‘red detuning’). The
quantities a(u) are complex Gaussian variables, propor-
tional to the electric fields, E . Notice that all correlators,
cn, of the random potential are completely determined by
the sole field-field correlator ca(u) = 〈a(0)∗a(u)〉 through
the statistical Gaussian theorem,

〈a∗1...a
∗
p × ap+1...ap+p〉 =

∑

Π

〈a∗1ap+Π(1)〉...〈a
∗
pap+Π(p)〉,

(10)
where ap′ = a(zp′/σR) and Π describes all p! permuta-
tions of [1...p]. For instance, c2(u) = |ca(u)|2 and defin-
ing a(u) so that 〈|a(u)|2〉 = 1, we have

√

〈V (z)2〉 =
|VR|. Since speckles result from interferences between
light waves of wavelength λL coming from a finite size
aperture of angular width 2θ, the Fourier transform
of the field-field correlator has no component beyond
kc = 2π sin θ/λL and ca has always a finite support:

ĉa(q) = 0 for |q| > kcσR ≡ 1. (11)

Analytic results – We now apply perturbation the-
ory within the phase formalism up to two orders beyond
Born approximation (n = 4) for speckle potentials. The
discussion below can be generalized to any kind of 1D
random potentials that fulfill the sole conditions (9)-(11)
with similar conclusions (only formulas for the functions
fn(κ) would change). However, for clarity, we restrict
our discussion to 1D speckle potentials created by square
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Figure 2: (color online) Functions fn for n = 2, 3 and 4 for
a speckle potential created with a square diffusive plate (i.e.
ca(u) = sin(u)/u). The solid lines correspond to Eqs. (12)-
(14) and the points with errorbars to numerical calculations.
The inset is a magnification of function f4 around κ = 2.

diffusive plates as in Ref. [13] for which ca(u) = sin(u)/u
and ĉa(q) ∝ Θ(1−|q|) where Θ is the Heaviside function.
Inserting this correlator into Eqs. (6)-(8), we find

f2(κ) =
π

8
Θ(1 − κ)(1 − κ) (12)

f3(κ) = −
π

4
Θ(1 − κ) [(1−κ) ln (1−κ) + κ ln (κ)] (13)

f4(κ) =
π

64

{

Θ(1/2 − κ)f
0, 1

2

4 (κ) + Θ(1 − κ)f0,1
4 (κ)

+Θ(κ− 1)Θ(2 − κ)f1,2
4 (κ)

}

. (14)

The functions f2 and f3 are simple and vanish for κ > 1
(see Fig. 2). This property is responsible for the exis-
tence of the effective mobility edge at k = kc [23] such
that γ(k)σR ∼ (ǫR/kσR)2 for k . σ−1

R
while γ(k)σR =

O(ǫR/kσR)4 for k & σ−1
R

. Notice that f3(κ) does not
vanish everywhere, a consequence of the non-symmetric
probability distribution in speckle potentials. The func-
tion f4(κ) has three components with three different sup-

ports: f
0, 1

2

4 (κ) on [0, 1/2], f0,1
4 (κ) on [0, 1] and f1,2

4 (κ)

on [1, 2]. The formulas for fα,β
4 (κ) being quite compli-

cated we do not reproduce them [29]. The behavior of
f4 is clearer when plotted (see Fig. 2). The first cut-
off is responsible for the discontinuity of the derivative
of f4 at κ = 1/2. At the second cut-off, κ = 1, we
find a logarithmic divergence, f4(κ) ∼ −2 ln |1−κ| which
signals a singularity of the perturbative expansion. In
addition, it is very narrow (notice that it does not ap-
pear in Fig. 1 due to the finite grid of the 3D plot) so
we disregard it in the remainder of the Letter. The
last cut-off at κ = 2 defines the edge of the support
of the fourth-order term at k = 2σ−1

R
, showing explic-

itly the existence of a second effective mobility edge at
k = 2σ−1

R
, such that γ(k)σR ∼ (ǫR/kσR)4 for k . 2σ−1

R

while γ(k)σR = O(ǫR/kσR)6 for k & 2σ−1
R

. Notice that,
although the odd-n terms do not vanish, they cannot be
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Figure 3: (color online) Lyapunov exponent γ(k) versus the
particle momentum k as determined by exact numerical cal-
culations (red solid line) and comparison to perturbation the-
ory up to two orders beyond Born approximation (i.e. up to
n = 4; blue solid line). The green dashed lines are the Born
term. These results hold for a speckle potential created with
a square diffusive plate for two values of the parameter ǫR.

leading terms in any range of k owing to the positivity
of the Lyapunov exponent irrespective to the sign of VR.

Numerics – We have also performed exact numeri-
cal calculations using a transfer matrix approach. The
results are plotted in Fig. 3 for parameters relevant for
Ref. [13]: ǫR = 0.02 corresponds to VR/~ = 2π × 16Hz in
Fig. 3 of Ref. [13] and ǫR = 0.1 to VR/~ = 2π × 80Hz in
Fig. 3 and to Fig. 4 of Ref. [13]. For ǫR = 0.02, the agree-
ment between perturbation theory and exact numerical
results is excellent. In particular, the effective mobility
edge at k = σ−1

R
is very clear: We find a sharp step for

γ(k) of about two orders of magnitude. The curve cor-
responding to ǫR = 0.1 shows the same trend but with
a smoother and smaller step (about one order of mag-
nitude). Although the Born approximation for k . σ−1

R

and the fourth-order term for k & σ−1
R

provide reason-
able estimates (up to a factor of about 2), higher order
terms cannot be neglected. Only near k = 0 is pertur-
bation theory unusable as expected from our discussion
above.

In order to check the validity of the analytic formu-
las (12)-(14), we use a series of calculations of the Lya-
pounov exponent at fixed k and various ǫR that we fit
in powers of ǫR/kσR. As shown in Fig. 2, the agreement
with the analytic expressions is excellent. In particular,
the numerics faithfully reproduce the predicted kink at
κ = 1/2. The logarithmic singularity around κ = 1 is
very narrow; we did not attempt to study it in detail.

Diagrammatic analysis – Diagrammatic methods pro-
vide simple graphical representations of the backscatter-
ing processes encoded in Eqs. (6)-(8) and allow to iden-
tify effective mobility edges quite simply. In 1D, Lloc = l∗

can be calculated from the backscattering probability of
〈|ψ|2〉 using standard quantum transport theory. The ir-
reducible diagrams of elementary scattering processes in
speckle potentials have been identified in Ref. [16].

To lowest order in ǫR (Born approximation), the aver-
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Figure 4: Relevant fourth-order backscattering contributions.
Contrary to the case of uncorrelated potentials [30, 31], the
sum of diagrams (a)-(c) does not give zero for speckle poten-
tials; only diagrams (b) and (d) contribute for kσR ∈ [1, 2].

age intensity of a plane wave with wave vector k backscat-
tered by the random potential is described by

U2(k) =

•

•

q + k q − k

k k

k k

=:

⊗

⊗

2k

k k

k k

. (15)

The upper part of the diagram represents ψ (particle) and
the lower part its conjugate ψ∗ (hole). The dotted line

•
q

• = ǫRĉa(q) represents the field correlator; simple
closed loops over field correlations can be written as a
potential correlation ⊗ ⊗. Backscattering requires
the diagram (15) to channel a momentum 2k, entering at
the particle, down along the potential correlations to the
hole. Therefore, the diagram vanishes for kσR > 1.

At order ǫ3
R
, the only possible contribution is

U3(k) =

• •

•

p

q + k q − k

k k

k k

+ c.c. (16)

The straight black line stands for the particle propagator
[Ek −Ep + i0]−1 at intermediate momentum p. The dia-
gram (16) features two vertical field correlation lines, just
as diagram (15), and thus vanishes at the same thresh-
old k = σ−1

R
. Evaluating the two-loop diagram (16), we

recover precisely the contribution (13).
Many diagrams contribute to order ǫ4

R
. First there are

the usual backscattering contributions with pure inten-
sity correlations, shown in Fig. 4(a)-(c). Both 4(a) and
(c) have a single vertical intensity correlation and van-
ish for k > σ−1

R
. In contrast, the crossed diagram 4(b)

has two vertical intensity correlation lines and can thus
accommodate momenta up to k = 2σ−1

R
. Performing

the integration, we find that this diagram reproduces the
complicated functional dependence of those contributions
to f1,2

4 in Eq. (14) that contain factorized correlators.
Second, there are nine more diagrams, all with non-

factorizable field correlations [16]. A single one has not
two, but four vertical field correlation lines, shown in
Fig. 4(d), and contributes for kσR ∈ [1, 2]. Carrying out
the three-loop integration, we recover exactly the non-
factorizable contributions to f1,2

4 in Eq. (14).
Conclusion – We have shown that in a speckle poten-

tial of correlation length σR, the k-dependence of the
Lyapunov exponent exhibits sharp crossovers (effective

mobility edges) separating regions where AL is due to
higher and higher order scattering processes. We have
shown explicitly the existence of the first two effective

mobility edges at k = σ−1
R

and k = 2σ−1
R

. We infer
that there exists a series of effective mobility edges at
k(p)

c
= pσ−1

R
with p an integer since generically, diagrams

with 2p vertical field correlations or p intensity correla-
tions can contribute up to k = pσ−1

R
.
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AUXILIARY MATERIAL

The functions fα,β
4 read

f
0, 1

2

4 (κ) = −4π2(1 − 2κ)

f0,1
4 (κ) = 4 − 6κ−

10π2

3
(1 − 2κ) − (4 − 2κ) ln(κ)

−

(

5

κ
− 3κ

)

ln(1 − κ) +

(

1

κ
+ κ

)

ln(1 + κ)

−(4 − 8κ) ln2(κ) + 22(1 − κ) ln2(1 − κ)

+(18 + 14κ) ln2(1 + κ)

−16(1 − κ) ln(1 − κ) ln(κ)

−4(1 − κ) ln(1 − κ) ln(1 + κ)

−32(1 + κ) ln(κ) ln(1 + κ)

−24(1 + κ)Li2(κ) + 32(1 + κ)Li2

(

κ

1 + κ

)

−8κLi2

(

2κ

1 + κ

)

− 8(1 − 2κ)Li2

(

2 −
1

κ

)

f1,2
4 (κ) = −4 + 2

(

1 +
π2

3

)

κ+ 8κLi2(1 − κ)

−

(

4

κ
− 4 + 2κ

)

ln(κ− 1)

−4(κ− 1) ln2(κ− 1) + 8κ ln(κ− 1) ln(κ)

where Li2 =
∫ 0

z
dt ln(1 − t)/t =

∑∞
k=1 z

k/k2 is the dilog-
arithm function.
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